
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 11 – Parallelism in Software II

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture

11 (c) Rodric Rabbah, Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007.

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

3 4 Common Steps to
Creating a Parallel Program

Tasks Units of

Execution

Processors

Partitioning

Sequential

Computation
Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

4

Decomposition

• Identify concurrency and decide at what level to
exploit it

• Break up computation into tasks to be divided
among processes
– Tasks may become available dynamically

– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on

achievable speedup

Main consideration: coverage and Amdahl’s Law

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

5

Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication

• Structured approaches usually work well
– Code inspection or understanding of application

– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?

– Complexity often affects decisions

– Architectural model affects decisions

Main considerations: granularity and locality

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

6

Orchestration and Mapping

• Computation and communication concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

7

Parallel Programming by Pattern

• Provides a cookbook to systematically guide programmers

– Decompose, Assign, Orchestrate, Map

– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming
community

– Each pattern has a name, providing a vocabulary for
discussing solutions

• Helps with software reusability, malleability, and modularity

– Written in prescribed format to allow the reader to quickly
understand the solution and its context

• Otherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

8

History

• Berkeley architecture professor
Christopher Alexander

• In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

9

Example 167 (p. 783): 6ft Balcony

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

10

Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

11

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

12

Picture Reorder

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectors spatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion

Compensation

Display

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

13

• Task decomposition
– Independent coarse-grained

computation

– Inherent to algorithm

• Sequence of statements

(instructions) that operate

together as a group
– Corresponds to some logical part

of program

– Usually follows from the way

programmer thinks about a

problem

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectors spatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion

Compensation

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

14

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectors spatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

Motion

Compensation

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

15

join

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectors spatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion

Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

• Data decomposition
– Same computation is applied to

small data chunks derived from

large data set

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

16

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and

• Distinct loop iterations

• Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

17

Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them

– Tasks should be sufficiently independent so that
managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

18

Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in
computer architecture?

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

19

Guidelines for Data Decomposition

• Data decomposition is often implied by task
decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large

data structure

– Similar operations are applied to different parts of the data
structure

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

20

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

21

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

22

Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide
range of executions

• Efficiency

– Data chunks should generate comparable amounts of
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage
and debug

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

23

Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set

– Some advantages to
geometric discussed in future
lecture

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

24

Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

25

Dependence Analysis

• Given two tasks how to determine if they can
safely run in parallel?

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

26

Bernstein’s Condition

• Ri: set of memory locations read (input) by task Ti

• Wj: set of memory locations written (output) by
task Tj

• Two tasks T1 and T2 are parallel if

– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

27

T1

a = x + y

T2

b = x + z

Example

R1 = { x, y }

W1 = { a }

R2 = { x, z }

W2 = { b }













21

12

21

WW

WR

WR







N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

28

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

29

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support

– Cost of sharing information among execution units

– Avoid tendency to over constrain the implementation

• Work well on the intended platform

• Flexible enough to easily adapt to different architectures

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

30

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks

– Organize by data decomposition

– Organize by flow of data

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 11 (c) Rodric Rabbah, Mattan Erez

31

Organize by Tasks?

Recursive?

Task

Parallelism

Divide and Conquer
yes

no

