
N

EE382N (20): Computer Architecture - Parallelism and Locality
Fall 2011

Lecture 22 – CUDA

EE382N: Principles of Computer Architecture, Fall 2011

-- Lecture 22 (c) Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

2

Outline

• CUDA

– Overview

– Development process

– Performance Optimization

– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

3

Compute Unified Device Architecture

• CUDA is a programming system for utilizing NVIDIA
GPUs for compute

– CUDA follows the architecture very closely

• General purpose programming model

– User kicks off batches of threads on the GPU

– GPU = dedicated super-threaded, massively data
parallel co-processor

 Matches architecture features

 Specific parameters not exposed

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

4

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

The CUDA Platform

• High-end NVIDIA GPUs not integrated into the CPU

– GPU connects through a PCI Express bus

– GPU communicates through OS (drivers)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

5

CUDA Programming System

GPU

CPU

CUDA Runtime

CUDA Libraries

(FFT, BLAS)

CUDA Driver

Application

• Targeted software stack
– Compute oriented drivers, language,

and tools

• Driver for loading computation
programs into GPU
– Standalone Driver - Optimized for

computation

– Interface designed for compute -
graphics free API

– Data sharing with OpenGL buffer
objects

– Guaranteed maximum download &
readback speeds

– Explicit GPU memory management

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

6 Overall Performance Can be Limited by
Interface

0

1 0

2 0

3 0

4 0

5 0

6 0

H.264 L BM RC5-72 F EM RPES PNS SAXPY T PACF F DT D M RI-Q M RI-

F HD

Ke rn e l

Ap p lic a tio n

210 457
431

316
263

G
P

U
 S

p
e

e
d

u
p

R
e

la
ti
v
e

 t
o

 C
P

U

79

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

7 Overall Performance Can be Limited by
Interface

SGEMM performance

0

20

40

60

80

100

120

140

0 512 1024 1536 2048 2560

N

G
fl

o
p

s

GPU+I/O GPU+I/O Pinned GPU only

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

8
CUDA API and Language:
Easy and Lightweight

• The API is an extension to the ANSI C
programming language

 Low learning curve

• The hardware is designed to enable lightweight
runtime and driver

 High performance

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

9
CUDA Programming Model:
A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host

– Has its own DRAM (device memory)

– Runs many threads in parallel

• Data-parallel portions of an application are
executed on the device as kernels which run in
parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead

– GPU needs 1000s of threads for full efficiency
• Multi-core CPU needs only a few © David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

10

CUDA is an Extension to C++

gcc / cl

G80 SASS
foo.sass

OCG

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

11

CUDA is an Extension to C++

• Declspecs

– global, device, shared,
local, constant

• Keywords

– threadIdx, blockIdx

• Intrinsics

– __syncthreads

– __theradfence

• Runtime API

– Memory, symbol,
execution
management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads()

 ...

 image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

12 Thread Batching: Grids and Blocks

• A kernel is executed as a grid
of thread blocks

– All threads share data memory
space

• A thread block is a batch of
threads that can cooperate
with each other by:
– Synchronizing their execution

• For hazard-free shared
memory accesses

– Efficiently sharing data through
a low latency shared memory

• Two threads from two
different blocks cannot
cooperate

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

13 Block and Thread IDs

• Threads and blocks have IDs

– So each thread can decide what
data to work on

– Block ID: 1D or 2D

– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

14 CUDA Device Memory Space Overview

• Each thread can:
– R/W per-thread registers

– R/W per-thread local memory

– R/W per-block shared memory

– R/W per-grid global memory

– Read only per-grid constant
memory

– Read only per-grid texture
memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

• The host can R/W

global, constant, and

texture memories

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

15

Access Times

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - two cycles

– Hidden by warps

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of cycles,

depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of cycles,

depending on cache locality

• Instruction Memory (invisible) – DRAM, cached

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

16
Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without blocking:

– One thread handles one element of P

– M and N are loaded WIDTH times from
global memory

M

N

P

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

17
Programming Model:
Common Programming Pattern

• Local and global memory reside in device memory
(DRAM) - much slower access than shared
memory
– Uncached

• So, a common way of scheduling some
computation on the device is to block it up to take
advantage of fast shared memory:
– Partition the data set into data subsets that fit into shared

memory

– Handle each data subset with one thread block by:
• Loading the subset from global memory to shared memory

• Performing the computation on the subset from shared memory;
each thread can efficiently multi-pass over any data element

• Copying results from shared memory to global memory

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

18 Programming Model:
Square Matrix Multiplication Example
• P = M * N of size WIDTH x WIDTH

• With blocking:
– One thread block handles one

BLOCK_SIZE x BLOCK_SIZE sub-matrix Psub of P

– M and N are only loaded
WIDTH / BLOCK_SIZE times from global
memory

• Great saving of

memory

bandwidth!

