
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 20 – GPUs (V)

EE382N: Principles of Computer Architecture, Fall 2011

-- Lecture 20 (c) Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

2

Multiply Using Several Blocks

• One block computes one square
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one
element of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE

and square shape
M

N

P

Psub

BLOCK_SIZE

N.width M.width

BLOCK_SIZE BLOCK_SIZE

bx

tx
0 1 bsize-1 2

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_

S
IZ

E

B
L

O
C

K
_

S
IZ

E

B

L
O

C
K

_
S

IZ
E

M
.h

ei
g

h
t

N
.h

ei
g

h
t

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

3

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock
cycle

• Successive 32-bit words are assigned to
successive banks

• G80 has 16 banks

– So bank = address % 16

– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

4

Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank
conflicts

• The fast case:

– If all threads of a half-warp access different banks, there is no
bank conflict

– If all threads of a half-warp access the identical address, there is
no bank conflict (broadcast)

• The slow case:

– Bank Conflict: multiple threads in the same half-warp access the
same bank

– Must serialize the accesses

– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

5

Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];

foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];

foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

6

Structs and Bank Conflicts

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

• Struct assignments compile into as many memory accesses as
there are struct members:

struct vector { float x, y, z; };

struct myType {

 float f;

 int c;

};

__shared__ struct vector vectors[64];

__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words

– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per
thread)
struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

7

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into
shared mem:

– 2-way-interleaved loads result in
2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU
threads, locality in cache line usage
and reduced sharing traffice.

– Not in shared memory usage where
there is no cache line effects but
banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

8

A Better Array Access Pattern

• Each thread loads one element
in every consecutive group of
bockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] =

global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

9

Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared
memory

– e.g. image processing

• Example: 16x16 block
– Each thread processes a row

– So threads in a block access the elements in
each column simultaneously (example: row 1
in purple)

– 16-way bank conflicts: rows all start at bank 0

• Solution 1) pad the rows
– Add one float to the end of each row

• Solution 2) transpose before processing

– Suffer bank conflicts during transpose

– But possibly save them later

Bank Indices without Padding

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 9 1

3 4 5 6 7 8 9 10 2

4 5 6 7 8 9 10 11 3

5 6 7 8 9 10 11 12 4

6 7 8 9 10 11 12 13 5

7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0

1

2

3

4

5

6

8

15

Bank Indices with Padding

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

10

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

Load/Store (Memory read/write)
Clustering/Batching
• Use LD to hide LD latency (non-dependent LD ops only)

– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)

– Dependent MATH 0

– LD 1 (long latency)

– Dependent MATH 1

• Do:
– LD 0 (long latency)

– LD 1 (long latency - hidden)

– MATH 0

– MATH 1

• Compiler handles this!

– But, you must have enough non-dependent LDs and Math

N

Memory Coalescing

• Modern DRAM channels return a large burst of data on each
access

– 64B in the case of FERMI

• Unused data in a burst degrades effective (and scarce) memory
throughput

• Reduce this waste in two ways:

– Use caches and hope they are effective

• Cache lines are 128B in Fermi

– Explicitly optimize for spatial locality

• Memory coalescing hardware minimizes the number of DRAM transactions from a
single warp

• Essentially per-warp MSHRs when no cache available

• Memory coalescing deprecated in Fermi?

– Use caches for coalescing

• 128B if L1 cacheable, but only 32B if cached only at L2

– Section F.4.2 of CUDA Programmer Guide 4.0

• http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA
_C_Programming_Guide.pdf

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

11

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

N

Host memory

• Board discussion of PCI express, memory mapping,
and direct GPU/host access

• More information available in Section 3.2.4 of the
CUDA Programming Guide

– http://developer.download.nvidia.com/compute/DevZo
ne/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

12

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

13

Bandwidths of GeForce 9800 GTX

• Frequency

– 600 MHz with ALUs running at 1.2 GHz

• ALU bandwidth (GFLOPs)

– (1.2 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~400
GFLOPs

• Register BW

– (1.2 GHz) X (16 SM) X (8 SP) X (4 words) = 2.5 TB/s

• Shared Memory BW

– (600 MHz) X (16 SM) X (16 Banks) X (1 word) = 600 GB/s

• Device memory BW

– 2 GHz GDDR3 with 256 bit bus: 64 GB/s

• Host memory BW

– PCI-express: 1.5GB/s or 3GB/s with page locking

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

14

Bandwidths of GeForce GTX480/Tesla c2050

• Frequency

– 700/650 MHz with ALUs running at 1.4/1.3 GHz

• ALU bandwidth (GFLOPs)

– (1.4 GHz) X (15 SM) X ((32 SP)X(2 MADD)) = ~1.3 TFLOPs

– (1.3 GHz) X (14 SM) X ((32 SP)X(2 MADD)) = ~1.1 TFLOPs

• Register BW

– (1.4 GHz) X (15 SM) X ((32 SP)X(4 words)) = ~2.6 TFLOPs

– (1.3 GHz) X (14 SM) X ((32 SP)X(4 words)) = ~2.2 TB/s

• Shared Memory BW

– (700 MHz) X (15 SM) X (32 Banks) X (1 word) = 1.3 GB/s

– (650 MHz) X (14 SM) X (32 Banks) X (1 word) = 1.1 GB/s

• Device memory BW

– GTX480: 3.6 Gb/s GDDR5 with 6 64-bit channels: 177 GB/s

– C2050: 3 Gb/s GDDR5 with 6 64-bit channels: 144 GB/s (less with ECC on)

• Host memory BW

– PCI-express 2.0: Effective bandwidth is 1.5GB/s or 3GB/s with page locking

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

15

Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent

vertices, triangles, fragments, and pixels in the graphics
world

– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers

– No communication between thread blocks
• Except atomics (and derivatives)

– Kernels communicate through global device memory

• Mechanisms designed to ensure portability

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

16

Synchronization

• Do threads need to synchronize?

– Basically no communication allowed

• Threads in a block share memory – need sync

– Warps scheduled OoO, can’t rely on warp order

– Barrier command for all threads in a block

– __synchthreads()

• Blocks should not synchronize

– Implicit synchronization at end of kernel

– Use atomics to form your own primitives

– Also need to use memory fences

• Block, device, device+host

• GPUs use streaming rather than parallel concurrency

– Not safe to assume which, or even how many CTAs are “live” at
any given time, although usually works in reality

– Communication could deadlock, but could be OK

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

17

Atomic Operations

• Exception to communication between blocks

• Atomic read-modify-write

– Shared memory

– Global memory

• Executed in each L2 bank

• Simple ALU operations

– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations

– Compare-and-swap, exchange

