EE382N (20): Computer Architecture - Parallelism and Locality Fall 2011

Lecture 22 – CUDA

Mattan Erez

The University of Texas at Austin

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Outline

- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

Most slides courtesy Massimiliano Fatica (NVIDIA)

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Compute Unified Device Architecture

- CUDA is a programming system for utilizing NVIDIA GPUs for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor

Matches architecture features Specific parameters not exposed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

The CUDA Platform

- High-end NVIDIA GPUs not integrated into the CPU
 - GPU connects through a PCI Express bus
- GPU communicates through OS (drivers)
 AMD Opteron[™] Processor-based 4P Server

(

ECE

CUDA Programming System

- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

© NVIDIA Corp.

Overall Performance Can be Limited by Interface

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Overall Performance Can be Limited by Interface

7

© NVIDIA Corp.

CUDA API and Language: Easy and Lightweight

- The API is an extension to the ANSI C programming language
 Low learning curve
- The hardware is designed to enable lightweight runtime and driver

Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

CUDA Programming Model: A Highly Multithreaded Coprocessor

- The GPU is viewed as a compute device that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

ti-core CPU needs only a few

CUDA is an Extension to C++

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA is an Extension to C++

- Declspecs
 - global, device, shared, local, constant
- Keywords
 - threadIdx, blockIdx
- Intrinsics
 - ____syncthreads
 - ___theradfence
- Runtime API
 - Memory, symbol, execution management
- Function launch

```
device float filter[N];
 global void convolve (float *image)
  shared float region[M];
  region[threadIdx] = image[i];
  syncthreads()
  image[j] = result;
}
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (mvimage);
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Thread Batching: Grids and Blocks

- A kernel is executed as a grid Host of thread blocks
 - All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate

Block and Thread IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data
 - Image processing

. . .

Solving PDEs on volumes

			(0, 0)	(1, 0)		(2, 0)						
			Block (0, 1)		Block (1, 1)		Block (2, 1)		ock 1)				
Block (1, 1)													
	Thread (0, 0)	Thread (1, 0)		Thread (2, 0)	Thread Th (4) (4)		ead 0)						
	Thread Threa (0, 1)		read ., 1)	Thread (2, 1)	Thread (3, 1)	Thread (4, 1)							
	Thread (0, 2)	Thread (1, 2)		Thread (2, 2)	Thread (3, 2)	Thread (4, 2)							

Grid 1

Device

© NVIDIA Corp.

CUDA Device Memory Space Overview

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
 - The host can R/W global, constant, and texture memories

14

© NVIDIA Corp.

Access Times

- Register dedicated HW single cycle •
- Shared Memory dedicated HW two cycles \bullet
 - Hidden by warps
- Local Memory DRAM, no cache *slow*
- Global Memory DRAM, no cache *slow* •
- Constant Memory DRAM, cached, 1...10s...100s of cycles, ۲ depending on cache locality
- Texture Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Instruction Memory (invisible) DRAM, cached

Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Programming Model: Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- Without blocking:
 - One thread handles one element of P
 - M and N are loaded WIDTH times from global memory

Μ

Programming Model: Common Programming Pattern

 Local and global memory reside in device memory (DRAM) - much slower access than shared memory

- Uncached

- So, a common way of scheduling some computation on the device is to block it up to take advantage of fast shared memory:
 - Partition the data set into data subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory

Programming Model: Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- With blocking:
 - One thread block handles one BLOCK_SIZE x BLOCK_SIZE sub-matrix P_{sub} of
 - M and N are only loaded WIDTH / BLOCK_SIZE times from global memory

 Great saving of memory bandwidth!

Ν

© NVIDIA Corp.

A quick review

- device = GPU = set of multiprocessors
- Multiprocessor = set of processors & shared memory
- Kernel = GPU program
- Grid = array of thread blocks that execute a kernel
- Thread block = CTA = group of SIMD threads that execute a kernel and can communicate via shared memory

Memory	Location	Cached	Access	Who
Local	Off-chip	Yes(No)	Read/write	One thread
Shared	On-chip	N/A	Read/write	All threads in a CTA
Global	Off-chip	L1?/L2 (No)	Read/write	All threads + host
Constant	Off-chip	Yes	Read	All threads + host
Texture	Off-chip	Yes	Read	All threads + host

(No) – Not cacheable on G80

© NVIDIA Corp.

CUDA: C on the GPU

- A simple, explicit programming language solution
- Extend only where necessary

