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Control

e Each SM has its own warp scheduler

e Schedules warps OoO based on hazards and
resources

e Warps can be issued in any order within and across
blocks

o Within a warp, all threads always have the same
position
— Current implementation has warps of 32 threads
— Can change with no notice from NVIDIA
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Conditionals within a Thread

N

What happens if there is a conditional statement
within a thread?

No problem if all threads in a warp follow same
path

Divergence: threads in a warp follow different
paths

— HW will ensure correct behavior by (partially) serializing
execution

— Compiler can add predication to eliminate divergence

Try to avoid divergence
— If (TID>2){...} > If(TID /warp_size >2){...}
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Control Flow

e Recap:
— 32 threads in a warm are executed in SIMD (share one
Instruction sequencer)

— Threads within a warp can be disabled (masked)
e For example, handling bank conflicts

— Threads contain arbitrary code including conditional
branches

e How do we handle different conditions in different
threadse
— No problem if the threads are in different warps
— Control divergence
— Predication
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Conirol Flow Divergence

if (TID % 2 == 0) {
£2() ;
if (TID % 4 == 0) {
£4();
}
else {
£27 ()
}
}

else {
£(1);
if (TID % 4 == 3) {
£3();
}
else {
£17 ()
}
}
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Mask Stack Enables Divergence

P

# .
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enable mask

if @ s 2 = 0) ( EEEEEEE

£2();

if (TID % 4 == 0) {
£4();

}

else {
£27 (),

}

}

: else {

£(1);

if (TID % 4 == 3) {
£3();

}

else {
£1' () ;

}

}
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Mask Stack Enables Divergence

IP enable mask stack
=1 if (110 3 2 = 0) ( EEEEEEEE
2: £2();
3: if (TID % 4 == 0) {
4: £4 () ;
5: }
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £1’ () ;
17: '}
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Mask Stack Enables Divergence

P enable mask
—>1: if (7m0 % 2 = 0) ( [EEEEEEEE
2: £2();
3: if (TID % 4 == 0) {
4: £4 () ;
5: }
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £f1’ () ;
17: '}
}
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Mask Stack Enables Divergence

P
1: if (TID % 2
—p2: f£2();
3: if (TID % 4
4: £f4 () ;
5: }
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4
13: £3();
14: }
15: else {
16: £1' () ;
17 }
}
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Mask Stack Enables Divergence

10

P
1: if (TID % 2 == 0) {
2: f£2();
=P-3: if (TID % 4 == 0) { [1|loflalof2
4: £4 () ;
5: 1}
6: else {
7: £27 () ;
8: }
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £1' () ;
17 }
}
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Mask Stack Enables Divergence

11

P
1: if (TID % 2 == 0) {
2: f£2();
=P-3: if (TID % 4 == 0) { [1|loflalof2
4: £4 () ;
5: 1}
6: else {
7: £27 () ;
8: }
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £1' () ;
17 }
}
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Mask Stack Enables Divergence

12

stack
01110 0
11111 1

P
1: if (TID % 2 == 0) {
2: £2();
3: if (TID % 4 == 0) {
4 : £4 () ; 1{oflo]of1
5: }
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £f1’ () ;
17 }
}
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Mask Stack Enables Divergence

P
1: if (TID % 2 == 0) {
2: £2();
3: if (TID % 4 == 0) {
4: £f4 () ;
-5} 1{ojo]olfa
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £f1’ () ;
17 }
}
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Mask Stack Enables Divergence

P
1: if (TID % 2 == 0) {
2: £2();
3: if (TID % 4 == 0) {
4: £f4 () ;
=»5: } 6|l2|ofz]o]2
6: else {
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £f1’ () ;
17 }
}
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Mask Stack Enables Divergence

15

stack
01110 0
11111 1

P
1: if (TID % 2 == 0) {
2: f£2();
3: if (TID % 4 == 0) {
4: £4 () ;
5: 1}
_>6: else { 11o0l1l1o0l1
7: £27 () ;
8: 1}
9: }
10: else {
11: £(1);
12: 1if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £1’ () ;
17: '}
}
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Mask Stack Enables Divergence

