EE382N (20). Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 11 - Parallelism in Software |l

Mattan Erez

[SEE==ECE

The University of Texas at Austin

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture
11 (c) Rodric Rabbah, Mattan Erez

Credits

 Most of the slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007.

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

4 Common Steps to
Creating a Parallel Program

Partitioning
|
| |
d A 5 -
A e - < r X
C O S c D
0 OO i h p
5 go o c ‘ o |ue] uE
s O T - — ﬂ"‘t -
|
; OO t ¥ | UE,] UE,
- o i
V @ S 0
Sequential Tasks Units of Parallel Processors
Computation Execution program

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Decomposition

e |dentify concurrency and decide at what level to
exploit it

e Break up computation into tasks to be divided
aMmong pProcesses

— Tasks may become available dynamically
— Number of tasks may vary with time

e Enough tasks to keep processors busy

— Number of tasks available at a fime is upper bound on
achievable speedup

Main consideration: coverage and Amdahl’s Law

Assignment

e Specify mechanism to divide work among PEs
— Balance work and reduce communication

e Structured approaches usually work well
— Code inspection or understanding of application
— Well-known design patterns

e As programmers, we worry about partitioning first
— Independent of architecture or programming modele
— Complexity often affects decisions
— Architectural model affects decisions

Main considerations: granularity and locality

Orchestration and Mapping

e Computation and communication concurrency

e Preserve locality of data
e Schedule tasks to satisty dependences early

e Survey available mechanisms on target system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

2

Parallel Programming by Patiern

* Provides a cookbook to systematically guide programmers
— Decompose, Assign, Orchestrate, Map
— Can lead to high quality solutions in some domains

 Provide common vocabulary to the programming
community

— Each pattern has a name, providing a vocabulary for
discussing solutions

e Helps with software reusability, malleability, and modularity
— Written in prescribed format to allow the reader to quickly

understand the solution and its context

e Oftherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

History

e Berkeley architecture professor

Christopher Alexander »
A Pattern Language

Towns - Buildings - Construction

e |n 1977, patterns for city
planning, landscaping, and |
architecture in an attempt to |
capture principles for “living”
design |

Christopher Alexander
Sara Ishikawa - Murray Silverstein

Max Jacobson - Ingrid Fiksdahl-King
Shlomo Angel

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Example 167 (p. 783): 6ft Balcony

Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a
simple line, and enclose it partially.

six feet deep

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

10

Paiterns in Object-Oriented Programming

e Design Patterns: Elements of Reusable Object-
Oriented Software (1995)
— Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
— Catalogue of patterns
— Creation, structural, behavioral

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

B
o
o
z
=
Z
-
-
w
<
=
2
w
wm
~
z
=
™
—
<
c
Z
@)
=
o
w

Cover O IFMMC Escher /¢ "

Foreword by Grady Booch

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs B

4 Design Spaces

Algorithm Expression Software Construction
« Finding Concurrency < Supporting Structures
— Expose concurrent tasks — Code and data structuring
patterns
« Algorithm Structure « Implementation
— Map tasks to processes 1o Mechanisms
ekalﬁ'T pToroIIeI — Low level mechanisms used
architecture Yt to write parallel programs

PROGRAMMING

1 ¥ ' Patterns for Parallel Programming.
Mattson, Sanders, and Massingill

i <
{ 1
E EE382N: Parallelilsm and Locality, Fan curt = e uric Rabbah, Mattan Erez

Here's my algorithm.
Where's the concurrency?

MPEG Decoder

frequency encoded
macroblocks /

MPEG bit stream

(VLD]
¢ macroblocks, motion vectors
[split]

differentially coded
motion vectors

[ZigZag]

[IQuantization] [Motion Vector Decode]
v

[ID+CT] Repeat

[Saturation]

spatially encoded macroblocks

motion vectors

Motion
Compensation

recovered picture

\ 4

[

Picture Reorder]

v

[

Color Conversion]

v

[

Display]

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

12

Here's my algorithm.

13

Where’s the concurrency?

MPEG bit stream

MPEG Decoder

(VLD]
i macroblocks, motion vectors
[split]

differentially coded
motion vectors

frequency encoded
macroblocks

spatially encoded macroblocks

f }4
A
Motion
Compensation

recovered picture

Motion Vector Decode

motion vectors

v
[Picture Reorder]

v

[Color Conversion]

v

[Display]

N

« Task decomposition

— Independent coarse-grained
computation

— Inherent to algorithm

« Sequence of statements
(instructions) that operate
together as a group

— Corresponds to some logical part
of program

— Usually follows from the way
programmer thinks about a
problem

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Here's my algorithm.
Where’s the concurrency?

14

MPEG bit stream
MPEG Decoder

) « Task decomposition

i macroblocks, motion vectors

ST T — Parallelism in the application
frequency encoded

macroblocks differentially coded / \

« Pipeline task decomposition
— Data assembly lines
e — Producer-consumer chains

4 Wy 5
A
Motion
Compensation

recovered picture

Motion Vector Decode

v
[Picture Reorder]

v

[Color Conversion]

v

[Display]

N

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Here's my algorithm.
Where’s the concurrency?