```
___global___ void KernelFunc(...);
```

shared int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

- Explicit GPU memory allocation
 - cudaMalloc(),cudaFree()
- Memory copy from host to device, etc.
 - cudaMemcpy(), cudaMemcpy2D(), ...

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

```
__global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
    int idx = threadIdx.x + blockDim.x *
    blockId.x;
    oC[idx] = iA[idx] + iB[idx];
```


Example: Vector Addition Host Code

```
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initalize h_A and h_B
```

// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**) &d_A, N * sizeof(float)));
cudaMalloc((void**) &d_B, N * sizeof(float)));
cudaMalloc((void**) &d C, N * sizeof(float)));

```
// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice) );
cudaMemcpy( d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice) );
```

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

© NVIDIA Corp.

Outline

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

Compilation

- Any source file containing CUDA language extensions must be compiled with nvcc
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC can output:
 - Either C code (CPU Code)
 - That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly
- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)

© NVIDIA Corp.

Compiling CUDA

Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Compiling CUDA

© NVIDIA Corp.

Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

NVCC & PTX Virtual Machine

- EDG
 - Separate GPU vs. CPU code
- Open64
 - Generates GPU PTX assembly
- Parallel Thread eXecution (PTX)
 - Virtual Machine and ISA
 - Programming model
 - Execution resources and state

ld.global.v4.f32 {\$f1,\$f3,\$f5,\$f7}, [\$r9+0]; mad.f32 \$f1, \$f5, \$f3, \$f1; © NVIDIA Corp.

Role of Open64

Open64 compiler gives us

- A complete C/C++ compiler framework. Forward looking. We do not need to add infrastructure framework as our hardware arch advances over time.
- A good collection of high level architecture independent optimizations. All GPU code is in the inner loop.
- Compiler infrastructure that interacts well with other related standardized tools.

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa

© NVIDIA Corp. Detect deadlock situations caused by improper usage

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host

© NVIDIA Corp.

CUDA Programming Tools

• CUDA GDB

- A real debugger for both CPU and GPU CUDA parts

- CUDA MEMCHECK
 - Invalid memory access detection
- CUDA Visual Profiler
 - Useful performance information
- Integration with Microsoft Visual C++
 - Not all that helpful with our setup

Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Shared memory size
 - Register file size
 - Threads per block
 - Memory bandwidth
- You can even make apps self-tuning (like FFTW)
 - "Experiment" mode discovers and saves optimal config

Outline

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

CUDA Optimization Priorities

- Memory coalescing is #1 priority
 - Highest !/\$ optimization
 - Optimize for locality
- Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work
- Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks
- Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions

CUDA Optimization Strategies

- Optimize Algorithms for the GPU
- Optimize Memory Access Pattern
- Take Advantage of On-Chip Shared Memory
 - Watch out for bank conflicts each serialized bank conflict costs 2 cycles!
- Use Parallelism Efficiently
 - Divergence is bad, but not as bad as poor mem usage
- Use appropriate mechanisms

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transfering back and forth to host

Modern DRAMs are Sensitive to Pattern

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Optimize Memory Pattern ("Coherence")

38

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced
- Fermi's caches help a lot
 - Simplify coalescing and provide more buffering
- Optimize for spatial locality in cached texture memory
- Constant memory provides broadcast within SM
- In shared memory, avoid high-degree bank conflicts

Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing
 - See the transpose SDK sample for an example

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory

Maximizing Instruction Throughput

- Minimize use of low-throughput instructions
- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions

Many concurrent threads EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Memory Transfers

- cuMemAllocHost() allows allocation of page-locked host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards
- See the "bandwidthTest" CUDA SDK sample
- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits
- Memory allocation is also the time to control caching
 - Dynamic allocation possible, but interacts with driver so is slow.

Optimizing threads per block

- Given: total threads in a grid
 - Choose block size and number of blocks to maximize occupancy:
 - Occupancy: # of warps running concurrently on a multiprocessor divided by maximum # of warps that can run concurrently

(Demonstrate CUDA Occupancy Calculator)

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Grid/Block Size Heuristics

- # of blocks / # of multiprocessors > 1
 - So all multiprocessors have at least a block to execute
- Per-block resources at most half of total available
 - Shared memory and registers
 - Multiple blocks can run concurrently in a multiprocessor
- # of blocks / # of multiprocessors > 2
 - So multiple blocks run concurrently in a multiprocessor
- # of blocks > 100 to scale to future devices
 - Blocks stream through machine in pipeline fashion
 - 1000 blocks per grid will scale across multiple
 generations

E382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Optimizing threads per block

- Choose threads per block as a multiple of warp size
 Avoid wasting computation on under-populated warps
- More threads per block == better memory latency hiding
- But, more threads per block == fewer regs per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation!

EE382N Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks

- Each thread in the same

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign IV ACCESS

3 blocks

Communication

- How do threads communicate?
- Remember the execution model:
 - Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world
 - These *never* communicate
- Some communication allowed in compute mode:
 - Shared memory for threads in a thread block
 - No special communication within warp or using registers
 - No communication between thread blocks
 - Kernels communicate through global device memory

Mechanisms designed to ensure portability

EE382N: Principles of Computer Architecture, Fall 2011 -- Lecture 22 (c) Mattan Erez

In-Kernel Synchronization

- Do threads need to synchronize?
 - Basically no communication allowed
- Threads in a block share memory need sync
 - Warps scheduled OoO, can't rely on warp order
 - Barrier command for all threads in a block
 - __synchthreads()
- Blocks cannot synchronize
 - Implicit synchronization at end of kernel

Inter-Kernel Synchronization

- Synchronize across device
 - Kernels and memory transfers launched asynchronously!
 - Need to use appropriate synchronization for correctness
- By default, kernels and DMAs are asynchronous
 - Can even run concurrent kernels on Fermi
- Manage synchronization with streams and events
- Stream: an in-order sequence of bulk operations
 - Streams can be arbitrarily interleaved or executed concurrently
 - cudaStreamCreate(cudastream_t* st) / cudaStreamDestroy
 - cudaStreamQuery / cudaStreamSynchronize:
 - Check that / block until all preceding commands in the specified stream complete
 - cudaDeviceSynchronize:
 - Wait until all preceding commands in all streams complete
- Event explicit event that you can explicitly "record" or "wait" for
 - cudaEventCreate(cudaevent_t* e) / cudaEvenDestroy
 - cudaEventRecord / cudaEventSynchronize

Atomic Operations and consistency

- Exception to communication between blocks
- Atomic read-modify-write
 - Shared memory
 - Global memory
- Simple ALU operations
 - Add, subtract, AND, OR, min, max, inc, dec
- Exchange operations
 - Compare-and-swap, exchange
- Extremely relaxed memory consistency with fences
 - __threadfence_block(): global and shared visible to CTA
 - __threadfence(): shared to CTA, global across device
 - __threadfence_system(): also visible to host threads (for locked pages)

Multiple Devices

- CUDA supports multiple devices on same platform
 Multiple devices per host
- CUDA host thread selects active device
- Sends streams to a device
- Streams and events must be kept consistent
 Can't record an event of one stream in another
- Fermi-based Tesla cards can access each others' memory
 - Direct device-to-device memory access
 - Pointer dereferencing
 - DMAs

Alternatives to CUDA

- For NVIDIA GPUs
 - Thrust: STL-like interface on top of CUDA (templates)
 - Copperhead: Python-like language that translates to CUDA
 - Phalanx: current research
- Enhancements
 - Cudadma
- OpenCL
 - CUDA's competition
 - More generally designed for heterogeneous systems
 - Adopts GPU (CUDA) execution model
 - Different syntax, names, and design choices

