EE382N (20). Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 20 - GPUs (V)

Mattan Erez

[SEE==ECE

The University of Texas at Austin

EE382N: Principles of Computer Architecture, Fall 2011
-- Lecture 20 (c) Mattan Erez

Multiply Using Several Blocks

e One computes one square
subb-matrix P, of size BLOCK_SIZE
e One computes one

element of P,

e Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign

How addresses map to banks on G80

e Each bank has a bandwidth of 32 bits per clock
cycle

e Successive 32-bit words are assigned to
successive banks

e G80 has 16 banks
— So bank = address % 16

— Same as the size of a half-warp

 No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Shared memory bank conflicts

« Shared memory is as fast as registers if there are no bank
conflicts

e The fast case:

— If all threads of a half-warp access different banks, there is no
bank conflict

— If all threads of a half-warp access the identical address, there is
no bank conflict (broadcast)
e The slow case:

— Bank Conflict: multiple threads in the same half-warp access the
same bank

— Must serialize the accesses
— Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Data types and bank conflicts

e This has no conflicts if type of shared is 32-bifs:

foo = shared|[baselIndex + threadIldx.x]

e But notif the data type is smaller
— 4-way bank conflicts:

shared char shared[];

foo = shared[baselndex + threadIldx.x];

— 2-way bank conflicts:

__shared short shared[];
foo = shared[baselndex + threadldx.x];

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Thread O

Thread 1 /

| —
Thread 2
Thread 3
Thread 4

Thread 5
Thread 6
Thread 7

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Structs and Bank Conflicts

e Struct assignments compile info as many memory accesses as
there are struct members:

struct vector { float x, vy, z; };

Thread O

struct myType { Thread 1
Thread 2

float £; Thread 3

; . Thread 4

int c; Thread 5

} : Thread 6
Thread 7

shared struct vector vectors[64];

shared struct myType myTypes[64];

Thread 15 Bank 15

e This has no bank conflicts for vector; struct size is 3 words
— 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors|[baselIndex + threadIldx.x];

 This has 2-way bank conflicts for my Type; (2 accesses per
thread)

struct myType m = myTypes|[baselndex + threadldx.x];

(

ECE ., .
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Common Array Bank Conflict Patterns
1D

e Fach thread loads 2 elements into
shared mem:;

— 2-way-interleaved loads result in
2-way bank conflicts: -

Thread 1

Thread 2

int tid = threadIldx.x; —
shared[2*tid] = global[2*tid]; Thread4 |
shared[2*tid+1] = global[2*tid+1];

Thread 8

* This makes sense for fraditional CPU Thread 9
threads, locality in cache line usage Thread 10
and reduced sharing traffice. Thread 11

— Not in shared memory usage where
there is no cache line effects but
banking effects

ECE 498AL, University of Illinols,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

A Better Array Access Pattern

e Each thread loads one element

in every consecutfive group of
bOCkDim elemen'l's. Thread 0

Thread 1

Thread 2

shared [tld] = glObal [tld] ’ Thread 3

-
-
-
shared[tid + blockDim.x] = Thread 4 -
global[tid + blockDim.x]; Thread 5 =
-

Thread 6

Thread 7

Thread 15 Bank 15

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Common Bank Conflict Patterns (2D)

Ban

e Operating on 2D array of floats in shared
memory
— e.g.image processing

e Example: 16x16 block
— Each thread processes a row

— So threads in a block access the elements in
each column simultaneously (example: row 1
in purple)

— 16-way bank conflicts: rows all start at bank 0

O IO O O O O OO O I
N eee [ILUINTRINENN RN RN N X
N BEIXIEN N NN NN N

OO XTI W o

CEl e e [NEN SR S S S

Ol XXX Ol O O O Ol O] Ol

O EXITHO O O OO O O

S eee [LNNIENENEENN

Indices without Padding

N
w
N
(O
o
-
[}

.

