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Recap 

Streaming model 

 

1. Use many “slimmed down cores” to run in 
parallel 

 

2. Pack cores full of ALUs (by sharing instruction 
stream across groups of fragments) 

– Option 1: Explicit SIMD vector instructions 

– Option 2: Implicit sharing managed by hardware 
 

3. Avoid latency stalls by interleaving execution of 
many groups of fragments 

– When one group stalls, work on another group 

 Kayvon Fatahalian, 2008 Kayvon Fatahalian 
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Make the Compute Core The Focus of the 
Architecture 

• Processors execute computing threads 

• Alternative operating mode specifically for computing 
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• The future of GPUs is programmable processing 

• So – build the architecture around the processor 
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Next-Gen GPU Architecture: Fermi 

3 billion transistors 

Over 2x the cores (512 

total) 

~2x the memory 

bandwidth 

L1 and L2 caches 

8x the peak DP 

performance 

ECC 

C++ 

Announced Sept. 2009 
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Fermi Focus Areas 

• Expand performance 
sweet spot of the GPU 
– Caching 

– Concurrent kernels 

– FP64 

– 512 cores 

– GDDR5 memory 

 

• Bring more users, more 
applications to the 
GPU 
– C++ 

– Visual Studio 
Integration 

– ECC 
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Streaming Multiprocessor (SM) 

• Objective – optimize for GPU computing 

– New ISA 

– Revamp issue / control flow 

– New CUDA core architecture 

• 16 SMs per Fermi chip 

• 32 cores per SM  
(512 total) 

• 64KB of configurable  
L1$ / shared memory 
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SM Microarchitecture 

• New IEEE 754-2008  
arithmetic standard 

 

• Fused Multiply-Add 
(FMA) for SP & DP 

 

• New integer ALU 
optimized for 64-bit 
and extended 
precision ops 
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Memory Hierarchy 

• True cache hierarchy + on-chip shared RAM 

– On-chip shared memory: good fit for regular 
memory access 

• dense linear algebra, image processing, … 

– Caches: good fit for irregular or unpredictable 
memory access 

• ray tracing, sparse matrix multiply, physics … 

 

• Separate L1 Cache for each SM (16/48 KB) 

– Improves bandwidth and reduces latency 

 

• Unified L2 Cache for all SMs (768 KB) 

– Fast, coherent data sharing across all cores in 
the GPU 
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Larger, Faster Memory Interface 

• GDDR5 memory interface 

– 2x improvement in peak speed over 
GDDR3 

 

• Up to 1 Terabyte of memory 
attached to GPU 

– Operate on large data sets 
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GigaThread
TM

 Hardware Thread 
Scheduler 

• Hierarchically manages tens of 
thousands of simultaneously 
active threads 

 

• 10x faster context switching on 
Fermi 

 

• Overlapping kernel execution 

HTS 
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GigaThread Streaming Data Transfer 
Engine 

• Dual DMA engines 

 

• Simultaneous CPUGPU 
and GPUCPU data 
transfer 

 

• Fully overlapped with 
CPU/GPU processing 
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Other Capabilities 

 

• ECC protection for DRAM, L2, L1, RF 

 

• Unified 40-bit address space for local, shared, 
global 

 

• 5-20x faster atomics 

 

• ISA extensions for C++ (e.g. virtual functions) 
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G80 GT200 Fermi 

Transistors 681 million 1.4 billion 3.0 billion 

CUDA Cores 128 240 512 

Double Precision Floating Point - 30 FMA ops/clock 256 FMA ops/clock 

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock 

Special Function Units (per SM) 2 2 4 

Warp schedulers (per SM) 1 1 2 

Shared Memory (per SM) 16 KB 16 KB Configurable 48/16 KB 

L1 Cache (per SM) - - Configurable 16/48 KB 

L2 Cache - - 768 KB 

ECC Memory Support - - Yes 

Concurrent Kernels - - Up to 16 

Load/Store Address Width 32-bit 32-bit 64-bit 
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#1 : Tianhe-1A 
7168 Tesla GPUs 2.5 PFLOPS  

#3 : Nebulae 
4650 Tesla GPUs  1.2 PFLOPS   

#4 : Tsubame 2.0 
4224 Tesla GPUs  1.194 

PFLOPS   

NVIDIA Tesla GPUs Power 3 of Top 5 
Supercomputers 

8 more GPU accelerated 

machines in the November 

Top500 

NVIDIA M2070 

Module 
NVIDIA C2070 

PC Card 
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GeForce-8 Series HW Overview 
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• SPA – Streaming Processor Array 

– Array of TPCs 

• 8 TPCs in GeForce8800 

• TPC – Texture Processor Cluster 

– Cluster of 2 SMs + 1 TEX 

• TEX is a texture processing unit 

• SM – Streaming Multiprocessor 

– Array of 8 SPs 

– Multi-threaded processor core 

– Fundamental processing unit for a thread block 

• SP – Streaming Processor 

– Scalar ALU for a single thread 

• With 1K of registers 

CUDA Processor Terminology 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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Streaming Multiprocessor (SM) 

