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Multiply Using Several Blocks 

• One block computes one square 
sub-matrix Psub of size BLOCK_SIZE 

• One thread computes one 
element of Psub 

• Assume that the dimensions of M 
and N are multiples of BLOCK_SIZE 

and square shape 
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How addresses map to banks on G80 

• Each bank has a bandwidth of 32 bits per clock 
cycle 

• Successive 32-bit words are assigned to 
successive banks 

• G80 has 16 banks 

– So bank = address % 16 

– Same as the size of a half-warp 

• No bank conflicts between different half-warps, only within a 
single half-warp 
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Shared memory bank conflicts 

• Shared memory is as fast as registers if there are no bank 
conflicts 

 

• The fast case: 

– If all threads of a half-warp access different banks, there is no 
bank conflict 

– If all threads of a half-warp access the identical address, there is 
no bank conflict (broadcast) 

• The slow case: 

– Bank Conflict: multiple threads in the same half-warp access the 
same bank 

– Must serialize the accesses 

– Cost = max # of simultaneous accesses to a single bank 
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Data types and bank conflicts 

• This has no conflicts if type of shared is 32-bits: 

 
foo = shared[baseIndex + threadIdx.x] 

 

• But not if the data type is smaller 
– 4-way bank conflicts: 
__shared__ char shared[]; 

foo = shared[baseIndex + threadIdx.x]; 

 

 

– 2-way bank conflicts: 
__shared__ short shared[]; 

foo = shared[baseIndex + threadIdx.x]; 
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Structs and Bank Conflicts 
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• Struct assignments compile into as many memory accesses as 
there are struct members: 
 

struct vector { float x, y, z; }; 

struct myType {  

 float f;  

 int c; 

}; 

__shared__ struct vector vectors[64]; 

__shared__ struct myType myTypes[64]; 

 

• This has no bank conflicts for vector; struct size is 3 words 

– 3 accesses per thread, contiguous banks (no common factor with 16) 
 

struct vector v = vectors[baseIndex + threadIdx.x]; 

 

• This has 2-way bank conflicts for my Type; (2 accesses per 
thread) 
struct myType m = myTypes[baseIndex + threadIdx.x]; 
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Common Array Bank Conflict Patterns 
1D 

• Each thread loads 2 elements into 
shared mem: 

– 2-way-interleaved loads result in  
2-way bank conflicts: 

 

int tid = threadIdx.x; 

shared[2*tid] = global[2*tid]; 

shared[2*tid+1] = global[2*tid+1]; 

 

• This makes sense for traditional CPU 
threads, locality in cache line usage 
and reduced sharing traffice. 

– Not in shared memory usage where 
there is no cache line effects but 
banking effects 
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A Better Array Access Pattern 

• Each thread loads one element 
in every consecutive group of 
bockDim elements. 

 

shared[tid] = global[tid]; 

shared[tid + blockDim.x] = 

global[tid + blockDim.x]; 

Bank 15 

Bank 7 

Bank 6 

Bank 5 

Bank 4 

Bank 3 

Bank 2 

Bank 1 

Bank 0 

Thread 15 

Thread 7 

Thread 6 

Thread 5 

Thread 4 

Thread 3 

Thread 2 

Thread 1 

Thread 0 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 



N 
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20   (c) Mattan Erez 

9 

Common Bank Conflict Patterns (2D) 

• Operating on 2D array of floats in shared 
memory 

– e.g. image processing 

• Example: 16x16 block 
– Each thread processes a row 

– So threads in a block access the elements in 
each column simultaneously (example: row 1 
in purple) 

– 16-way bank conflicts: rows all start at bank 0 

 

• Solution 1) pad the rows 
– Add one float to the end of each row 

• Solution 2) transpose before processing 

– Suffer bank conflicts during transpose 

– But possibly save them later 
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Load/Store (Memory read/write) 
Clustering/Batching 
• Use LD to hide LD latency (non-dependent LD ops only) 

– Use same thread to help hide own latency 

• Instead of: 
– LD 0 (long latency) 

– Dependent MATH 0 

– LD 1 (long latency) 

– Dependent MATH 1 

• Do: 
– LD 0 (long latency) 

– LD 1 (long latency - hidden) 

– MATH 0 

– MATH 1 

• Compiler handles this! 