M

N

P

Psub

BLOCK_SIZE

BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

B
L

O
C

K
_

S
IZ

E

B
L

O
C

K
_

S
IZ

E

B
L

O
C

K
_

S
IZ

E

B
L

O
C

K
_

S
IZ

E

W
ID

T
H

W

ID
T

H

WIDTH WIDTH

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

19

A quick review

• device = GPU = set of multiprocessors

• Multiprocessor = set of processors & shared memory

• Kernel = GPU program

• Grid = array of thread blocks that execute a kernel

• Thread block = CTA = group of SIMD threads that execute
a kernel and can communicate via shared memory

• (No) – Not cacheable on G80

Memory Location Cached Access Who

Local Off-chip Yes(No) Read/write One thread

Shared On-chip N/A Read/write All threads in a CTA

Global Off-chip L1?/L2 (No) Read/write All threads + host

Constant Off-chip Yes Read All threads + host

Texture Off-chip Yes Read All threads + host

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

20

CUDA: C on the GPU

• A simple, explicit programming language solution

• Extend only where necessary

 __global__ void KernelFunc(...);

 __shared__ int SharedVar;

 KernelFunc<<< 500, 128 >>>(...);

• Explicit GPU memory allocation

– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc.

– cudaMemcpy(), cudaMemcpy2D(), ...

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

21

Example: Vector Addition Kernel

// Pair-wise addition of vector elements

// One thread per addition

__global__ void

vectorAdd(float* iA, float* iB, float* oC)

{

 int idx = threadIdx.x + blockDim.x *

blockId.x;

 oC[idx] = iA[idx] + iB[idx];

}

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

22

Example: Vector Addition Host Code

float* h_A = (float*) malloc(N * sizeof(float));

float* h_B = (float*) malloc(N * sizeof(float));

// … initalize h_A and h_B

// allocate device memory

float* d_A, d_B, d_C;

cudaMalloc((void**) &d_A, N * sizeof(float)));

cudaMalloc((void**) &d_B, N * sizeof(float)));

cudaMalloc((void**) &d_C, N * sizeof(float)));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each

vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

23

Outline

• Bandwidths

• CUDA

– Overview

– Development process

– Performance Optimization

– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

24

Compilation

• Any source file containing CUDA language
extensions must be compiled with nvcc

• NVCC is a compiler driver
– Works by invoking all the necessary tools and compilers

like cudacc, g++, cl, ...

• NVCC can output:
– Either C code (CPU Code)

• That must then be compiled with the rest of the application
using another tool

– Or PTX object code directly

• Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)

– The CUDA core library (cuda)

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

25

Compiling CUDA

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

 G80 … GPU

Target code

PTX Code

CPU Code

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

26

Compiling CUDA

NVCC

C/C++ CUDA

Application

PTX to Target

Compiler

 G80 … GPU

Target code

PTX Code Virtual

Physical

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

27

NVCC & PTX Virtual Machine

• EDG
– Separate GPU vs. CPU

code

• Open64
– Generates GPU PTX

assembly

• Parallel Thread
eXecution (PTX)
– Virtual Machine and ISA

– Programming model

– Execution resources and
state

EDG

C/C++ CUDA

Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

28

Role of Open64

Open64 compiler gives us

• A complete C/C++ compiler framework. Forward looking.
We do not need to add infrastructure framework as our
hardware arch advances over time.

• A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

• Compiler infrastructure that interacts well with other related
standardized tools.

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

29
Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver

– Each device thread is emulated with a host thread

• When running in device emulation mode, one
can:
– Use host native debug support (breakpoints,

inspection, etc.)

