
N 

EE382N (20): Computer Architecture - Parallelism and Locality 
Fall 2011 

Lecture 22 – CUDA 

EE382N: Principles of Computer Architecture, Fall 2011 

-- Lecture 22   (c) Mattan Erez 1 

Mattan Erez 
 
 

The University of Texas at Austin 

 

 



N 
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22   (c) Mattan Erez 

2 

Outline 

• CUDA 

– Overview 

– Development process 

– Performance Optimization 

– Syntax 

 

 

• Most slides courtesy Massimiliano Fatica (NVIDIA) 
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Compute Unified Device Architecture 

• CUDA is a programming system for utilizing NVIDIA 
GPUs for compute 

– CUDA follows the architecture very closely 

 

 

• General purpose programming model 

– User kicks off batches of threads on the GPU 

– GPU = dedicated super-threaded, massively data 
parallel co-processor 

 

  Matches architecture features 

  Specific parameters not exposed 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 

The CUDA Platform 

• High-end NVIDIA GPUs not integrated into the CPU 

– GPU connects through a PCI Express bus 

– GPU communicates through OS (drivers) 
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CUDA Programming System 

GPU 

CPU 

CUDA Runtime 

CUDA Libraries 

(FFT, BLAS) 

CUDA Driver 

 

Application 

• Targeted software stack 
– Compute oriented drivers, language, 

and tools 

 

 

• Driver for loading computation 
programs into GPU 
– Standalone Driver - Optimized for 

computation  

– Interface designed for compute - 
graphics free API 

– Data sharing with OpenGL buffer 
objects  

– Guaranteed maximum download & 
readback speeds 

– Explicit GPU memory management 

 

 
© NVIDIA Corp. 
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6 Overall Performance Can be Limited by 
Interface 
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7 Overall Performance Can be Limited by 
Interface 
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CUDA API and Language: 
Easy and Lightweight 

• The API is an extension to the ANSI C 
programming language 

           Low learning curve 

 

• The hardware is designed to enable lightweight 
runtime and driver 

           High performance 

 

© NVIDIA Corp. 
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CUDA Programming Model: 
A Highly Multithreaded Coprocessor 

• The GPU is viewed as a compute device that: 
– Is a coprocessor to the CPU or host 

– Has its own DRAM (device memory) 

– Runs many threads in parallel 
 

• Data-parallel portions of an application are 
executed on the device as kernels which run in 
parallel on many threads 
 

• Differences between GPU and CPU threads  
– GPU threads are extremely lightweight 

• Very little creation overhead 

– GPU needs 1000s of threads for full efficiency 
• Multi-core CPU needs only a few © David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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CUDA is an Extension to C++ 

gcc / cl 

G80 SASS 
foo.sass 

OCG 

cudacc 
EDG C/C++ frontend 

Open64 Global Optimizer 

GPU  Assembly 
foo.s 

CPU Host Code  
foo.cpp 

Integrated source 
(foo.cu) 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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CUDA is an Extension to C++ 

• Declspecs 

– global, device, shared, 
local, constant 

• Keywords 

– threadIdx, blockIdx 

• Intrinsics 

– __syncthreads 

– __theradfence 

• Runtime API 

– Memory, symbol, 
execution 
management 

• Function launch 

__device__ float filter[N];  

 

__global__ void convolve (float *image)  { 

 

  __shared__ float region[M]; 

  ...  

 

  region[threadIdx] = image[i];  

 

  __syncthreads()   

  ...  

 

  image[j] = result; 

} 

 

// Allocate GPU memory 

void *myimage = cudaMalloc(bytes) 

 

 

// 100 blocks, 10 threads per block 

convolve<<<100, 10>>> (myimage); 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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12 Thread Batching: Grids and Blocks 

• A kernel is executed as a grid 
of thread blocks 

– All threads share data memory 
space 

• A thread block is a batch of 
threads that can cooperate 
with each other by: 
– Synchronizing their execution 

• For hazard-free shared 
memory accesses 

– Efficiently sharing data through 
a low latency shared memory 

• Two threads from two 
different blocks cannot 
cooperate 
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13 Block and Thread IDs 

• Threads and blocks have IDs 

– So each thread can decide what 
data to work on 

– Block ID: 1D or 2D 

– Thread ID: 1D, 2D, or 3D  
 

• Simplifies memory 
addressing when processing 
multidimensional data 
– Image processing 

– Solving PDEs on volumes 

– … 
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14 CUDA Device Memory Space Overview 