IP

g7

10:
11:
12:
13:
14:
15:
16:
17:

o 1 WDN K

. if (TID % 2 == 0) {

£2();

if (TID % 4 == 0) {
£4();

}

else {

16

stack
01110 0
11111 1

£27 (), olofalolo

}
}

else {
£(1);
if (TID % 4 == 3) {
£3();
}
else {
£17 ()
}
}

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez



Mask Stack Enables Divergence

17

P
1: if (TID % 2 == 0) {
2: £2();
3: if (TID % 4 == 0) {
4: £f4 () ;
5: }
6: else {
7: £27 () ;
=$g: } gll1]of1]o]2
9: }
10: else {
11: £(1);
12: if (TID % 4 == 3) {
13: £3();
14: }
15: else {
16: £f1’ () ;
17 }
}

&
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Mask Stack Enables Divergence

IP

. if (TID % 2 == 0) {

: 0} oflzafzf2f2]l2]1f2
: else {

18

stack

£2();

if (TID % 4 == 0) {
£4 () ;

}

else {

£27 ()

}

£(1);

if (TID % 4 == 3) {
£3();
}

else {
£1' () ;

} DirectX 10 specifies 4-deep stack

) No restrictions today (need to track many PCs)
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Predication Eliminates Branches
(and Divergence)

if (TID % 2 ==
£2() ;
if (TID % 4 ==
£4();
}
else {
£27 () ;
}
}

else {
£(1);
if (TID % 4 ==
£3();
}
else {
£17 ()
}
}
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2

Predication Eliminates Branches
(and Divergence)

pl = (TID % 2 == 0) if (TID & 2 ==
pl £2(); £2() ;
if (TID % 4 ==
£4();
}
else {
£27 () ;
}
}

else {
£(1);
if (TID % 4 ==
£3();
}
else {
£17 ()
}
}

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez

0) {

0)

3)

{

{

20



2

Predication Eliminates Branches

(and Divergence)

pl =
pl £2();
pl p2 =
p2 f£4();

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 21

0)

0)

if (TID % 2 ==
£2() ;
if (TID % 4 ==
£4();
}
else {
£27 () ;
}
}

else {
£(1);
if (TID % 4 ==
£3();
}
else {
£17 ()
}
}
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Predication Eliminates Branches
(and Divergence)

pl = (TID $ 2 == 0) if (TID % 2 ==
pl £2(); £2();
pl p2 = (TID $ 4 == 0) if (TID % 4 ==
p2 f4(); £4() ;
}
pl p3 = !p2 else {
p3 £2' (); £27 () ;
}
}
péd = !'pl else {
pd £(1); £(1);
p4d p5 = (TID % 3 == 0) if (TID % 4 ==
PS> £3(); £3();
}
p4d p6 = !'p5 else {
p6 £1' (); £17 () ;
}
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Equivalence of Divergence and Predication

N

pl = (TID $ 2 == 0) if (TID % == 0) {
pl £2(); £2() ;
pl p2 = (TID $ 4 == 0) if (TID $ 4 == 0) {
p2 £4(); £4();
}
pl p3 = !p2 else {
p3 £2' (); £27 () ;
}
}
p4d = 'pl else ({
p4 £(1); £(1);
p4 p5 = (TID % == 3) if (TID % 4 == 3) {
p5 £3(); £3() ;
}
p4 p6 = !p5 else {
p6f1 () B - IH £17 () ;

EE382N: Princ

iples of Computer Architectu
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When to Predicate and When to Diverge?

e Divergence

— No performance penalty if all warp branches the same
way

— Some extra HW cost
— Static partitioning of stack resources (to warps)
* Predication
— Always execute all paths
— Expose more ILP
— Add predication registers to instruction encoding
o Selects — software predication
— Simpler HW and just as flexible mode
— Simple instruction encoding
— Need to use more registers and insert select instructions
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Ouvutline

e CUDA

— Overview

— Development process

— Performance Optimization
— Syntax

e Most slides courtesy Massimiliano Fatica (NVIDIA)
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Compute Unified Device Architecture

e CUDA Is a programming system for utilizihg NVIDIA
GPUs for compute
— CUDA follows the architecture very closely

e General purpose programming model
— User kicks off batches of threads on the GPU

— GPU = dedicated super-threaded, massively data
parallel co-processor

Maiches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez



The CUDA Platform !