– Access any device-specific data from host code and
vice-versa

– Call any host function from device code (e.g. printf)
and vice-versa

– Detect deadlock situations caused by improper usage
of __syncthreads © NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

30

Device Emulation Mode Pitfalls

• Emulated device threads execute sequentially,
so simultaneous accesses of the same memory
location by multiple threads potentially produce
different results

• Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

• Results of floating-point computations will slightly
differ because of:
– Different compiler outputs

– Different instruction sets

– Use of extended precision for intermediate results
• There are various options to force strict single precision on the

host

© NVIDIA Corp.

N

CUDA Programming Tools

• CUDA GDB

– A real debugger for both CPU and GPU CUDA parts

• CUDA MEMCHECK

– Invalid memory access detection

• CUDA Visual Profiler

– Useful performance information

• Integration with Microsoft Visual C++

– Not all that helpful with our setup

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

31

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

32

Parameterize Your Application

• Parameterization helps adaptation to different
GPUs

• GPUs vary in many ways

– # of multiprocessors

– Shared memory size

– Register file size

– Threads per block

– Memory bandwidth

• You can even make apps self-tuning (like FFTW)

– “Experiment” mode discovers and saves optimal config

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

33

Outline

• Bandwidths

• CUDA

– Overview

– Development process

– Performance Optimization

– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

34

CUDA Optimization Priorities

• Memory coalescing is #1 priority
– Highest !/$ optimization

– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth

– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times

– High arithmetic / bandwidth ratio

– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding

if avoiding them will cost more instructions

© NVIDIA Corp.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

35

CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

– Watch out for bank conflicts – each serialized bank
conflict costs 2 cycles!

• Use Parallelism Efficiently

– Divergence is bad, but not as bad as poor mem usage

• Use appropriate mechanisms

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

36

Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache

– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly
data transfers

– Even low parallelism computations can sometimes be
faster than transfering back and forth to host

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

37

Modern DRAMs are Sensitive to Pattern

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Inorder Row Row+Col

%
p
e
a

k
 B

W

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

38

Optimize Memory Pattern (“Coherence”)

• Coalesced vs. Non-coalesced = order of
magnitude

– Global/Local device memory

– Sequential access by threads in a half-warp get
coalesced

• Fermi’s caches help a lot

– Simplify coalescing and provide more buffering

• Optimize for spatial locality in cached texture
memory

• Constant memory provides broadcast within SM

• In shared memory, avoid high-degree bank
conflicts

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

39

Take Advantage of Shared Memory

• Hundreds of times faster than global memory

• Threads can cooperate via shared memory

• Use one / a few threads to load / compute data
shared by all threads

• Use it to avoid non-coalesced access

– Stage loads and stores in shared memory to re-order non-
coalesceable addressing

– See the transpose SDK sample for an example

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

40

Use Parallelism Efficiently

• Partition your computation to keep the GPU
multiprocessors equally busy

– Many threads, many thread blocks

• Keep resource usage low enough to support
multiple active thread blocks per multiprocessor

– Registers, shared memory

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

41

Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory

– Maximize use of shared memory

– Maximize coherence of cached accesses

– Minimize accesses to (uncached) global and local
memory

– Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory
accesses with HW computation

– High arithmetic intensity programs

• i.e. high ratio of math to memory transactions

– Many concurrent threads

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

42

Data Transfers

• Device memory to host memory bandwidth much
lower than device memory to device bandwidth

– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX
5600)

• Minimize transfers

– Intermediate data structures can be allocated, operated
on, and deallocated without ever copying them to host
memory

• Group transfers

– One large transfer much better than many small ones

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

43

Page-Locked Memory Transfers

• cuMemAllocHost() allows allocation of page-locked
host memory

• Enables highest cudaMemcpy performance

– 3.2 GB/s common on PCI-e x16

– ~4 GB/s measured on nForce 680i motherboards

• See the “bandwidthTest” CUDA SDK sample

• Use with caution

– Allocating too much page-locked memory can reduce overall
system performance

– Test your systems and apps to learn their limits

• Memory allocation is also the time to control caching

– Dynamic allocation possible, but interacts with driver so is slow.