• Each thread can: 
– R/W per-thread registers 

– R/W per-thread local memory 

– R/W per-block shared memory 

– R/W per-grid global memory 

– Read only per-grid constant 
memory 

– Read only per-grid texture 
memory 

(Device) Grid 

Constant 

Memory 

Texture 

Memory 

Global 

Memory 

Block (0, 0) 

Shared Memory 

Local 

Memory 

Thread (0, 0) 

Registers 

Local 

Memory 

Thread (1, 0) 

Registers 

Block (1, 0) 

Shared Memory 

Local 

Memory 

Thread (0, 0) 

Registers 

Local 

Memory 

Thread (1, 0) 

Registers 

Host 

• The host can R/W 

global, constant, and 

texture memories 

© NVIDIA Corp. 
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Access Times 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 

• Register – dedicated HW - single cycle 

• Shared Memory – dedicated HW - two cycles 

– Hidden by warps 

• Local Memory – DRAM, no cache - *slow* 

• Global Memory – DRAM, no cache - *slow* 

• Constant Memory – DRAM, cached, 1…10s…100s of cycles, 

depending on cache locality 

• Texture Memory – DRAM, cached, 1…10s…100s of cycles, 

depending on cache locality 

• Instruction Memory (invisible) – DRAM, cached 
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Programming Model: 
Square Matrix Multiplication Example 

• P = M * N of size WIDTH x WIDTH 

• Without blocking: 

– One thread handles one element of P 

– M and N are loaded WIDTH times from 
global memory 
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Programming Model: 
Common Programming Pattern 

• Local and global memory reside in device memory 
(DRAM) - much slower access than shared 
memory 
– Uncached 

• So, a common way of scheduling some 
computation on the device is to block it up to take 
advantage of fast shared memory: 
– Partition the data set into data subsets that fit into shared 

memory 

– Handle each data subset with one thread block by: 
• Loading the subset from global memory to shared memory 

• Performing the computation on the subset from shared memory; 
each thread can efficiently multi-pass over any data element 

• Copying results from shared memory to global memory 

© NVIDIA Corp. 
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18 Programming Model: 
Square Matrix Multiplication Example 
• P = M * N of size WIDTH x WIDTH 

• With blocking: 
– One thread block handles one 

BLOCK_SIZE x BLOCK_SIZE sub-matrix Psub of P 

– M and N are only loaded 
WIDTH / BLOCK_SIZE times from global 
memory 

• Great saving of 

memory 

bandwidth! 
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A quick review 

• device = GPU = set of multiprocessors  

• Multiprocessor = set of processors & shared memory 

• Kernel = GPU program 

• Grid = array of thread blocks that execute a kernel 

• Thread block = CTA = group of SIMD threads that execute 
a kernel and can communicate via shared memory 

 

 

 

 

 

 

• (No) – Not cacheable on G80 

Memory Location Cached Access Who 

Local Off-chip Yes(No) Read/write One thread 

Shared On-chip N/A Read/write All threads in a CTA 

Global Off-chip L1?/L2 (No) Read/write All threads + host 

Constant Off-chip Yes Read All threads + host 

Texture Off-chip Yes Read All threads + host 

© NVIDIA Corp. 
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CUDA: C on the GPU 

• A simple, explicit programming language solution 
 

• Extend only where necessary 

 
 __global__ void KernelFunc(...); 

 

 __shared__ int SharedVar; 

 

 KernelFunc<<< 500, 128 >>>(...); 

 

• Explicit GPU memory allocation 

– cudaMalloc(), cudaFree() 

• Memory copy from host to device, etc.  

– cudaMemcpy(), cudaMemcpy2D(), ... 

© NVIDIA Corp. 
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Example: Vector Addition Kernel 

// Pair-wise addition of vector elements 

// One thread per addition 

 

__global__ void 

vectorAdd(float* iA, float* iB, float* oC)  

{ 

    int idx = threadIdx.x + blockDim.x * 

blockId.x; 

    oC[idx] = iA[idx] + iB[idx]; 

} 

 

© NVIDIA Corp. 
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Example: Vector Addition Host Code 

float* h_A = (float*) malloc(N * sizeof(float)); 

float* h_B = (float*) malloc(N * sizeof(float)); 

// … initalize h_A and h_B 

 

// allocate device memory 

float* d_A, d_B, d_C; 

cudaMalloc( (void**) &d_A, N * sizeof(float))); 

cudaMalloc( (void**) &d_B, N * sizeof(float))); 

cudaMalloc( (void**) &d_C, N * sizeof(float))); 

 