* High-end NVIDIA GPUs not integrated into the CPU

— GPU connects through a PCI Express bus

— GPU communicates through OS (drivers)
AMD Opteron” Processor-based 4P Server

HyperTransport™ Technology Buses

' ng I' ol
Technology Buses Enable or Glueless 110 or CPU Expansion Wi Coasia

HyperTranspoet™

Glueless Expanslon for up | 1 Seales wi Number Intel* PBI'IH;;I::I'-‘-
to 8-way Servers b ! of Processors Extreme Edition
DDR DDR
144-bit 144-bit
PCl Express* 80
x16 Graphics GB/s
DDR DDR
144-bie 144-bit
Intel* High
Separate Memory and HyperTransport Definition Audio

VO Paths Eliminates Most CP| Direetly Connected to | D ¢ Link Has Ample

s Contention Processors; Cores are Bandwidth For Ex 1::;'. -
Connected Onde IO Devices i

BHI-S
[l pa use ‘.”.ﬂm

Memory Traffic 40 e

IDE, USB,
X y 1/0 Traffic et
ECE LPC Ete, IPC Traffic -
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CUDA Programming System

e Targeted software stack
— Compute oriented drivers, language,

and tools CPU
Application
'
e Driver for loading computation CERT BLAS)
programs into GPU !
Standalone Driver - Optimized for |
Compu’rc’rlon CUDA Runtime
— Interface designed for compute -
graphics free API ¢
— Data sharing with OpenGL buffer SRRl
objects
— Guaranteed maximum download & 1
readback speeds GPU

— Explicit GPU memory management

N\
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Overall Performance Can be Limited by .
Interface

210 457 316
79 431 263

(2]
o

- B Kernel
| B Application

(3]
o

w A
o o

GPU Speedup

Relative to CPU

-
o

o

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-
FHD
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N\

Overall Perfformance Can be Limited by

Interface
SGEMM performance
—— GPU+/O —=— GPU+I/O Pinned GPU only
140
o P vews
% 80 g—a—a—t?
& 60 W
40 /
20 4
O 1
0) 512 1024 1536 2048 2560
N

© NVIDIA Corp.
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CUDA APl and Language:
Easy and Lightweight

e The APlis an extension to the ANSI C
programming language
=== | OW |learning curve

e The hardware is designed to enable lightweight
runfime and driver

== High performance

~N

© NVIDIA Corp.
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CUDA Programming Moael:.
A Highly Multithreaded Coprocessor

e The GPU is viewed as a compute device that:
— Is a coprocessor to the CPU or host
— Has its own DRAM (device memory)
— Runs many threads in parallel

 Data-parallel portions of an application are
executed on the device as kernels which run in
parallel on many threads

e Differences between GPU and CPU threads
— GPU threads are extremely lightweight

 Very little creation overhead

— GPU needs 1000s of threads for full efficiency

© David Kirk/NVIDIA and ti-core CPU needs only a few
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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CUDA is an Extension to C++

Integrated source
(foo.cu)

cudacc

EDG C/C++ frontend
Open64 Global Optimizer

GPU Assembly CPU Host Code

foo.s foo.cpp

OCG

G80 SASS

foo.sass

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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CUDA is an Extension to C++

Declspecs

— global, device, shared,
local, constant

Keywords
— threadldx, blockldx

INntrinsics
— _ syncthreads
— _ theradfence

e Runtime API

— Memory, symboal,
execution
management

Function launch

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign

}

device  float filter([N];
global  void convolve (float *image)

shared  float region[M];

region[threadIdx] = imagel[i];

__syncthreads ()

image[]] = result;

// Allocate GPU memory

void *myimage =

// 100 blocks,
convolve<<<100,

cudaMalloc (bytes)

10 threads per block
10>>> (myimage) ;

Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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Thread Baitching: Grids and Blocks