Bank Indices with Padding

e Solution 1) pad the rows
— Add one float fo the end of each row

e Solution 2) tfranspose before processing
— Suffer bank conflicts during franspose

— But possibly save them later

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

(XX ~] O |01 [N IO

Load/Store (Memory read/write)

Clustering/Batching
e Use LD to hide LD latency (non-dependent LD ops only)

— Use same thread to help hide own latency

 Instead of:
— LD O (long latency)
— Dependent MATH O
— LD 1 (long latency)
— Dependent MATH 1

— LD O (long latency)

— LD 1 (long latency - hidden)
- MATHO

- MATH 1

e Compiler handles this!
— But, you must have enough non-dependent LDs and Math

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

10

Memory Coalescing

N

11

Modern DRAM channels return a large burst of data on each
access

— 64B in the case of FERMI

Unused data in a burst degrades effective (and scarce) memory
throughput

Reduce this waste in two ways:
— Use caches and hope they are effective

* Cachelines are 128B in Fermi
— Explicitly optimize for spatial locality

* Memory coalescing hardware minimizes the number of DRAM transactions from a
single warp

* Essentially per-warp MSHRs when no cache available
Memory coalescing deprecated in Fermi?

— Use caches for coalescing
e 128Bif L1 cacheable, but only 32B if cached only at L2

— Section F.4.2 of CUDA Programmer Guide 4.0

e http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA
C Programming Guide.pdf

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

2

12

Host memory

 Board discussion of PCl express, memory mapping,
and direct GPU/host access

e More information available in Section 3.2.4 of the
CUDA Programming Guide

— http://developer.download.nvidia.com/compute/DevZo
ne/docs/himl/C/doc/CUDA C Programming Guide.pdf

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

Bandwidths of GeForce 9800 GTX N

e Frequency
— 600 MHz with ALUs running at 1.2 GHz

 ALU bandwidth (GFLOPs)
— (1.2 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~400
GFLOPs
e Register BW
— (1.2 GHz) X (16 SM) X (8 SP) X (4 words) = 2.5 TB/s
e Shared Memory BW
— (600 MHz) X (16 SM) X (16 Banks) X (1 word) = 600 GB/s

e Device memory BW
— 2 GHz GDDR3 with 256 bit bus: 64 GB/s

e Host memory BW
QN — PCl-express: 1.5GB/s or 3GB/s with page locking

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Bandwidths of GeForce GTX480/Tesla c2050

* Frequency
— 700/650 MHz with ALUs running at 1.4/1.3 GHz

e ALU bandwidth (GFLOPs)
— (1.4 GHz) X (15 SM) X ((32 SP)X(2 MADD)) = ~1.3 TFLOPs
— (1.3 GHz) X (14 SM) X ((32 SP)X(2 MADD)) = ~1.1 TFLOPs

e Register BW
— (1.4 GHz) X (15 SM) X ((32 SP)X(4 words)) = ~2.6 TFLOPs
— (1.3 GHz) X (14 SM) X ((32 SP)X(4 words)) = ~2.2 TB/s
e Shared Memory BW
— (700 MHz) X (15 SM) X (32 Banks) X (1 word) = 1.3 GB/s
— (650 MHz) X (14 SM) X (32 Banks) X (1 word) = 1.1 GB/s
e Device memory BW
— GTX480: 3.6 Gb/s GDDRS5 with 6 é64-bit channels: 177 GB/s
— C2050: 3 Gb/s GDDRS with 6 64-bit channels: 144 GB/s (less with ECC on)
e Host memory BW
— PCl-express 2.0: Effective bandwidth is 1.5GB/s or 3GB/s with page locking

E EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

15

Communication

e How do threads communicate?

e Remember the execution model:

— Data parallel streams that represent independent
vertices, triangles, fragments, and pixels in the graphics
world

— These never communicate

e Some communication allowed in compute mode:

— Shared memory for threads in a thread block
e No special communication within warp or using registers

— No communication between thread blocks
e Except atomics (and derivatives)

— Kernels communicate through global device memory

”-’ Mechanisms designed to ensure portability

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

16

Synchronization

e Do threads need to synchronize?¢
— Basically no communication allowed

e Threads in a block share memory — need sync
— Warps scheduled OoO, can't rely on warp order
— Barrier command for all threads in a block
— _ synchthreads|)

e Blocks should not synchronize
— Implicit synchronization at end of kernel
— Use atomics to form your own primitives
— Also need to use memory fences
e Block, device, device+host
e GPUs use streaming rather than parallel concurrency

— Noft safe to assume which, or even how many CTAs are “live” at
any given time, although usually works in reality

QN — Communication could deadlock, but could be OK

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

Atomic Operations

e Exception to communication between blocks

e Atomic read-modify-write
— Shared memory

— Global memory
e Executed in each L2 bank

e Simple ALU operations
— Add, subtfract, AND, OR, min, max, inc, dec

e Exchange operations
— Compare-and-swap, exchange

E EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 20 (c) Mattan Erez