// copy host memory to device 

cudaMemcpy( d_A, h_A, N * sizeof(float), 
cudaMemcpyHostToDevice) ); 

cudaMemcpy( d_B, h_B, N * sizeof(float), 
cudaMemcpyHostToDevice) ); 

 

// execute the kernel on N/256 blocks of 256 threads each 

vectorAdd<<< N/256, 256>>>( d_A, d_B, d_C); 

© NVIDIA Corp. 
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Outline 

• Bandwidths 

• CUDA 

– Overview 

– Development process 

– Performance Optimization 

– Syntax 

 

 

• Most slides courtesy Massimiliano Fatica (NVIDIA) 
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Compilation 

• Any source file containing CUDA language 
extensions must be compiled with nvcc 

• NVCC is a compiler driver 
– Works by invoking all the necessary tools and compilers 

like cudacc, g++, cl, ... 

• NVCC can output: 
– Either C code (CPU Code) 

• That must then be compiled with the rest of the application 
using another tool 

– Or PTX object code directly 

• Any executable with CUDA code requires two 
dynamic libraries: 
– The CUDA runtime library (cudart) 

– The CUDA core library (cuda) 

© NVIDIA Corp. 
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Compiling CUDA 

NVCC 

C/C++ CUDA 

Application 

PTX to Target 

Compiler 

 G80    …     GPU  

Target code 

PTX Code 

CPU Code 

© NVIDIA Corp. 
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Compiling CUDA 

NVCC 

C/C++ CUDA 

Application 

PTX to Target 

Compiler 

 G80    …     GPU  

Target code 

PTX Code Virtual 

Physical 

© NVIDIA Corp. 
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NVCC & PTX Virtual Machine 

• EDG 
– Separate GPU vs. CPU 

code  

• Open64 
– Generates GPU PTX 

assembly 

• Parallel Thread 
eXecution (PTX) 
– Virtual Machine and ISA 

– Programming model 

– Execution resources and 
state 

EDG 

C/C++ CUDA 

Application 

CPU Code 

Open64 

PTX Code 

ld.global.v4.f32  {$f1,$f3,$f5,$f7}, [$r9+0]; 
mad.f32           $f1, $f5, $f3, $f1; 

float4 me = gx[gtid]; 
me.x += me.y * me.z; 

© NVIDIA Corp. 
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Role of Open64 

Open64 compiler gives us 

 

• A complete C/C++ compiler framework. Forward looking. 
We do not need to add infrastructure framework as our 
hardware arch advances over time. 

 

• A good collection of high level architecture independent 
optimizations.  All GPU code is in the inner loop. 

 

• Compiler infrastructure that interacts well with other related 
standardized tools.  

© NVIDIA Corp. 
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Debugging Using the 
Device Emulation Mode 

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs completely on 
the host using the CUDA runtime 
– No need of any device and CUDA driver 

– Each device thread is emulated with a host thread 

 

• When running in device emulation mode, one 
can: 
– Use host native debug support (breakpoints, 

inspection, etc.) 

– Access any device-specific data from host code and 
vice-versa 

– Call any host function from device code (e.g. printf) 
and vice-versa 

– Detect deadlock situations caused by improper usage 
of __syncthreads © NVIDIA Corp. 
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Device Emulation Mode Pitfalls 

• Emulated device threads execute sequentially, 
so simultaneous accesses of the same memory 
location by multiple threads potentially produce 
different results 

• Dereferencing device pointers on the host or 
host pointers on the device can produce correct 
results in device emulation mode, but will 
generate an error in device execution mode 

• Results of floating-point computations will slightly 
differ because of: 
– Different compiler outputs 

– Different instruction sets 

– Use of extended precision for intermediate results 
• There are various options to force strict single precision on the 

host 

© NVIDIA Corp. 
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CUDA Programming Tools 

• CUDA GDB 

– A real debugger for both CPU and GPU CUDA parts 

• CUDA MEMCHECK 

– Invalid memory access detection 

• CUDA Visual Profiler 

– Useful performance information 

• Integration with Microsoft Visual C++ 

– Not all that helpful with our setup 

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22   (c) Mattan Erez 
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Parameterize Your Application 

• Parameterization helps adaptation to different 
GPUs 

• GPUs vary in many ways 

– # of multiprocessors 

– Shared memory size 

– Register file size 

– Threads per block 

– Memory bandwidth 

 

• You can even make apps self-tuning (like FFTW) 

– “Experiment” mode discovers and saves optimal config 
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Outline 

• Bandwidths 

• CUDA 

– Overview 

– Development process 

– Performance Optimization 

– Syntax 

 

 

• Most slides courtesy Massimiliano Fatica (NVIDIA) 
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CUDA Optimization Priorities 