 Akernelis executed as a grid Host Device

of thread blocks

Grid 1

— All threads share data memo
Y Kernel »  Block Block Block
space

1 0,00  (1,0) (2,0
e A thread block is a batch of SY (RO R
threads that can cooperate 0% | w1y \ @

with each other by:

— Synchronizing their execution Grid 2

e For hazard-free shared Kernel —< )
memory accesses 2 |

— Efficiently sharing data through i 1
a low latency shared memory Block (1, 1)

e Two threads from two
different blocks cannot

cooperate

~N

© NVIDIA Corp. Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez




Block and Thread IDs

e Threads and blocks have IDs

— So each thread can decide what
data to work on

—  Block ID: 1D or 2D
— Thread ID: 1D, 2D, or 3D

e Simplifies memory
addressing when processing
multidimensional data
— Image processing
— Solving PDEs on volumes

~AL

© NVIDIA Corp. Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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Block Block Block
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CUDA Device Memory Space Overview  ”

e Each thread can:

(Device) Grid

— R/W per-thread registers
—  R/W per-thread local memory Block (0, 0) Block (1, 0)

— R/W per-block shared memory

— R/W per-grid global memory
Thread (0, 0) | Thread (1, 0) | || Thread (0, 0) | Thread (1, 0)

— Read only per-grid constant
memory

— Read only per-grid texture

SIEIETIE
e The host can R/W

global, constant, and Host
texture memories

~AL
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Access Times

 Register — dedicated HW - single cycle

e Shared Memory — dedicated HW - two cycles
— Hidden by warps

e Local Memory — DRAM, no cache - *slow*

e Global Memory — DRAM, no cache - *slow*

e Constant Memory - DRAM, cached, 1...10s...100s of cycles,
depending on cache locality

e Texture Memory — DRAM, cached, 1...10s...100s of cycles,
depending on cache locality

e Instruction Memory (invisible) — DRAM, cached

(
Wen-mel W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez



Programming Model:
Square Matrix Multiplication Example

e P=M * N of size WIDTH x WIDTH
« Without blocking: "

— One handles one element of P

— M and N are loaded WIDTH fimes from
global memory

WIDTH WIDTH

WIDTH

WIDTH

39

&
<«

N\
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Programming Moael: ;
Common Programming Patiern

e Local and global memory reside in device memory
(DRAM) - much slower access than shared
memory
— Uncached

e SO, a common way of scheduling some
computation on the device is to block it up to take
advantage of fast shared memory:

— Partition the data set info data subsets that fit into shared
memaory

— Handle each data subset with one thread block by:

* Loading the subset from global memory to shared memory

e Performing the computation on the subset from shared memory;
each thread can efficiently multi-pass over any data element

e Copying results from shared memory to global memory

~N
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Programming Model:

Square Matrix Multiplication Example
e P=M*N of size WIDTH x WIDTH
 With blocking: .

- One handles one
BLOCK_SIZE X BLOCK_SIZE sub-matrix P, of

— M and N are only loaded
WIDTH / BLOCK_SIZE times from global
memory

e Great saving of

I:)sub
memory
bandwidth!
< > < > < | —>
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
WIDTH WIDTH

N\

© NVIDIA Corp.
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BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

BLOCK_SIZE

WIDTH

WIDTH

B
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A quick review

e device = GPU = set of multiprocessors

e Multiprocessor = set of processors & shared memory
e Kernel = GPU program

e Grid = array of thread blocks that execute a kernel

 Thread block = CTA = group of SIMD threads that execute
a kernel and can communicate via shared memory

Memory Location |Cached |Access Who

Local Off-chip Yes(No) Read/write | One thread

Shared On-chip N/A Read/write | All threads in a CTA
Global Off-chip L1?/L2 (No) | Read/write | All threads + host
Constant Off-chip Yes Read All threads + host
Texture Off-chip Yes Read All threads + host

e (No) - Not cacheable on G80

N\

© NVIDIA Corp.
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CUDA: C on the GPU "

e Asimple, explicit programming language solution

e Extend only where necessary

__global  wvoid KernelFunc(...);

shared  1int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

e Explicit GPU memory allocation

— cudaMalloc (), cudaFree ()

e Memory copy from host to device, etc.