– But, you must have enough non-dependent LDs and Math 
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Memory Coalescing 

• Modern DRAM channels return a large burst of data on each 
access 

– 64B in the case of FERMI 

• Unused data in a burst degrades effective (and scarce) memory 
throughput 

• Reduce this waste in two ways: 

– Use caches and hope they are effective 

• Cache lines are 128B in Fermi 

– Explicitly optimize for spatial locality 

• Memory coalescing hardware minimizes the number of DRAM transactions from a 
single warp 

• Essentially per-warp MSHRs when no cache available  

• Memory coalescing deprecated in Fermi? 

– Use caches for coalescing 

• 128B if L1 cacheable, but only 32B if cached only at L2 

– Section F.4.2 of CUDA Programmer Guide 4.0 

• http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA
_C_Programming_Guide.pdf 
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Host memory 

• Board discussion of PCI express, memory mapping, 
and direct GPU/host access 

• More information available in Section 3.2.4 of the 
CUDA Programming Guide 

– http://developer.download.nvidia.com/compute/DevZo
ne/docs/html/C/doc/CUDA_C_Programming_Guide.pdf 
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Bandwidths of GeForce 9800 GTX 

• Frequency 

– 600 MHz with ALUs running at 1.2 GHz 

• ALU bandwidth (GFLOPs) 

– (1.2 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~400 
GFLOPs 

• Register BW 

– (1.2 GHz) X (16 SM) X (8 SP) X (4 words) = 2.5 TB/s 

• Shared Memory BW 

– (600 MHz) X (16 SM) X (16 Banks) X (1 word) = 600 GB/s 

• Device memory BW 

– 2 GHz GDDR3 with 256 bit bus: 64 GB/s 

• Host memory BW  

– PCI-express: 1.5GB/s or 3GB/s with page locking 
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Bandwidths of GeForce GTX480/Tesla c2050 

• Frequency 

– 700/650 MHz with ALUs running at 1.4/1.3 GHz 

• ALU bandwidth (GFLOPs) 

– (1.4 GHz) X (15 SM) X ((32 SP)X(2 MADD)) = ~1.3 TFLOPs 

– (1.3 GHz) X (14 SM) X ((32 SP)X(2 MADD)) = ~1.1 TFLOPs 

• Register BW 

– (1.4 GHz) X (15 SM) X ((32 SP)X(4 words)) = ~2.6 TFLOPs 

– (1.3 GHz) X (14 SM) X ((32 SP)X(4 words)) = ~2.2 TB/s 

• Shared Memory BW 

– (700 MHz) X (15 SM) X (32 Banks) X (1 word) = 1.3 GB/s 

– (650 MHz) X (14 SM) X (32 Banks) X (1 word) = 1.1 GB/s 

• Device memory BW 

– GTX480: 3.6 Gb/s GDDR5 with 6 64-bit channels:  177 GB/s 

– C2050: 3 Gb/s GDDR5 with 6 64-bit channels:  144 GB/s (less with ECC on) 

• Host memory BW  

– PCI-express 2.0:  Effective bandwidth is 1.5GB/s or 3GB/s with page locking 
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Communication 

• How do threads communicate? 
 

• Remember the execution model: 
– Data parallel streams that represent independent 

vertices, triangles, fragments, and pixels in the graphics 
world 

– These never communicate 
 

• Some communication allowed in compute mode: 
– Shared memory for threads in a thread block 

• No special communication within warp or using registers 

– No communication between thread blocks 
• Except atomics (and derivatives)  

– Kernels communicate through global device memory 

• Mechanisms designed to ensure portability 
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Synchronization 

• Do threads need to synchronize? 

– Basically no communication allowed 

• Threads in a block share memory – need sync 

– Warps scheduled OoO, can’t rely on warp order 

– Barrier command for all threads in a block 

– __synchthreads() 

• Blocks should not  synchronize 

– Implicit synchronization at end of kernel 

– Use atomics to form your own primitives 

– Also need to use memory fences 

• Block, device, device+host 

• GPUs use streaming rather than parallel concurrency 

– Not safe to assume which, or even how many CTAs are “live” at 
any given time, although usually works in reality 

– Communication could deadlock, but could be OK 
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Atomic Operations 

• Exception to communication between blocks 

• Atomic read-modify-write 

– Shared memory 

– Global memory 

• Executed in each L2 bank 

• Simple ALU operations 

– Add, subtract, AND, OR, min, max, inc, dec 

• Exchange operations 

– Compare-and-swap, exchange 


