EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 19 — GPUs (1V)

Mattan Erez

[SEE==ECE

The University of Texas at Austin

EE382N: Principles of Computer Architecture, Fall 2011
-- Lecture 19 (c) Mattan Erez

Make the Compute Core The Focus of the .
Architecture

o Predetyesobceildasquogrtimableeoatsessing
o Aderhailt thepeshitraiunecdeusodbdipuiseksotomputing

Host Man (@
input Assemblgs 2] t0 be}only oneetl(resfweicat atime
#ﬁ%

Geom Thread Issue Pixel Thread Issue

sel[_flsell_|
II Bl
Hl
N |

—— Thread Processor

ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

SM Memory Architecture

NNNNNNNNNN

S

Blocks

Courtesy:

John Nicols, NVIDIA £ 1

© David Kirk/NVIDIA al
Wen-mei W. Hwu, 2007

t0t1 2. tm |,

SMO SM1 .. t&t}\f&w ‘ ‘
> | Blocks
. . §§ }g D |_|
Registers in SP

Shared Shared .'.
8 |Memory |l Memory i

iIiE N

ECE 498AL, University of lllinois,

Urbana-Champaign

Computer Architecture, Fall 2011 -- L

0
)
L]
a
a
a
»
0

— 1K total per SP

* shared between thread
e same per thread in a block)

Shared memory in SM
— 16KB total per SM
* shared between blocks
Global memory
— Managed by Texture Units

e Cache -read only

— Managed by LD/ST ROP units

e Uncached -read/Write

Matrix Multiplication Example

e |If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SMze
— Each Block requires 10*256 = 2560 registers
— 8192 =3 * 2560 + change
— So, three blocks can run on an SM as far as registers are

concerned

e How about if each thread increases the use of
reqgisters by 1¢
— Each Block now requires 11*256 = 2816 registers
— 8192 <2816 *3

— Only two Blocks can run on an SM, 1/3 reduction of
parallelism!!!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

More on Dynamic Partitioning

 Dynamic partitioning gives more flexibility to
compilers/programmers

— One can run a smaller number of threads that require
many registers each or a large number of threads that
require few registers each

e This allows for finer grain threading than traditional CPU threading
models.

— The compiler can tradeoff between instruction-level
parallelism and thread level parallelism

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

ILP vs. TLP Example

e Assume that a kernel has 256-thread Blocks, 4 independent
instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles

— 3 Blocks can run on each SM

e |f a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions
exist for each global memory load

— Only two can run on each SM

— However, one only needs 200/(8*4) = 7 Warps to tolerate the memory
latency

— Two Blocks have 16 Warps. The performance can actually be higher!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

SM Memory Architecture

HEN
Courtesy:

John Nicols, NVIDIA £ 1

e Global memory
— Managed by Texture Units

e Cache -read only

© David Kirk/NVIDIA ai

Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign Computer Architecture, Fall 2011 -- L

Constants

e |Immediate address constants
e |ndexed address constants s
e Constants stored in DRAM, and !

cached on chip
— L1 perSM v

E R 3 Shared

* A constanf value can be ;
broadcast to all threads in a Warp .
- Extremely efficient way of accessing

a value that is common for all threads
in a Block!

Operand Select

v v

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Texitures

e Textures are 2D arrays of values stored in global
DRAM

e Textures are cachedin Ll and L2
e Read-only access

e Caches optimized for 2D access:

— Threads in a warp that follow 2D locality will achieve
better memory performance

E EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

SM Memory Architecture

“. Shared -':

— 16KB total per SM

e shared between blocks
Courtesy:

John Nicols, N

© David Kirk/NVIDIA
Wen-mei W. Hwu, 2
ECE 498AL, University o
Urbana-Champaic

Shared Memory

FEach SM has 16 KB of Shared
Memory

— 16 banks of 32bit words

CUDA uses Shared Memory as
shared storage visible to all
threads in a thread block

— read and write access

Not used explicitly for pixel shader
Programs

— we dislike pixels talking to each other

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

v

1$
L1

\v4
Multithreaded
Instruction Buffer
v

R C$ | BhElEe
F L1 Mem

A A% v

Operand Select

v v

MAD SFU

11

Multiply Using Several Blocks

e One computes one square
subb-matrix P, of size BLOCK_SIZE
e One computes one

element of P,

e Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

12

ECE 498AL, University of lllinois,
Urbana-Champaign

Matrix Multiplication 13
Shared Memory Usage

e Each Block requires 2* WIDTH? * 4 bytes of shared
memory storage

— For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks
can fit into the Shared Memory of an SM

— Since each SM can only take 768 threads, each SM can
only take 3 Blocks of 256 threads each

— Shared memory size is not a limitation for Matrix
Multiplication of

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

14

Parallel Memory Architecture

e |n a parallel machine, many threads access
memory
— Therefore, memory is divided into banks
— Essential to achieve high bandwidth

e Each bank can service one address per
cycle

— A memory can service as many simultaneous
accesses as it has banks

e Multiple simultaneous accesses 1o a bon
reciilt in g bank conflict

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ece 08aL, unversiy ot tinos, | ICTING ACcesses are serialized

Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Bank Addressing Examples

15

No Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3

Thread 4
Thread 5
Thread 6
Thread 7

Thread 15 Bank 15

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

No Bank Conflicts

— Random 1:1 Permutation

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 15

Bank 15

ECE 498AL, University of lllinois,

Urbana-Champaign

Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Bank Addressing Examples

16

« 2-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3

Thread 4

Thread 8
Thread 9

Thread 10
Thread 11 Bank 15

© David Kirk/NVIDIA and

« 8-way Bank Conflicts

— Linear addressing
stride ==

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 5 ¥

Thread 6 »

Thread 7

Thread 15

Wen-mei W. Awu, 2007
ECE 498AL, University of lllinois,

Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

17

How addresses map to banks on G80

e Each bank has a bandwidth of 32 bits per clock
cycle

e Successive 32-bit words are assigned to
successive banks

e G80 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

 No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Shared memory bank conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

e The fast case:

— If all threads of a half-warp access different banks, there is no
bank conflict

— If all threads of a half-warp access the identical address, there is
no bank conflict (broadcast)
e The slow case:

— Bank Conflict: multiple threads in the same half-warp access the
same bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

18

19

Linear Addressing

Thread 0

¢ Given: Thread 1

Thread 2
Thread 3
Thread 4

shared float shared[256]; Thread 5

T Thread 6
float fOO — Thread 7

shared[baselndex + s *
threadIdx.x];

e This is only bank-conflict-free if s — 57
shares no common factors with the B
number of banks d
— 16 on G80, so s must be odd Thread 6)\

Thread 7

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Thread 15 i Bank 15

Data types and bank conflicts

20

e This has no conflicts if type of shared is 32-bifs:

foo = shared|[baselIndex + threadIldx.x]

e But notif the data type is smaller

— 4-way bank conflicts:

__shared char shared[];
foo = shared[baselndex + threadIldx.x];

— 2-way bank conflicts:
shared short shared[];

foo = shared[baseIndex + threadIdx.x];

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Thread O

Thread 1 /

| —
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

21

Structs and Bank Conflicts

e Struct assignments compile info as many memory accesses as
there are struct members:

struct vector { float x, vy, z; 1}

Thread O

struct myType { Thread 1
Thread 2

float £; Thread 3

. . Thread 4

int c; Thread 5

} : Thread 6
Thread 7

shared struct vector vectors[64];

shared struct myType myTypes[64];

Thread 15 Bank 15

e This has no bank conflicts for vector; struct size is 3 words
— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors|[baselIndex + threadIldx.x];

 This has 2-way bank conflicts for my Type; (2 accesses per
thread)

struct myType m = myTypes|[baselndex + threadldx.x];

(

ECE .,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Common Array Bank Conflict Patterns 22
1D

e Fach thread loads 2 elements into
shared mem:;

— 2-way-interleaved loads result in
2-way bank conflicts: -

Thread 1

Thread 2

int tid = threadIldx.x; —
shared[2*tid] = global[2*tid]; Thread4 |
shared[2*tid+1] = global[2*tid+1];

Thread 8

* This makes sense for traditional CPU Thread
threads, locality in cache line usage Thread 10
and reduced sharing traffice. viER i

— Not in shared memory usage where
there is no cache line effects but
banking effects

ECE 498AL, University ot Illinols,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

A Better Array Access Pattern

e Each thread loads one element

in every consecutfive group of
bOCkDim elemen'l's. Thread 0

Thread 1

Thread 2

shared [tld] = glObal [tld] ’ Thread 3

-
N
N
shared[tid + blockDim.x] = Thread 4 -
global[tid + blockDim.x]; Thread 5 =
N

Thread 6

Thread 7

Thread 15 Bank 15

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

24

Vector Reduction with Bank Conflicts

VaRVanvanrvaaraav
' O O
" "

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

No Bank Conflicts B

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

Common Bank Conflict Patterns (2D)

Ban

e Operating on 2D array of floats in shared
memory
— e.g.image processing

e Example: 16x16 block
— Each thread processes a row

— So threads in a block access the elements in
each column simultaneously (example: row 1
in purple)

— 16-way bank conflicts: rows all start at bank 0

O IO O O O O OO0 O I
S eee [ILUINTRINENE RN RN TN X
N BEIXIEN N NN NN N

SN eee |[(CONNEORNIORNEO RIS IO RNS)

CE e e [NEN R S S S

Ol XX Ol O O O Ol O Ol

O KO O O O OO O

| eee [LNNIENEINEENEN

Indices without Padding

N
w
N
(O]
o
~
[}

.

Bank Indices with Padding

e Solution 1) pad the rows
— Add one float to the end of each row

e Solution 2) tfranspose before processing

— Suffer bank conflicts during tfranspose

— But possibly save them later

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

(XX ~] O |01 [N IO

Load/Store (Memory read/write)

Clustering/Batching
e Use LD to hide LD latency (non-dependent LD ops only)

— Use same thread to help hide own latency

e |nstead of:
— LD O (long latency)
— Dependent MATH O
— LD 1 (long latency)
— Dependent MATH 1

— LD O (long latency)

— LD 1 (long latency - hidden)
- MATHO

- MATH 1

e Compiler handles this!
— But, you must have enough non-dependent LDs and Math

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 19 (c) Mattan Erez

27