— cudaMemcpy (), cudaMemcpy2D (), ...

N\
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Example: Vector Addition Kernel

// Pair-wise addition of vector elements

// One thread per addition

global  wvoid

vectorAdd (float* 1A, float* 1B, float* oC)

{

int 1idx = threadIldx.x + blockDim.x *
blockId.x;

oCl[idx] = 1A[idx] + 1B[idx];

© NVIDIA Corp. Computer Architecture, Fall 2011 - Lecture 21 (c) Mattan Erez
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Example: Vector Addition Host Code

float* h A = (float*) malloc(N * sizeof (float));
float* h B = (float*) malloc(N * sizeof (float));
// .. initalize h A and h B

// allocate device memory
float* d A, d B, d C;

cudaMalloc ( (void**) &d A, N * sizeof(float)));
cudaMalloc( (void**) &d B, N * sizeof(float)));
cudaMalloc( (void**) &d C, N * sizeof(float)));

// copy host memory to device

cudaMemcpy( d A, h A, N * sizeof (float),
cudaMemcpyHostToDevice) );

cudaMemcpy( d B, h B, N * sizeof (float),
cudaMemcpyHostToDevice) );

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>( d A, d B, d C);

~N
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Ouvutline

e Bandwidths
e CUDA

— Overview

— Development process

— Performance Optimization
— Syntax

e Most slides courtesy Massimiliano Fatica (NVIDIA)

E EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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Compilation

* Any source file containing CUDA language
extensions must be compiled with nvcc

e NVCC is a compiler driver

— Works by invoking all the necessary tools and compilers
ike cudacc, g++, cl, ...

e NVCC can output:
— Either C code (CPU Code)

e That must then be compiled with the rest of the application
using another tool

— Or PTX object code directly

 Any executable with CUDA code requires two
dynamic libraries:
— The CUDA runtime library (cudart)
— The CUDA core library (cuda)
~N

© NVIDIA Corp. Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez



Compiling CUDA

~N

© NVIDIA Corp.

Target code

Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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Compiling CUDA

~N

© NVIDIA Corp.

Virtual

Target code

Physical

Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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NVCC & PTX Virtual Machine

float4 me = gx[gtid]; ® EDG

neX wmme.y T me.z; ~ Separate GPU vs. CPU
code

e Openéb4

— Generates GPU PTX
assembly

e Parallel Thread
eXecution (PTX)

— Virtual Machine and ISA
— Programming model

— Execution resources and
state

1d.global.v4.f32 {$f1,$f3,%$f5,%$f7}, [$r9+0];
A1ad.f32 $f1, $f5, $f3, $f1;
SN\

© NVIDIA Corp. Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez
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Role of Opené4

Openébé4 compiler gives us

e A complete C/C++ compiler framework. Forward looking.
We do not need to add infrastructure framework as our
hardware arch advances over time.

A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

o« Compiler infrastructure that interacts well with other related
standardized tools.

© NVIDIA Corp. Computer Architecture, Fall 2011 - Lecture 21 (c) Mattan Erez

51



Debugging Using the
Device Emulation Mode

e An executable compiled in device emulation
mode (nvcec -deviceemu) runs completely on

the host using the CUDA runtime
— No need of any device and CUDA driver
— Each device thread is emulated with a host thread

e When running in device emulation mode, one
can:

— Use host native debug support (breakpoints,
iInspection, etc.)

— Access any device-specific data from host code and
vice-versa

— Call any host function from device code (e.g. printf)
and vice-versa

\N — Detect deadlock situations caused by improper usage
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Device Emulation Mode Pitfalls

e Emulated device threads execute sequentially,
SO simultaneous accesses of the same memory
location by multiple threads potentially produce
different results

e Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

e Results of floating-point computations will slightly
differ because of:
— Different compiler outputs
— Different instruction sefts

— Use of extended precision for infermediate results
e There are various options to force strict single precision on the

\N host
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Parameterize Your Application

