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Quick recap

e Decomposition

High-level and fairly abstract

Consider machine scale for
the most part

Task, Data, Pipeline
Find dependencies

e Algorithm structure

Still abstract, but a bit less so

Consider communication,
sync, and bookkeeping

Task (collection/recursive)
Data (geometric/recursive)

Dataflow (pipeline/event-
based-coordination)

e Supporting structures

Loop
Master/worker
Fork/join
SPMD
MapReduce
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Algorithm Structure and Organization

(my view)
Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
SPMD
%k %k % %k % %k %k % %k % %k %k % *
Loop %k %k % 3k %k K
Parallelism * ok ok ok * .
when no SWP to hide
dependencies comm.
Master/ %k k% %k % %k % %k % % % %k %k %
Worker
Fork/
Join sk sk sk k sk sk kk %k k sk sk sk k *

e Pafterns can be hierarchically composed so
that a program uses more than one pattern
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Patterns for Parallelizing Programs

N

EE382N: Parallelilsm and Locality, Fan «Ux

4 Design Spaces

Software Construction

« Implementation

Mechanisms

— Low level mechanisms used
to write parallel programs

PROGRAMMING

7" % ' Patterns for Parallel Programming.
‘ . Mattson, Sanders, and Massingill
i (2005).

vuric Rabbah, Mattan Erez
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ILP, DLP, and TLP in SW and HW

e |LP e |[LP
~ 000 — Within straight-line code
— Dataflow
- VLIW
e DLP e DLP
— SIMD — Parallel loops
— Vector - L%sflg operatfing on disjoint

e No dependencies within
parallelism phase

* TLP o TLP
— Essentially multiple cores — All of DLP +
with multiple sequencers — Producer-consumer chains
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ILP, DLP, and TLP and Supporiting Paiterns

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer

ILP

DLP

TLP
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ILP, DLP, and TLP and Supporiting Paiterns

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
ILP inline / inline unroll inline inline / inline
unroll vnroll
natural or after after local-
DLP local- enough natural enough difficult e
ope . e s conditions
conditions divisions branches
TLP natural natural natural natural natural natural




ILP, DLP, and TLP and Implementation
Patterns

Loop Mater/Worker Fork/Join
SPMD | Parallelism

ILP

DLP

TLP
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ILP, DLP, and TLP and Implementation
Patterns

Loop Master/ Fork/Join
SPMD Parallelism Worker

ILP
natural or
DLP local-
conditional
TLP

E z EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



Ouvutline

10

e Molecular dynamics example

N

Problem description

Steps to solution

e Build data structures; Compute forces; Integrate for new; positions;
Check global solution; Repeat

Finding concurrency
e Scans; data decomposition; reductions

Algorithm structure
Supporting structures
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Credits

e Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
— Taken from EE493-Al tfaught at UIUC in Sprig 2007

 Reduction slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007
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GROMACS

e Highly optimized molecular-dynamics package
— Popular code
— Specifically tuned for protein folding
— Hand optimized loops for SSE3 (and other extensions)
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Gromacs Components

— Non-bonded forces
o Water-water with cutoff
* Protein-protein tabulated
 Water-water tabulated
* Protein-water tabulated

— Bonded forces
* Angles
e Dihedrals
— Boundary conditions
— Verlet integrator
— Constraints
e SHAKE
e SETTLE
— Ofther

e Temperature—pressure coupling
* Virial calculation
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GROMACS Water-Water Force Calculation

e Non-bonded long-range interactions
— Coulomb
— Lennard-Jones
— 234 operations per in’reroc’rion@

Water-water interaction ~75% of GROMACS run-time



GROMACS Uses Non-Trivial Neighbor-List
Algorithm

e Full non-bonded force calculation is o(n?)

e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3)

Efficient algorithm leads to variable rate input streams
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GROMACS Uses Non-Trivial Neighbor-List
Algorithm

e Full non-bonded force calculation is o(n?)
e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

B O(nrc3) \\_y/ ‘

Separate neighbor-list foreachl & &
molecule 2 |-

— Neighbor-lists have variable
number of elements

central neighbor

molecules molecules

Efficient algorithm leads to variable rate input streams
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Parallel Prefix Sum (Scan)

e Definifion:
The all-prefix-sums operation takes a binary associative
operator @ with idenftity I, and an array of n elements