• Streaming Multiprocessor (SM) 
– 8 Streaming Processors (SP) 

– 2 Super Function Units (SFU) 
 

• Multi-threaded instruction dispatch 
– Vectors of 32 threads (warps) 

– Up to 16 warps per thread block 

• HW masking of inactive threads in a warp 

– Threads cover latency of 
texture/memory loads 
 

• 20+ GFLOPS 

• 16 KB shared memory 

• 32 KB in registers 

• DRAM texture and memory access 
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Thread Life Cycle in HW 

• Kernel is launched on the SPA 
– Kernels known as grids of thread blocks 

 

• Thread Blocks are serially distributed 
to all the SM’s 

– Potentially >1 Thread Block per SM 

– At least 96 threads per block 
 

• Each SM launches Warps of Threads 
–  2 levels of parallelism 

 

• SM schedules and executes Warps 
that are ready to run 
 

• As Warps and Thread Blocks 
complete, resources are freed 

– SPA can distribute more Thread Blocks 
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SM Executes Blocks 

t0 t1 t2 … tm 

Blocks 

Texture L1 
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TF 
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Blocks 
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• Threads are assigned to SMs in 
Block granularity 

– Up to 8 Blocks to each SM as 
resource allows 

– SM in G80 can take up to 768 
threads 

• Could be 256 (threads/block) * 3 
blocks  

• Or 128 (threads/block) * 6 blocks, 
etc. 

• Threads run concurrently 

– SM assigns/maintains thread IDs 

– SM manages/schedules thread 
execution 
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Make the Compute Core The Focus of the 
Architecture 
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Thread Scheduling/Execution 

• Each Thread Block is divided into 
32-thread Warps 
– This is an implementation decision 

 

• Warps are scheduling units in SM 
 

• If 3 blocks are assigned to an SM 
and each Block has 256 threads, 
how many Warps are there in an 
SM? 
– Each Block is divided into 256/32 = 

8 Warps 

– There are 8 * 3 = 24 Warps  

– At any point in time, only one of the 
24 Warps will be selected for 
instruction fetch and execution. 
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SM Warp Scheduling 

• SM hardware implements zero-
overhead Warp scheduling 
– Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution 

– All threads in a Warp execute the 
same instruction when selected 

– Scoreboard scheduler 
 

• 4 clock cycles needed to 
dispatch the same instruction for 
all threads in a Warp in G80 
– If one global memory access is 

needed for every 4 instructions 

– A minimal of 13 Warps are needed 
to fully tolerate 200-cycle memory 
latency 

warp 8 instruction 11 

SM multithreaded 
Warp scheduler 

warp 1 instruction 42 

warp 3 instruction 95 

warp 8 instruction 12 

. . . 

time 

warp 3 instruction 96 
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SM Instruction Buffer – Warp Scheduling 

• Fetch one warp instruction/cycle 
– from instruction L1 cache  

– into any instruction buffer slot 
 

• Issue one “ready-to-go” warp 
instruction/cycle 
– from any warp - instruction buffer slot 

– operand scoreboarding used to prevent 
hazards 
 

• Issue selection based on round-robin/age 
of warp 
 

• SM broadcasts the same instruction to 32 
Threads of a Warp 
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Scoreboarding 

• All register operands of all instructions in the 
Instruction Buffer are scoreboarded 
– Status becomes ready after the needed values are 

deposited 

– prevents hazards 

– cleared instructions are eligible for issue 

• Decoupled Memory/Processor pipelines 
– any thread can continue to issue instructions until 

scoreboarding prevents issue 

– allows Memory/Processor ops to proceed in shadow of 
Memory/Processor ops 

TB1
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TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time
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TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4
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Granularity and Resource Considerations 

• For Matrix Multiplication, should I use 8X8, 16X16 or 
32X32 tiles (1 thread per tile element)? 

 

– For 8X8, we have 64 threads per Block. Since each SM 
can take up to 768 threads, it can take up to 12 Blocks. 
However, each SM can only take up to 8 Blocks, only 512 
threads will go into each SM! 

 

– For 16X16, we have 256 threads per Block. Since each SM 
can take up to 768 threads, it can take up to 3 Blocks 
and achieve full capacity unless other resource 
considerations overrule. 

 

– For 32X32, we have 1024 threads per Block. Not even one 
can fit into an SM! 
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Parallel Computing on a GPU 

• NVIDIA GPU Computing Architecture 

• Via a separate HW interface  

• In laptops, desktops, workstations, servers 

 

• 8-series GPUs deliver 50 to 200 GFLOPS 
on compiled parallel C applications 

 

• GPU parallelism is doubling every year 

• Programming model scales transparently 

 

• Programmable in C with CUDA tools 

• Multithreaded SPMD model uses application  
data parallelism and thread parallelism 

GeForce 8800 

Tesla S870 

Tesla D870 
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Next Lectures 

• NVIDIA GeForce 8800 architecture  

• CUDA programming model 