 Parameterization helps adaptation to different
GPUs

e GPUs vary in many ways
— # of multiprocessors
— Shared memory size
— Register file size
— Threads per block
— Memory bandwidth

e You can even make apps self-tuning (like FFTW)
— "Experiment”’ mode discovers and saves optimal config
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Ouvutline

e Bandwidths
e CUDA

— Overview

— Development process

— Performance Optimization
— Syntax

e Most slides courtesy Massimiliano Fatica (NVIDIA)
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CUDA Optimization Priorities

e Memory coalescing is #1 priority
— Highest 1/$ optimization
— Optimize for locality
e Take advantage of shared memory
— Very high bandwidth
— Threads can cooperate 1o save work

e Use parallelism efficiently
— Keep the GPU busy at all times
— High arithmetic / bandwidth ratio
— Many threads & thread blocks
 Leave bank conflicts and divergence for last!

— 4-way and smaller conflicts are not usually worth avoiding
if avoiding them will cost more instructions

~N
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CUDA Optimization Strategies
e Optimize Algorithms for the GPU

e Optimize Memory Access Pattern

e Take Advantage of On-Chip Shared Memory

— Watch out for bank conflicts — each serialized bank
conflict costs 2 cycles!

e Use Parallelism Efficiently
— Divergence is bad, but not as bad as poor mem usage

e Use appropriate mechanisms
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Optimize Algorithms for the GPU :

e Maximize independent parallelism
e Maximize arithmetic intensity (math/bandwidth)

e Sometimes it’'s better to recompute than fo cache
— GPU spends its tfransistors on ALUs, not memory

e Do more computation on the GPU to avoid costly
data transfers

— Even low parallelism computations can sometimes be
faster than transfering back and forth to host
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Modern DRAMs are Sensitive to Pattern

M [norder B Row E Row+Col

%peak BW
CO0000000
OFRrLNWPAAOIOIONOOO -

E EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 21 (c) Mattan Erez



2

Optimize Memory Pattern (“Coherence”)

Coalesced vs. Non-coalesced = order of
magnifude

— Global/Local device memory

— Sequential access by threads in a half-warp get
coalesced

Fermi's caches help a lot
— Simplity coalescing and provide more buffering

Optimize for spatial locality in cached texture
memory

Constant memory provides broadcast within SM

In shared memory, avoid high-degree bank
conflicts
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Take Advantage of Shared Memory h

e Hundreds of times faster than global memory
e Threads can cooperate via shared memory

e Use one / a few threads to load / compute data
shared by all threads

e Use It fo avoid non-coalesced access

— Stage loads and stores in shared memory to re-order non-
coalesceable addressing

— See the tfranspose SDK sample for an example
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Use Parallelism Efficiently

e Partition your computation to keep the GPU
multiprocessors equally busy
— Many threads, many thread blocks

e Keep resource usage low enough to support
multiple active thread blocks per multiprocessor

— Registers, shared memory
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Maximizing Instruction Throughput

 Minimize use of low-throughput instructions

e Maximize use of high-bandwidth memory
— Maximize use of shared memory
— Maximize coherence of cached accesses

— Minimize accesses to (uncached) global and local
memory

— Maximize coalescing of global memory accesses

o Opftimize performance by overlapping memory
accesses with HW computation

— High arithmetic intensity programs
 i.e. high ratio of math to memory transactions

QN - Many concurrent threads
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Data Transfers

e Device memory to host memory bandwidth much
lower than device memory to device bandwidth

— 4GB/s peak (PCl-e x16) vs. 80 GB/s peak (Quadro FX
5600)

e Minimize fransfers

— Intermediate data structures can be allocated, operated
on, and deadllocated without ever copying them to host
memory

e Group fransfers
— One large transfer much better than many small ones
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Page-Locked Memory Transfers

65

cuMemaAllocHost() allows allocation of page-locked
host memory

Enables highest cudaMemcpy performance
— 3.2 GB/s common on PCl-e x16
— ~4 GB/s measured on nForce 680i motherboards

See the "bandwidthTest” CUDA SDK sample

Use with caution

— Allocating too much page-locked memory can reduce overall
system performance

— Test your systems and apps to learn their limits

Memory allocation is also the fime to control caching
— Dynamic allocation possible, but interacts with driver so is slow.
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Optimizing threads per block

e Given: total threads in a grid

— Choose block size and number of blocks to maximize
occupancy:

