
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 18 – GPUs (III)

EE382N: Principles of Computer Architecture, Fall 2011

-- Lecture 18 (c) Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

2

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

• Processors execute computing threads

• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing

• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

T
h

re
a

d
 P

ro
c

e
s

s
o

r

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

Manages thread blocks

Used to be only one kernel at a time

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

3

Streaming Multiprocessor (SM)

• Streaming Multiprocessor (SM)
– 8 Streaming Processors (SP)

– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)

– Up to 16 warps per thread block

• HW masking of inactive threads in a warp

– Threads cover latency of
texture/memory loads

• 20+ GFLOPS

• 16 KB shared memory

• 32 KB in registers

• DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

4

Thread Life Cycle in HW

• Kernel is launched on the SPA
– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed
to all the SM’s

– Potentially >1 Thread Block per SM

– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps
that are ready to run

• As Warps and Thread Blocks
complete, resources are freed

– SPA can distribute more Thread Blocks

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

5

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Executes Blocks

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

• Threads are assigned to SMs in
Block granularity

– Up to 8 Blocks to each SM as
resource allows

– SM in G80 can take up to 768
threads

• Could be 256 (threads/block) * 3
blocks

• Or 128 (threads/block) * 6 blocks,
etc.

• Threads run concurrently

– SM assigns/maintains thread IDs

– SM manages/schedules thread
execution

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture Texture Texture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Load/store Load/store Load/store Load/store Load/store

1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM

(16 – 128 total concurrent blocks)

1 thread per SP

(in warps of 32

across the SM)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

7

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Thread Scheduling/Execution

• Each Thread Block is divided into
32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM
and each Block has 256 threads,
how many Warps are there in an
SM?
– Each Block is divided into 256/32 =

8 Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the
24 Warps will be selected for
instruction fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…
Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1

Streaming Multiprocessor

Shared Memory

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

8

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Warp Scheduling

• SM hardware implements zero-
overhead Warp scheduling
– Warps whose next instruction has its

operands ready for consumption are
eligible for execution

– All threads in a Warp execute the
same instruction when selected

– Scoreboard scheduler

• 4 clock cycles needed to
dispatch the same instruction for
all threads in a Warp in G80
– If one global memory access is

needed for every 4 instructions

– A minimal of 13 Warps are needed
to fully tolerate 200-cycle memory
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

. . .

time

warp 3 instruction 96

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

9

SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache

– into any instruction buffer slot

• Issue one “ready-to-go” warp
instruction/cycle
– from any warp - instruction buffer slot

– operand scoreboarding used to prevent
hazards

• Issue selection based on round-robin/age
of warp

• SM broadcasts the same instruction to 32
Threads of a Warp

I $
L 1

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

10

Scoreboarding

• All register operands of all instructions in the
Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are

deposited

– prevents hazards

– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issue

– allows Memory/Processor ops to proceed in shadow of
Memory/Processor ops

TB1

W1

TB = Thread Block, W = Warp

TB2

W1

TB3

W1

TB2

W1

TB1

W1

TB3

W2

TB1

W2

TB1

W3

TB3

W2

Time

TB1, W1 stall
TB3, W2 stallTB2, W1 stall

Instruction: 1 2 3 4 5 6 1 2 1 2 3 41 2 7 8 1 2 1 2 3 4

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

11

Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM
can take up to 768 threads, it can take up to 12 Blocks.
However, each SM can only take up to 8 Blocks, only 512
threads will go into each SM!

– For 16X16, we have 256 threads per Block. Since each SM
can take up to 768 threads, it can take up to 3 Blocks
and achieve full capacity unless other resource
considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one
can fit into an SM!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

12

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Courtesy:

John Nicols, NVIDIA

• Registers in SP

– 1K total per SP

• shared between thread

• same per thread in a block)

• Shared memory in SM

– 16KB total per SM

• shared between blocks

• Global memory

– Managed by Texture Units

• Cache – read only

– Managed by LD/ST ROP units

• Uncached – read/Write

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

13

SM Register File

• Register File (RF)

– 32 KB (1 Kword per SP)

– Provides 4 operands/clock

• TEX pipe can also read/write RF

– 2 SMs share 1 TEX

• Load/Store pipe can also
read/write RF

I $
L 1

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

14

Programmer View of Register File

• There are 8192 registers
in each SM in G80

– This is an implementation
decision, not part of
CUDA

– Registers are dynamically
partitioned across all
Blocks assigned to the
SM

– Once assigned to a
Block, the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access
registers assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

15

Matrix Multiplication Example

• If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SM?
– Each Block requires 10*256 = 2560 registers

– 8192 = 3 * 2560 + change

– So, three blocks can run on an SM as far as registers are
concerned

• How about if each thread increases the use of
registers by 1?
– Each Block now requires 11*256 = 2816 registers

– 8192 < 2816 *3

– Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

 © David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

16

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to
compilers/programmers

– One can run a smaller number of threads that require
many registers each or a large number of threads that
require few registers each

• This allows for finer grain threading than traditional CPU threading
models.

– The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

17

ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles

– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions
exist for each global memory load

– Only two can run on each SM

– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

– Two Blocks have 16 Warps. The performance can actually be higher!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

18

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Courtesy:

John Nicols, NVIDIA

• Registers in SP

– 1K total per SP

• shared between thread

• same per thread in a block)

• Shared memory in SM

– 16KB total per SM

• shared between blocks

• Global memory

– Managed by Texture Units

• Cache – read only

– Managed by LD/ST ROP units

• Uncached – read/Write

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

19

Constants

• Immediate address constants

• Indexed address constants

• Constants stored in DRAM, and
cached on chip

– L1 per SM

• A constant value can be
broadcast to all threads in a Warp

– Extremely efficient way of accessing
a value that is common for all threads
in a Block!

I $
L 1

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

20

Textures

• Textures are 2D arrays of values stored in global
DRAM

• Textures are cached in L1 and L2

• Read-only access

• Caches optimized for 2D access:

– Threads in a warp that follow 2D locality will achieve
better memory performance

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

21

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1 SM 0

Courtesy:

John Nicols, NVIDIA

• Registers in SP

– 1K total per SP

• shared between thread

• same per thread in a block)

• Shared memory in SM

– 16KB total per SM

• shared between blocks

• Global memory

– Managed by Texture Units

• Cache – read only

– Managed by LD/ST ROP units

• Uncached – read/Write

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 18 (c) Mattan Erez

22

Shared Memory

• Each SM has 16 KB of Shared
Memory

– 16 banks of 32bit words

• CUDA uses Shared Memory as
shared storage visible to all
threads in a thread block

– read and write access

• Not used explicitly for pixel shader
programs

– we dislike pixels talking to each other


I $
L 1

Multithreaded
Instruction Buffer

R
F

C $
L 1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