• Memory coalescing is #1 priority 
– Highest !/$ optimization 

– Optimize for locality 

• Take advantage of shared memory 
– Very high bandwidth 

– Threads can cooperate to save work 

• Use parallelism efficiently 
– Keep the GPU busy at all times 

– High arithmetic / bandwidth ratio 

– Many threads & thread blocks 

• Leave bank conflicts and divergence for last! 
– 4-way and smaller conflicts are not usually worth avoiding 

if avoiding them will cost more instructions 

© NVIDIA Corp. 
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CUDA Optimization Strategies 

• Optimize Algorithms for the GPU 

 

• Optimize Memory Access Pattern 

 

• Take Advantage of On-Chip Shared Memory 

– Watch out for bank conflicts – each serialized bank 
conflict costs 2 cycles! 

 

• Use Parallelism Efficiently 

– Divergence is bad, but not as bad as poor mem usage 

 

• Use appropriate mechanisms 
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Optimize Algorithms for the GPU 

• Maximize independent parallelism 

 

• Maximize arithmetic intensity (math/bandwidth) 

 

• Sometimes it’s better to recompute than to cache 

– GPU spends its transistors on ALUs, not memory 

 

• Do more computation on the GPU to avoid costly 
data transfers 

– Even low parallelism computations can sometimes be 
faster than transfering back and forth to host 
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Modern DRAMs are Sensitive to Pattern 
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Optimize Memory Pattern (“Coherence”) 

• Coalesced vs. Non-coalesced = order of 
magnitude 

– Global/Local device memory 

– Sequential access by threads in a half-warp get 
coalesced 

• Fermi’s caches help a lot 

– Simplify coalescing and provide more buffering 

• Optimize for spatial locality in cached texture 
memory 

• Constant memory provides broadcast within SM 

• In shared memory, avoid high-degree bank 
conflicts 
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Take Advantage of Shared Memory 

• Hundreds of times faster than global memory 

• Threads can cooperate via shared memory 

 

• Use one / a few threads to load / compute data 
shared by all threads 

 

• Use it to avoid non-coalesced access 

– Stage loads and stores in shared memory to re-order non-
coalesceable addressing 

– See the transpose SDK sample for an example 
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Use Parallelism Efficiently 

• Partition your computation to keep the GPU 
multiprocessors equally busy 

– Many threads, many thread blocks 

 

• Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor 

– Registers, shared memory 
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Maximizing Instruction Throughput 

• Minimize use of low-throughput instructions 

 

• Maximize use of high-bandwidth memory 

– Maximize use of shared memory 

– Maximize coherence of cached accesses 

– Minimize accesses to (uncached) global and local 
memory 

– Maximize coalescing of global memory accesses 

 

• Optimize performance by overlapping memory 
accesses with HW computation 

– High arithmetic intensity programs 

• i.e. high ratio of math to memory transactions 

– Many concurrent threads 
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Data Transfers 

• Device memory to host memory bandwidth much 
lower than device memory to device bandwidth 

– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 
5600) 

 

• Minimize transfers 

– Intermediate data structures can be allocated, operated 
on, and deallocated without ever copying them to host 
memory 

 

• Group transfers 

– One large transfer much better than many small ones 
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Page-Locked Memory Transfers 

• cuMemAllocHost() allows allocation of page-locked 
host memory 

• Enables highest cudaMemcpy performance 

– 3.2 GB/s common on PCI-e x16 

– ~4 GB/s measured on nForce 680i motherboards 

• See the “bandwidthTest” CUDA SDK sample 

• Use with caution 

– Allocating too much page-locked memory can reduce overall 
system performance 

– Test your systems and apps to learn their limits 

• Memory allocation is also the time to control caching 

– Dynamic allocation possible, but interacts with driver so is slow. 
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Optimizing threads per block 

• Given: total threads in a grid 

– Choose block size and number of blocks to maximize 
occupancy: 

 

Occupancy: # of warps running concurrently on a 
multiprocessor divided by maximum # of warps that can 
run concurrently  

 

(Demonstrate CUDA Occupancy Calculator) 
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Grid/Block Size Heuristics 

• # of blocks / # of multiprocessors > 1 

– So all multiprocessors have at least a block to execute 

• Per-block resources at most half of total available 

– Shared memory and registers 

– Multiple blocks can run concurrently in a multiprocessor 

– If multiple blocks coexist that aren’t all waiting at a 
__syncthreads(), machine can stay busy 

