
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 17 – GPUs (II)

EE382N: Principles of Computer Architecture, Fall 2011

-- Lecture 17 (c) Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

2

2

Recap

Streaming model

1. Use many “slimmed down cores” to run in
parallel

2. Pack cores full of ALUs (by sharing instruction
stream across groups of fragments)

– Option 1: Explicit SIMD vector instructions

– Option 2: Implicit sharing managed by hardware

3. Avoid latency stalls by interleaving execution of
many groups of fragments

– When one group stalls, work on another group

 Kayvon Fatahalian, 2008 Kayvon Fatahalian

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

3

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

• Processors execute computing threads

• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing

• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Manages thread blocks

Used to be only one kernel at a time

N

Next-Gen GPU Architecture: Fermi

3 billion transistors

Over 2x the cores (512

total)

~2x the memory

bandwidth

L1 and L2 caches

8x the peak DP

performance

ECC

C++

Announced Sept. 2009

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

4

N

Fermi Focus Areas

• Expand performance
sweet spot of the GPU
– Caching

– Concurrent kernels

– FP64

– 512 cores

– GDDR5 memory

• Bring more users, more
applications to the
GPU
– C++

– Visual Studio
Integration

– ECC

D
R

A
M

 I
/F

H

O
S

T
 I
/F

G

ig
a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

5

N

Streaming Multiprocessor (SM)

• Objective – optimize for GPU computing

– New ISA

– Revamp issue / control flow

– New CUDA core architecture

• 16 SMs per Fermi chip

• 32 cores per SM
(512 total)

• 64KB of configurable
L1$ / shared memory

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

FP32 FP64 INT SFU LD/ST

Ops / clk 32 16 32 4 16

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

6

N

SM Microarchitecture

• New IEEE 754-2008
arithmetic standard

• Fused Multiply-Add
(FMA) for SP & DP

• New integer ALU
optimized for 64-bit
and extended
precision ops

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

CUDA Core
Dispatch Port

Operand Collector

Result Queue

FP Unit INT Unit

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

7

N

Memory Hierarchy

• True cache hierarchy + on-chip shared RAM

– On-chip shared memory: good fit for regular
memory access

• dense linear algebra, image processing, …

– Caches: good fit for irregular or unpredictable
memory access

• ray tracing, sparse matrix multiply, physics …

• Separate L1 Cache for each SM (16/48 KB)

– Improves bandwidth and reduces latency

• Unified L2 Cache for all SMs (768 KB)

– Fast, coherent data sharing across all cores in
the GPU

D
R

A
M

 I
/F

G

ig
a
 T

h
re

a
d

H

O
S

T
 I

/F

D
R

A
M

 I
/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

8

N

Larger, Faster Memory Interface

• GDDR5 memory interface

– 2x improvement in peak speed over
GDDR3

• Up to 1 Terabyte of memory
attached to GPU

– Operate on large data sets

D
R

A
M

 I
/F

G

ig
a
 T

h
re

a
d

H

O
S

T
 I

/F

D
R

A
M

 I
/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

D
R

A
M

 I/F

L2

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

9

N

GigaThread
TM

 Hardware Thread
Scheduler

• Hierarchically manages tens of
thousands of simultaneously
active threads

• 10x faster context switching on
Fermi

• Overlapping kernel execution

HTS

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

10

N

GigaThread Streaming Data Transfer
Engine

• Dual DMA engines

• Simultaneous CPUGPU
and GPUCPU data
transfer

• Fully overlapped with
CPU/GPU processing

SDT

SDT

Kernel 0

Kernel 1

Kernel 2

Kernel 3

CPU

CPU

CPU

CPU

SDT0

SDT0

SDT0

SDT0

GPU

GPU

GPU

GPU

SDT1

SDT1

SDT1

SDT1

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

11

N

Other Capabilities

• ECC protection for DRAM, L2, L1, RF

• Unified 40-bit address space for local, shared,
global

• 5-20x faster atomics

• ISA extensions for C++ (e.g. virtual functions)

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

12

N

G80 GT200 Fermi

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock

Special Function Units (per SM) 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB

L1 Cache (per SM) - - Configurable 16/48 KB

L2 Cache - - 768 KB

ECC Memory Support - - Yes

Concurrent Kernels - - Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

13

N

#1 : Tianhe-1A
7168 Tesla GPUs 2.5 PFLOPS

#3 : Nebulae
4650 Tesla GPUs 1.2 PFLOPS

#4 : Tsubame 2.0
4224 Tesla GPUs 1.194

PFLOPS

NVIDIA Tesla GPUs Power 3 of Top 5
Supercomputers

8 more GPU accelerated

machines in the November

Top500

NVIDIA M2070

Module
NVIDIA C2070

PC Card

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

14

N

0

1

2

3

4

5

6

7

8

0

500

1000

1500

2000

2500

Tianhe-1A Jaguar Nebulae Tsubame LBNL

M
e

ga
w

at
ts

G
ig

af
lo

p
s

GPU Supercomputers: More Power Efficient

GPU-CPU Supercomputer CPU only Supercomputer

Performance Power

Power

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

15

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

16

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Compute Core

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

Manages thread blocks

Only one kernel at a time

TPC

(texture

processor

cluster)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

17

GeForce-8 Series HW Overview

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

18

• SPA – Streaming Processor Array

– Array of TPCs

• 8 TPCs in GeForce8800

• TPC – Texture Processor Cluster

– Cluster of 2 SMs + 1 TEX

• TEX is a texture processing unit

• SM – Streaming Multiprocessor

– Array of 8 SPs

– Multi-threaded processor core

– Fundamental processing unit for a thread block

• SP – Streaming Processor

– Scalar ALU for a single thread

• With 1K of registers

CUDA Processor Terminology

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

19

Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)

– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)

– Up to 16 warps per thread block

• HW masking of inactive threads in a warp

– Threads cover latency of
texture/memory loads

• 20+ GFLOPS

• 16 KB shared memory

• 32 KB in registers

• DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

20

Thread Life Cycle in HW

• Kernel is launched on the SPA
– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed
to all the SM’s

– Potentially >1 Thread Block per SM

– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps
that are ready to run

• As Warps and Thread Blocks
complete, resources are freed

– SPA can distribute more Thread Blocks

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

21

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Executes Blocks

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

• Threads are assigned to SMs in
Block granularity

– Up to 8 Blocks to each SM as
resource allows

– SM in G80 can take up to 768
threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks,
etc.

• Threads run concurrently

– SM assigns/maintains thread IDs

– SM manages/schedules thread
execution

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

22

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM

(16 – 128 total concurrent blocks)

1 thread per SP

(in warps of 32

across the SM)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

23

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Thread Scheduling/Execution

• Each Thread Block is divided into
32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM
and each Block has 256 threads,
how many Warps are there in an
SM?
– Each Block is divided into 256/32 =

8 Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the
24 Warps will be selected for
instruction fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

24

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Warp Scheduling

• SM hardware implements zero-
overhead Warp scheduling
– Warps whose next instruction has its

operands ready for consumption are
eligible for execution

– All threads in a Warp execute the
same instruction when selected

– Scoreboard scheduler

• 4 clock cycles needed to
dispatch the same instruction for
all threads in a Warp in G80
– If one global memory access is

needed for every 4 instructions

– A minimal of 13 Warps are needed
to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

25

SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp
instruction/cycle
– from any warp - instruction buffer slot

– operand scoreboarding used to prevent
hazards

• Issue selection based on round-robin/age
of warp

• SM broadcasts the same instruction to 32
Threads of a Warp

I $
L 1

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

26

Scoreboarding

• All register operands of all instructions in the
Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are

deposited

– prevents hazards

– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issue

– allows Memory/Processor ops to proceed in shadow of
Memory/Processor ops

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

27

Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 768 threads, it can take up to 12 Blocks.
However, each SM can only take up to 8 Blocks, only 512
threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM
can take up to 768 threads, it can take up to 3 Blocks
and achieve full capacity unless other resource
considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one
can fit into an SM!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

28

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Parallel Computing on a GPU

• NVIDIA GPU Computing Architecture

• Via a separate HW interface

• In laptops, desktops, workstations, servers

• 8-series GPUs deliver 50 to 200 GFLOPS
on compiled parallel C applications

• GPU parallelism is doubling every year

• Programming model scales transparently

• Programmable in C with CUDA tools

• Multithreaded SPMD model uses application
data parallelism and thread parallelism

GeForce 8800

Tesla S870

Tesla D870

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 17 (c) Mattan Erez

29

Next Lectures

• NVIDIA GeForce 8800 architecture

• CUDA programming model