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

44

Optimizing threads per block

• Given: total threads in a grid

– Choose block size and number of blocks to maximize
occupancy:

Occupancy: # of warps running concurrently on a
multiprocessor divided by maximum # of warps that can
run concurrently

(Demonstrate CUDA Occupancy Calculator)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

45

Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1

– So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available

– Shared memory and registers

– Multiple blocks can run concurrently in a multiprocessor

– If multiple blocks coexist that aren’t all waiting at a
__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2

– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices

– Blocks stream through machine in pipeline fashion

– 1000 blocks per grid will scale across multiple
generations

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

46

Occupancy != Performance

• Increasing occupancy does not necessarily
increase performance

BUT…

• Low-occupancy multiprocessors cannot
adequately hide latency on memory-bound
kernels

– (It all comes down to arithmetic intensity and available
parallelism)

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

47

Optimizing threads per block

• Choose threads per block as a multiple of warp size

– Avoid wasting computation on under-populated warps

• More threads per block == better memory latency
hiding

• But, more threads per block == fewer regs per
thread

– Kernel invocations can fail if too many registers are used

• Heuristics

– Minimum: 64 threads per block

• Only if multiple concurrent blocks

– 192 or 256 threads a better choice

• Usually still enough regs to compile and invoke successfully

– This all depends on your computation!

• Experiment!

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

48

Programmer View of Register File

• There are 8192 registers
in each SM in G80

– This is an implementation
decision, not part of
CUDA

– Registers are dynamically
partitioned across all
Blocks assigned to the
SM

– Once assigned to a
Block, the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access
registers assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

49

Communication

• How do threads communicate?

• Remember the execution model:

– Data parallel streams that represent independent
vertices, triangles, fragments, and pixels in the graphics
world

– These never communicate

• Some communication allowed in compute mode:

– Shared memory for threads in a thread block

• No special communication within warp or using registers

– No communication between thread blocks

– Kernels communicate through global device memory

• Mechanisms designed to ensure portability

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

50

In-Kernel Synchronization

• Do threads need to synchronize?

– Basically no communication allowed

• Threads in a block share memory – need sync

– Warps scheduled OoO, can’t rely on warp order

– Barrier command for all threads in a block

– __synchthreads()

• Blocks cannot synchronize

– Implicit synchronization at end of kernel

N

Inter-Kernel Synchronization

• Synchronize across device

– Kernels and memory transfers launched asynchronously!

– Need to use appropriate synchronization for correctness

• By default, kernels and DMAs are asynchronous

– Can even run concurrent kernels on Fermi

• Manage synchronization with streams and events

• Stream: an in-order sequence of bulk operations

– Streams can be arbitrarily interleaved or executed concurrently

– cudaStreamCreate(cudastream_t* st) / cudaStreamDestroy

– cudaStreamQuery / cudaStreamSynchronize:

• Check that / block until all preceding commands in the specified stream complete

– cudaDeviceSynchronize:

• Wait until all preceding commands in all streams complete

• Event explicit event that you can explicitly “record” or “wait” for

– cudaEventCreate(cudaevent_t* e) / cudaEvenDestroy

– cudaEventRecord / cudaEventSynchronize

 EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

51

N
EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

52

Atomic Operations and consistency

• Exception to communication between blocks

• Atomic read-modify-write

– Shared memory

– Global memory

• Simple ALU operations

– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations

– Compare-and-swap, exchange

• Extremely relaxed memory consistency with fences

– __threadfence_block(): global and shared visible to CTA

– __threadfence(): shared to CTA, global across device

– __threadfence_system(): also visible to host threads (for locked
pages)

N

Multiple Devices

• CUDA supports multiple devices on same platform

– Multiple devices per host

• CUDA host thread selects active device

• Sends streams to a device

• Streams and events must be kept consistent

– Can’t record an event of one stream in another

• Fermi-based Tesla cards can access each others’
memory

– Direct device-to-device memory access

– Pointer dereferencing

– DMAs

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

53

N

Alternatives to CUDA

• For NVIDIA GPUs

– Thrust: STL-like interface on top of CUDA (templates)

– Copperhead: Python-like language that translates to
CUDA

– Phalanx: current research

• Enhancements

– Cudadma

• OpenCL

– CUDA’s competition

– More generally designed for heterogeneous systems

– Adopts GPU (CUDA) execution model

– Different syntax, names, and design choices

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

54