• # of blocks / # of multiprocessors > 2 

– So multiple blocks run concurrently in a multiprocessor 

• # of blocks > 100 to scale to future devices 

– Blocks stream through machine in pipeline fashion 

– 1000 blocks per grid will scale across multiple 
generations 
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Occupancy != Performance 

• Increasing occupancy does not necessarily 
increase performance 

 

BUT… 

 

• Low-occupancy multiprocessors cannot 
adequately hide latency on memory-bound 
kernels 

– (It all comes down to arithmetic intensity and available 
parallelism) 
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Optimizing threads per block 

• Choose threads per block as a multiple of warp size 

– Avoid wasting computation on under-populated warps 

• More threads per block == better memory latency 
hiding 

• But, more threads per block == fewer regs per 
thread 

– Kernel invocations can fail if too many registers are used 

• Heuristics 

– Minimum: 64 threads per block 

• Only if multiple concurrent blocks  

– 192 or 256 threads a better choice 

• Usually still enough regs to compile and invoke successfully 

– This all depends on your computation! 

• Experiment! 
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Programmer View of Register File 

• There are 8192 registers 
in each SM in G80 

– This is an implementation 
decision, not part of 
CUDA 

– Registers are dynamically 
partitioned across all 
Blocks assigned to the 
SM 

– Once assigned to a 
Block, the register is NOT 
accessible by threads in 
other Blocks 

– Each thread in the same 
Block only access 
registers assigned to itself 

4 blocks 3 blocks 

© David Kirk/NVIDIA and  

Wen-mei W. Hwu, 2007 

ECE 498AL, University of Illinois, 

Urbana-Champaign 
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Communication 

• How do threads communicate? 
 

• Remember the execution model: 

– Data parallel streams that represent independent 
vertices, triangles, fragments, and pixels in the graphics 
world 

– These never communicate 
 

• Some communication allowed in compute mode: 

– Shared memory for threads in a thread block 

• No special communication within warp or using registers 

– No communication between thread blocks 

– Kernels communicate through global device memory 

• Mechanisms designed to ensure portability 
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In-Kernel Synchronization 

• Do threads need to synchronize? 

– Basically no communication allowed 

• Threads in a block share memory – need sync 

– Warps scheduled OoO, can’t rely on warp order 

– Barrier command for all threads in a block 

– __synchthreads() 

• Blocks cannot synchronize 

– Implicit synchronization at end of kernel 
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Inter-Kernel Synchronization 

• Synchronize across device 

– Kernels and memory transfers launched asynchronously! 

– Need to use appropriate synchronization for correctness 

• By default, kernels and DMAs are asynchronous 

– Can even run concurrent kernels on Fermi 

• Manage synchronization with streams and events 

• Stream: an in-order sequence of bulk operations 

– Streams can be arbitrarily interleaved or executed concurrently 

– cudaStreamCreate(cudastream_t* st) / cudaStreamDestroy  

– cudaStreamQuery / cudaStreamSynchronize:  

• Check that / block until all preceding commands in the specified stream complete 

– cudaDeviceSynchronize:  

• Wait until all preceding commands in all streams complete 

• Event explicit event that you can explicitly “record” or “wait” for 

– cudaEventCreate(cudaevent_t* e) / cudaEvenDestroy 

– cudaEventRecord / cudaEventSynchronize 
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Atomic Operations and consistency 

• Exception to communication between blocks 

• Atomic read-modify-write 

– Shared memory 

– Global memory 

• Simple ALU operations 

– Add, subtract, AND, OR, min, max, inc, dec 

• Exchange operations 

– Compare-and-swap, exchange 

 

• Extremely relaxed memory consistency with fences 

– __threadfence_block(): global and shared visible to CTA 

– __threadfence(): shared to CTA, global across device 

– __threadfence_system(): also visible to host threads (for locked 
pages) 
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Multiple Devices 

• CUDA supports multiple devices on same platform 

– Multiple devices per host 

• CUDA host thread selects active device 

• Sends streams to a device 

• Streams and events must be kept consistent 

– Can’t record an event of one stream in another 

 

• Fermi-based Tesla cards can access each others’ 
memory 

– Direct device-to-device memory access 

– Pointer dereferencing 

– DMAs 
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Alternatives to CUDA 

• For NVIDIA GPUs 

– Thrust: STL-like interface on top of CUDA (templates) 

– Copperhead: Python-like language that translates to 
CUDA 

– Phalanx: current research 

• Enhancements 

– Cudadma 

 

• OpenCL 

– CUDA’s competition 

– More generally designed for heterogeneous systems 

– Adopts GPU (CUDA) execution model  

– Different syntax, names, and design choices 
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