
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 13 – Parallelism in Software IV

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture

13 (c) Rodric Rabbah, Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007.

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

3

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N

Quick recap

• Decomposition

– High-level and fairly abstract

– Consider machine scale for
the most part

– Task, Data, Pipeline

– Find dependencies

• Algorithm structure

– Still abstract, but a bit less so

– Consider communication,
sync, and bookkeeping

– Task (collection/recursive)

– Data (geometric/recursive)

– Dataflow (pipeline/event-
based-coordination)

• Supporting structures

– Loop

– Master/worker

– Fork/join

– SPMD

– MapReduce

4

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

5

Map/Reduce Pattern

• Two phases in the program

• Map phase applies a single function to all data

– Each result is a tuple of value and tag

• Reduce phase combines the results

– The values of elements with the same tag are combined
to a single value per tag -- reduction

– Semantics of combining function are associative

– Can be done in parallel

– Can be pipelined with map

• Google uses this for all their parallel programs

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

6 Communication and Synchronization
Patterns
• Communication

– Point-to-point

– Broadcast

– Reduction

– Multicast

• Synchronization

– Locks (mutual exclusion)

– Monitors (events)

– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)

– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 13 (c) Rodric Rabbah, Mattan Erez

7 Algorithm Structure and Organization
(from the Book)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** *** **** ** *** **

Loop
Parallelism **** ** ***

Master/
Worker **** ** * * **** *

Fork/
Join ** **** ** **** ****

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

8 Algorithm Structure and Organization
(my view)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** ** **** ** **** *

Loop
Parallelism

when no
dependencies

* **** *

SWP to hide
comm.

Master/
Worker **** *** *** *** ** ****

Fork/
Join **** **** ** **** *

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 12 (c) Rodric Rabbah, Mattan Erez

9 Algorithm Structure and Organization
(my view)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** ** **** ** **** *

Loop
Parallelism

when no
dependencies

* **** *

SWP to hide
comm.

Master/
Worker **** *** *** *** ** ****

Fork/
Join **** **** ** **** *

• Patterns can be hierarchically composed so
that a program uses more than one pattern

