
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 10 – Parallelism in Software I

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture

10 (c) Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

2

Outline

• Parallel programming

– Start from scratch

– Reengineering for parallelism

• Parallelizing a program

– Decomposition (finding concurrency)

– Assignment (algorithm structure)

– Orchestration (supporting structures)

– Mapping (implementation mechanisms)

• Patterns for Parallel Programming

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

3

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007.

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

4

Parallel programming from scratch

• Start with an algorithm

– Formal representation of problem solution

– Sequence of steps

• Make sure there is parallelism

– In each algorithm step

– Minimize synchronization points

• Don’t forget locality

– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential code

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

5

Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the
time spent?
– Look at code

– Use profiling tools

• Parallelization
– Start with hot spots first

– Make sequences of small changes, each followed by testing

– Patterns provide guidance

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

6 4 Common Steps to
Creating a Parallel Program

Tasks Units of

Execution

Processors

Partitioning

Sequential

Computation
Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

7

Decomposition

• Identify concurrency and decide at what level to
exploit it

• Break up computation into tasks to be divided
among processes
– Tasks may become available dynamically

– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on

achievable speedup

Main consideration: coverage and Amdahl’s Law

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

8

Coverage

• Amdahl's Law: The performance improvement to
be gained from using some faster mode of
execution is limited by the fraction of the time the
faster mode can be used.

– Demonstration of the law of diminishing returns

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

9

Amdahl’s Law

• Potential program speedup is defined by the
fraction of code that can be parallelized

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential 25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

10

Amdahl’s Law

• Speedup = old running time / new running time

 = 100 seconds / 60 seconds

 = 1.67
 (parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential 25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

11

• p = fraction of work that can be parallelized

• n = the number of processor

Amdahl’s Law

fraction of time to

complete sequential

work

fraction of time to

complete parallel work

n

p
p

speedup







)1(

1

 timerunning new

 timerunning old

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

12

Implications of Amdahl’s Law

• Speedup tends to as number of processors
tends to infinity p1

1

Super linear speedups

are possible due to

registers and caches

Typical speedup is

less than linear

number of processors

s
p

e
e

d
u

p

Parallelism only worthwhile

when it dominates execution

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

13

Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication

• Structured approaches usually work well
– Code inspection or understanding of application

– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?

– Complexity often affects decisions

– Architectural model affects decisions

Main considerations: granularity and locality

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

14

Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to

communication ratio

– Small amounts of
computational work between

communication stages

– High communication

overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to

communication ratio

– Large amounts of
computational work between

communication events

– Harder to load balance

efficiently

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

15

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

16

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync  coarse granularity

Few units of exec + time disparity  fine granularity

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

17

Orchestration and Mapping

• Computation and communication concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 10 (c) Mattan Erez

18

Parallel Programming by Pattern

• Provides a cookbook to systematically guide programmers

– Decompose, Assign, Orchestrate, Map

– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming
community

– Each pattern has a name, providing a vocabulary for
discussing solutions

• Helps with software reusability, malleability, and modularity

– Written in prescribed format to allow the reader to quickly
understand the solution and its context

• Otherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