Occupancy: # of warps running concurrently on @
multiprocessor divided by maximum # of warps that can
run concurrently

(Demonstrate CUDA Occupancy Calculator)
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Grid/Block Size Heuristics N

e # of blocks / # of mulfiprocessors > 1
— So all multiprocessors have at least a block to execute

e Per-block resources at most half of total available
— Shared memory and registers
— Multiple blocks can run concurrently in a multiprocessor

— If multiple blocks coexist that aren’t all waiting at a
__syncthreads(), machine can stay busy

e # of blocks / # of mulfiprocessors > 2
— So multiple blocks run concurrently in a multiprocessor

e # of blocks > 100 to scale to future devices
— Blocks stream through machine in pipeline fashion

— 1000 blocks per grid will scale across multiple
generations
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Occupancy = Performance

* Increasing occupancy does not necessarily
INCrease performance

BUT...

e Low-occupancy multiprocessors cannof
adequately hide latency on memory-bound
kernels

— (It all comes down to arithmetic intensity and available
parallelism)
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Optimizing threads per block

» Choose threads per block as a multiple of warp size
— Avoid wasting computation on under-populated warps

e More threads per block == better memory latency
hiding

e But, more threads per block == fewer regs per
thread

— Kernel invocations can fail if too many registers are used

e Heuristics

— Minimum: 64 threads per block
e Only if multiple concurrent blocks

— 192 or 256 threads a better choice

e Usually still enough regs to compile and invoke successfully

QN — This all depends on your computation!
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Programmer View of Register File

e There are 8192 registers
INn each SM in G80

— This is an implementation
decision, not part of
CUDA

— Registers are dynamically
partitioned across all
Blocks assigned to the
SM

— Once assigned to a
Block, the register is NOT
accessible by threads in
other Blocks

— Each thread in the same
© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007 ]ly access

ECE 498AL, University of lllinois,
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Communication

e How do threads communicate?

e Remember the execution model:

— Data parallel streams that represent independent
vertices, triangles, fragments, and pixels in the graphics
world

— These never communicate

e Some communication allowed in compute mode:

— Shared memory for threads in a thread block
e No special communication within warp or using registers

— No communication between thread blocks
— Kernels communicate through global device memory

Mechanisms designed to ensure portability
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In-Kernel Synchronization

e Do threads need to synchronize<¢
— Basically no communication allowed

e Threads in a block share memory — need sync
— Warps scheduled Oo0O, can’t rely on warp order
— Barrier command for all threads in a block
— _ synchthreads()

e Blocks cannot synchronize
— Implicit synchronization at end of kernel
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Inter-Kernel Synchronization

e Synchronize across device
— Kernels and memory transfers launched asynchronously!
— Need to use appropriate synchronization for correctness

By default, kernels and DMAS are asynchronous
— Can even run concurrent kernels on Fermi

e Manage synchronization with streams and events

Stream: an in-order sequence of bulk operations
— Streams can be arbitrarily inferleaved or executed concurrently
— cudaStreamCreate(cudastream_t* st) / cudaStreamDestroy

— cudaStreamQuery / cudaStreamSynchronize:
* Check that / block until all preceding commands in the specified stream complete

— cudaDeviceSynchronize:
* Wait until all preceding commands in all streams complete

Event explicit event that you can explicitly “record” or “wait” for
— cudaEkventCreate(cudaevent_t* e) / cudaEvenDestroy
” ’ — cudaEkventRecord / cudaEventSynchronize
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Atomic Operations and consistency

e Exception to communication between blocks

e Afomic read-modify-write
— Shared memory
— Global memory
 Simple ALU operations
— Add, subtract, AND, OR, min, max, inc, dec

e Exchange operations
— Compare-and-swap, exchange

e Extremely reloxed memory consistency with fences
— _ threadfence_block(): global and shared visible to CTA
— _ threadfence(): shared to CTA, global across device
— _ threadfence_system(): also visible to host threads (for locked
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