EE382N (20). Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 12 - Parallelism in Software lli

Mattan Erez

[SEE==ECE

The University of Texas at Austin

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture
12 (c) Rodric Rabbah, Mattan Erez

Credits

 Most of the slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007.

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction
« Finding Concurrency < Supporting Structures
— Expose concurrent tasks — Code and data structuring
patterns
« Algorithm Structure « Implementation
— Map tasks to processes 1o Mechanisms
ekalﬁ'T pToroIIeI — Low level mechanisms used
architecture Yt to write parallel programs

PROGRAMMING

1 ¥ ' Patterns for Parallel Programming.
Mattson, Sanders, and Massingill

i <
{ 1
E EE382N: Parallelilsm and Locality, Fan curt = e uric Rabbah, Mattan Erez

Quick recap

e Decomposition

— Keep things general and simple
e Consider rough machine properties only (10, 1000, 1M, ...)

— Task

e Natural in some programs
e Need to balance overheads of fine-grained with degree of par.

— Data
e Natural in some programs, less general than task
e Consider data structure

— Pipeline
e Overlap compute and comm.
e Reduce the degree of other parallelism needed

e Dependencies
— Equivalent to RAW/WAW/WAR

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

« Algorithm Structure

— Map tasks to processes 1o
exploit parallel
architecture

PATTERNS
FOR PARALLEL
PROGRAMMING

N

EE382N: Parallelilsm and Locality, Fain <0tt =

Y ““ Patterns for Parallel Programming.
" Mattson, Sanders, and Massingill
(2005).

vuric Rabbah, Mattan Erez

o S

Algorithm Structure Design Space

e Given a collection of concurrent tasks, what's the
next stepe

 Map tasks to units of execution (e.g., threads)

 Important considerations
— Magnitude of number of execution units platform will support
— Cost of sharing information among execution units

— Avoid tendency to over constrain the implementation
e Work well on the infended platform
e Flexible enough to easily adapt to different architectures

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Major Organizing Principle

e How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

e Concurrency usually implies major organizing
principle
— Organize by tasks
— Organize by data decomposition
— Organize by flow of data

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Organize by Tasks?

yes

v

Recursive? Divide and Conquer

no

Task
Parallelism

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Task Parallelism

e Molecular dynamics
— Non-bonded force calculations, some dependencies

e Common factors
— Tasks are associated with iterations of a loop
— Tasks largely known at the start of the computation
— All tasks may not need to complete to arrive at a solution

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Divide and Conquer

e Forrecursive programs: divide and conqguer
— Subproblems may not be uniform
— May require dynamic load balancing

subproblem subproblem

subproblem subproblem

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

10

Organize by Data?

e Operations on a central data structure
— Arrays and linear data structures
— Recursive data structures

: yes
Recursive? > Recursive Data

no

Geometric
Decomposition

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

2

12

Recursive Data

e Computation on a list, tree, or graph

— Often appears the only way to solve a problem is to
sequentially move through the data structure

e There are however opportunities to reshape the
operations in a way that exposes concurrency

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

13

Recursive Data Example: Find the Root

e Given a forest of rooted directed frees, for each
node, find the root of the tree containing the node

— Parallel approach: for each node, find its successor’s
successor, repeat until no changes

e Oflogn) vs. O(n)

& Pacs
5% Ny e‘g
5 @ 5 @

Step 1 Step 2

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

14

Work vs. Concurrency Tradeoff

e Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

 Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

Organize by Flow of Data?

* In some application domains, the flow of data
Imposes ordering on the tasks
— Regular, one-way, mostly stable data flow
— Irregular, dynamic, or unpredictable data flow

yes

v

Regular? Pipeline

no

Event-based
Coordination

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

2

16

Pipeline Throughput vs. Latency

e Amount of concurrency in a pipeline is limited by
the number of stages

e Works best if the fime to fill and drain the pipeline is
small compared to overall running time

e Performance metric is usually the throughput

— Rate at which data appear at the end of the pipeline per time
unit (e.g., frames per second)

 Pipeline latency is important for real-time
applications

— Time interval from data input to pipeline, to data output

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

2

17

Event-Based Coordination

e |In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

e Deadlocks are a danger for applications that use
this pattern

— Dynamic scheduling has overhead and may be inefficient
e Granularity a major concern

 Another option is various “static” dataflow models
— E.g., synchronous dataflow

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

N

4 Design Spaces

Software Construction

« Supporting Structures

— Code and data structuring
patterns

PROGRAMMING

/e o ' Patterns for Parallel Programming.
00L Mattson, Sanders, and Massingill
B (2005).

EE382N: Parallelilsm and Locality, Fan <Ury vuric Rabbah, Mattan Erez

18

Code Supporting Structures

* Loop parallelism
* Master/Worker
e Fork/Join

e SPMD

* Map/Reduce

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

19

20

Loop Parallelism Pattern

e Many programs are expressed using iterative
constructs

— Programming models like OpenMP provide directives to
automatically assign loop iteration to execution units

— Especially good when code cannot be massively restructured

#pragma omp parallel for
for(i = 0; i < 12; i++)
C[i] = A[1] + BI[1i];

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

~N o o1 b~

2

21

Master/Worker Pattern

master D

Independent Tasks

ST

worker worker worker worker

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

2

Master/Worker Pattern

e Particularly relevant for problems using task
pardllelism pattern where task have no
dependencies

— Embarrassingly parallel problems

e Main challenge in determining when the entire
problem is complete

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

22

23

Fork/Join Pattern

e Tasks are created dynamically
— Tasks can create more tasks

* Manages tasks according to their relationship

 Parent task creates new tasks (fork) then waits until
they complete (join) before confinuing on with the
computation

SPMD Pattern

e Single Program Multiple Data: create a single
source-code image that runs on each processor
— Initialize
— Obtain a unigue identifier

— Run the same program each processor
e |dentifier and input data differentiate behavior

— Distribute data
— Finalize

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

SPMD Challenges

Split data correctly
Correctly combine the results
Achieve an even distribution of the work

For programs that need dynamic load balancing,
an alternative pattern is more suitable

25

26

Map/Reduce Patitern

e Two phases in the program

e Map phase applies a single function to all data
— Eachresult is a tuple of value and tag

e Reduce phase combines the results

— The values of elements with the same tag are combined
to a single value per tag -- reduction

— Semantics of combining function are associafive
— Can be done in parallel
— Can be pipelined with map

o Google uses this for all their parallel programs

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

Communication and Synchronization

Patterns

e Communication
— Point-to-point
— Broadcast
— Reduction
— Multicast

e Synchronization
— Locks (mutual exclusion)
— Monitors (events)

— Barriers (wait for all)
e Split-phase barriers (separate signal and wait)
— Sometimes called “fuzzy barriers”
 Named barriers allow waiting on subset

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

27

Algorithm Structure and Organization
(from the Book)

28

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
SPMD
%k %k % % %k % % %k %k % %k %k %k % %k
Loop %k k% %3k %k %
Parallelism
Master/ %k k% * 3k * % %k k% *
Worker
Fork/
Join % % % %k % % % % %k %k % %k %k %

e Pafterns can be hierarchically composed so
that a program uses more than one pattern

2

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12

(c) Rodric Rabbah, Mattan Erez