[Qg. Oy, ..l Ayl

and returns the ordered set
[, ap, (Gp® Q). .... (@ a;D ... ®a,,)].

e Example:
If @ is addition, then scan on the s

317041 6 3]
returns the set
03411111516 22]

© David Kirk/NVIDIA and 171 ;
Wen-mei W. Hw, 2007 (From Blelloch, 1990, “Prefix

ECE 498AL, University of llinois, Sums and Their Applications)
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Applications of Scan

 Scanis asimple and useful parallel building block

— Convertrecurrences from sequential :
for (j=1;j<n; j++)
out[j] = out[j-1]1 + £(3);

— Into parallel:

forall(j) { templ[j] = £(3) };
scan (out, temp);

e Useful for many parallel algorithms:

« radix sort « Polynomial evaluation
« quicksort « Solving recurrences

« String comparison Tree operations

« Lexical analysis Building data structures

« Sfream « FEfc.
compaction

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,

-
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Building Data Structures with Scans

e Fun on the board

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Scan on a serial CPU ”

void scan( float* scanned, float* input, int length)

{
scanned[0] = O;
for(int i = 1; i < length; ++i)
{

scanned[i] = input[i-1] + scanned[i-1];
}
}

e Just add each element to the sum of the elements

before it

e Trivial, but sequential
e Exactly n adds: optimal

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
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A First-Attempt Parallel Scan Algorithm

1. Read input to
olIn| 3|1 /10|41 6 | 3 shared memory. Set

\\\\\\\ \\ \ \ first element to zero

and shift others right

olol3]i]7]ol4a]i]e] o

Each UE reads one value from the input
array in device memory into shared memory array TO.
UE 0 writes 0 into shared memory array.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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A First-Attempt Parallel Scan Algorithm

OlIn| 3|1 ] 710 4|1 ]6|3] 1 (previous slide)

2. lterate log(n)
10 | O 3 ] / 0 4 ] 6 times: UEs stride to n:
Stride 1 M\M\M Add pairs of elements
stride elements apart.
T1T101 314 |8/ 1141|517/ Double stride at each

iteration. (note must
double buffer shared
mem arrays)

teration #1 | | Active UEs: stride to n-1 (n-stride UES)
Setrgdlorl 1 » UE j adds elements j and j-stride from TO and writes
rde = result into shared memory buffer T1 (ping-pong)

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



A First-Attempt Parallel Scan Algorithm

0 —

4

]

6

N

SN
0

3
~
6

T0 | O 7 41116
T1| 0 8171457
T0| O 1T 1T 12012111
lteration #2
Stride = 2

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

and Locality, Fall 2011 -- Lecture 14

(c) Rodric Rabbah, Mattan Erez
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. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. lterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)



A First-Attempt Parallel Scan Algorithm

0 —

N

6

N N

W

4
0

NN
1

T0| O 7 6
T1 |10 SIA 517/

Stride 2
T0| O 1T 1T 12012111
T1

Iteration #3

Stride =4

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

and Locality, Fall 2011 -- Lecture 14

(c) Rodric Rabbah, Mattan Erez
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. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. lterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)



A First-Attempt Parallel Scan Algorithm

o3[ 1]7]o0l4]1]6]3
TN N NG NN NN
TO|0[3[1]7]0[4]1]6
Ty 3141871457

Stride 2
OO0 | 3|4 [ TT {11 [12112]1]

|
MjOJ3 |4 IT[TT]I5]16]2
I
Ou|l O | 3|4 111 1T]15]16122

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

and Locality, Fall 2011 -- Lecture 14

(c) Rodric Rabbah, Mattan Erez
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. Read input from

device memory to
shared memory. Set
first element to zero
and shift others right
by one.

. lterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

. Write output.
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What is wrong with our first-attempt parallel scan?

e Work Efficient:

— A parallel algorithm is work efficient if it does the same amount
of work as an optimal sequential complexity

e Scan executes log(n) parallel iterations
— The steps do n-1, n-2, n-4,... n/2 adds each
— Totaladds: n * (log(n) - 1) + 1 = O(n*log(n)) work

e This scan algorithm is NOT work efficient
— Sequential scan algorithm does n adds
— A factor of log(n) hurts: 20x for 10A6 elements!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Improving Efficiency

e A common parallel algorithm pattern:

Balanced Trees

Build a balanced binary tree on the input data and sweep it

to and from the roof
Tree Is not an actual data structure, but a concept to
determine what each UE does at each step

e Forscan:
Traverse down from leaves to root building partial sums at
internal nodes in the free

e Rooft holds sum of all leaves
Traverse back up the tree building the scan from the partial

sUums

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



Build the Sum Tree

T13 1117104116

Assume array is already in shared memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Build the Sum Tree

T13T1[7]0[4[1[6]3
Stride 1 \>$ \>$ \>$ \>$ lteration 1, n/2 UEs
T34 7|7 14569

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Build the Sum Tree

T13]1]7]o]a]1]6]3

Stride 1 \é \é \é \é
T[314]7]714]5]6]¢

Stride 2 \->$ \->é lteration 2, n/4 UEs
T34 71|11 4]|5| 6|14

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



Build the Sum Tree

T|3[1]7[0|4]1]6]3
Stride 1 \é \é \é \é
T13/4]7]7]4]5]619
Stride 2 \->$ \->é
T34 |7 |11|4]565]| 6|14
| —— % |
Stride 4 9¢ Iteration log(n), 1 UE

T34 |7 |11 45 ]|6

N
O

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Zero the Last Element

T34 |7 (1114,5]|6]|0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Build Scan From Partial Sums

4

/|11

4

0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,

Urbana-Champaign

and Locality, Fall 2011 -- Lecture 14

(c) Rodric Rabbah, Mattan Erez

36



37

Build Scan From Partial Sums

11347111l 4]5]¢

Stride4 ~ __==== =

-

lteration 1

0
—4
¥ 1 UE

T13(4|7(0]4,5]6 1]

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Build Scan From Partial Sums

T]3/4/7]11/415[6]0
Stride 4 T30
b 2
T|3|4|7]0]4|5]|6]1]
Stride 2 >’\>} /\’\;‘ Iteration 2
¥ v Y y 2 UEs
T30 (7141411616

Each @ corresponds
to a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



39

Build Scan From Partial Sums

T|13 (4|7 ]\] 4 |51 6 9
Stride 4 ’}__:r———;.
p~ \
113147 [0/4]5]6][1]
Stride 2 x-). DN
Y 4 Y 4
T C\’) 0 Z 4 4 11 6 16
Stide 1 So® S S S 'teration log(n)
Y ¥ Y 4 Y ¥ Y ¥ n/2 UEs
T1O | 314 11|11 ]1516]22]| Each @ corresponds

to a single UE.

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez




Reductions

e Many to one
* Many fo many

— Simply multiple reductions
e Also known as scatter-add and subset of parallel prefix sums

e Use

N

— Histograms

— Superposition
e Physical properties

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Serial Reduction

N

 When reduction
operator is not
associative

e Usually followed by a
broadcast of result

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Tree-based Reduction

e N steps for 2" units of execution
e When reduction operator is associative
e Especially atfractive when only one task needs

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Recursive-doubling Reduction

e N steps for 2" units of execution

e |f all units of execution need the result of the
reduction

E z EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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Recursive-doubling Reduction

e Better than tree-based approach with broadcast

— Each units of execution has a copy of the reduced value
at the end of n steps
— In free-based approach with broadcast
e Reduction takes n steps

e Broadcast cannot begin until reduction is complete
e Broadcast can take n steps (architecture dependent)

E EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez



Other Examples

e More patterns

Reductions

Scans
e Building a data structure

e More examples

N

Search

Sort

FFT as divide and conquer
Structured meshes and grids
Sparse algebra

Unstructured meshes and graphs
Trees

Collections
e Parficles
* Rays

EE382N: Parallelilsm and Locality, Fall 2011 -- Lecture 14 (c) Rodric Rabbah, Mattan Erez
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