
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 12 – Parallelism in Software III

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture

12 (c) Rodric Rabbah, Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007.

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

3

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N

Quick recap

• Decomposition

– Keep things general and simple

• Consider rough machine properties only (10, 1000, 1M, …)

– Task

• Natural in some programs

• Need to balance overheads of fine-grained with degree of par.

– Data

• Natural in some programs, less general than task

• Consider data structure

– Pipeline

• Overlap compute and comm.

• Reduce the degree of other parallelism needed

• Dependencies

– Equivalent to RAW/WAW/WAR

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

4

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

5

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

6

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support

– Cost of sharing information among execution units

– Avoid tendency to over constrain the implementation

• Work well on the intended platform

• Flexible enough to easily adapt to different architectures

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

7

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks

– Organize by data decomposition

– Organize by flow of data

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

8

Organize by Tasks?

Recursive?

Task

Parallelism

Divide and Conquer
yes

no

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

9

Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop

– Tasks largely known at the start of the computation

– All tasks may not need to complete to arrive at a solution

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

10

Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform

– May require dynamic load balancing

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

 join join

 join

split split

split

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

11

Organize by Data?

Recursive?

Geometric

Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures

– Recursive data structures

yes

no

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

12

Recursive Data

• Computation on a list, tree, or graph

– Often appears the only way to solve a problem is to
sequentially move through the data structure

• There are however opportunities to reshape the
operations in a way that exposes concurrency

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

13

Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s

successor, repeat until no changes

• O(log n) vs. O(n)

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

14

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

15

Organize by Flow of Data?

Regular?

Event-based

Coordination

Pipeline

• In some application domains, the flow of data
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow

– Irregular, dynamic, or unpredictable data flow

yes

no

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

16

Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by
the number of stages

• Works best if the time to fill and drain the pipeline is
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time

unit (e.g., frames per second)

• Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

17

Event-Based Coordination

• In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

• Another option is various “static” dataflow models

– E.g., synchronous dataflow

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

18

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

19

Code Supporting Structures

• Loop parallelism

• Master/Worker

• Fork/Join

• SPMD

• Map/Reduce

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

20

Loop Parallelism Pattern

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units

– Especially good when code cannot be massively restructured

#pragma omp parallel for

for(i = 0; i < 12; i++)

 C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

21

Master/Worker Pattern

A
B

D E

Independent Tasks

C

A
B

C

E

D

worker worker worker worker

master

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

22

Master/Worker Pattern

• Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
– Embarrassingly parallel problems

• Main challenge in determining when the entire
problem is complete

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

23

Fork/Join Pattern

• Tasks are created dynamically
– Tasks can create more tasks

• Manages tasks according to their relationship

• Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

24

SPMD Pattern

• Single Program Multiple Data: create a single
source-code image that runs on each processor
– Initialize

– Obtain a unique identifier

– Run the same program each processor

• Identifier and input data differentiate behavior

– Distribute data

– Finalize

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

25

SPMD Challenges

• Split data correctly

• Correctly combine the results

• Achieve an even distribution of the work

• For programs that need dynamic load balancing,
an alternative pattern is more suitable

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

26

Map/Reduce Pattern

• Two phases in the program

• Map phase applies a single function to all data

– Each result is a tuple of value and tag

• Reduce phase combines the results

– The values of elements with the same tag are combined
to a single value per tag -- reduction

– Semantics of combining function are associative

– Can be done in parallel

– Can be pipelined with map

• Google uses this for all their parallel programs

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

27 Communication and Synchronization
Patterns
• Communication

– Point-to-point

– Broadcast

– Reduction

– Multicast

• Synchronization

– Locks (mutual exclusion)

– Monitors (events)

– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)

– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

28 Algorithm Structure and Organization
(from the Book)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** *** **** ** *** **

Loop
Parallelism **** ** ***

Master/
Worker **** ** * * **** *

Fork/
Join ** **** ** **** ****

• Patterns can be hierarchically composed so
that a program uses more than one pattern