15

MPEG bit stream
MPEG Decoder

—t—— « Task decomposition

i macroblocks, motion vectors

: : : — Parallelism in the application
frequency encoded splt

macroblocks differentially coded
motion vectors

-
« Pipeline task decomposition
— Data assembly lines

(-~ | — Producer-consumer chains
join

Motion
Compensation

Motion Vector Decode

« Data decomposition

recovered picture — Same computation is applied to
(roture reoraer] small data chunks derived from
¥

large data set
[Color Conversion] g \
v ‘A—_]l
[Display]

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Guidelines for Task Decomposition

e Algorithms start with a good understanding of the
problem being solved

* Programs often naturally decompose into tasks

— Two common decompositions are
e Function calls and
e Distinct loop iteratfions

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try 1o split them

16

17

Guidelines for Task Decomposition

o Flexibility

— Program design should afford flexibility in the number and
size of fasks generated

e Tasks should not tied to a specific architecture
e Fixed tasks vs. Parameterized tasks

e Efficiency

— Tasks should have enough work 1o amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that
Mmanaging dependencies doesn't become the
bottleneck

o Simplicity
— The code has to remain readable and easy to
understand, and debug

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

18

Case for Pipeline Decomposition

e Datais flowing through a sequence of stages (zozag]
— Assembly line is a good analogy

What's a prime example of pipeline decomposition|
computer architecture?

— Instruction pipeline in modern CPUs

What's an example pipeline you may use in your UNIX shell?
— Pipes in UNIX: cat foobar.c | grep bar | wc

Other examples
— Signal processing
— Graphics

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

2

19

Guidelines for Data Decomposition

e Data decomposition is offen implied by task
decomposition

 Programmers need to address fask and data
decomposition to create a parallel program
— Which decomposition to start withe

 Data decomposition is a good starfing point when

— Main computation is organized around manipulation of a large
data structure

— Similar operations are applied to different parts of the data
structure

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

20

Oy,

‘
AT

o
%
qb«-ﬂ!bﬂbﬂuwsﬂ

Common Data Decompositions

e Geometric data structures

— Decomposition of arrays along rows, columns, blocks

iINfo domains

Decomposition of meshes

YAy,

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Common Data Decompositions

e Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes into domains

e Recursive data structures
— Example: decomposition of trees intfo sub-trees

split

subproblem

subproblem

split

merge

subproblem

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

subproblem

21

22

Guidelines for Data Decomposition

o Flexibility

— Size and number of data chunks should support a wide
range of executions

e Efficiency

— Data chunks should generate comparable amounts of
work (for load balancing)

o Simplicity
— Complex data compositions can get difficult to manage
and debug

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

23

Data Decomposition Examples

e Molecular dynamics
— Compute forces

— Update accelerations and
velocities

— Update positions
e Decomposition

— Baseline algorithm is N2
e All-to-all communication

— Best decomposition is to freat
mols. as a set

— Some advantages to
geometric discussed in future
lecture

E z EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Data Decomposition Examples

e Molecular dynamics
— Geometric decomposition

* Merge sort
— Recursive decomposition

subproblem

split

split

merge

subproblem

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

subproblem

subproblem

24

2

Dependence Analysis

e Given two tasks how to determine if they can
safely run in parallele

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

25

Bernstein’s Condition

* R;:set of memory locations read (input) by task T,

* W;: set of memory locations writfen (output) by
fask T;

e Two tasks T, and T, are parallel if
— input to T, is not part of output from T,
— input to T, is not part of output from T,
— outputs from T, and T, do not overlap

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

26

2

Example

Ry ={x,y}
W, ={a}

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11

Rl ﬂ\Nz =¢
R2ﬂW1 =¢
Wl ﬂWz =¢

(c) Rodric Rabbah, Mattan Erez

R, ={x,z}
W, ={b}

27

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

« Algorithm Structure

— Map tasks to processes 1o
exploit parallel |
architecture PATTERNS

FOR PARALLEL
PROGRAMMING

Wy Patterns for Parallel Programming.

. Mattson, Sanders, and Massingill
(2005).

,,,,,

‘1‘""'" [(
b‘-;‘ o
E EE382N: Parallelilsm and Locality, Fain com e oot oot vuric Rabbah, Mattan Erez

28

Algorithm Structure Design Space

e Given a collection of concurrent tasks, what's the
next stepe

 Map tasks to units of execution (e.g., threads)

 Important considerations
— Magnitude of number of execution units platform will support
— Cost of sharing information among execution units

— Avoid tendency to over constrain the implementation
e Work well on the infended platform
e Flexible enough to easily adapt to different architectures

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

29

2

Major Organizing Principle

e How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

e Concurrency usually implies major organizing
principle
— Organize by tasks
— Organize by data decomposition
— Organize by flow of data

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

30

Organize by Tasks?

yes

v

Recursive?
no

Task
Parallelism

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

Divide and Conquer

31

