Processors Have Evolved Is Memory Stuck?

Al Davis University of Utah & Hewlett-Packard Laboratories

Motivation

• Some things are clear

- historical observation
 - » "Memory is the bottleneck ..." John Von Neumann, 1945
 - this has been perpetually true
- today's situation: processors have changed
 - » multi- and many-core processor era in play
 - » memory controllers have moved onto the processor die
 - multiple memory controllers connected e.g. Nehalem QPI
 - » core count/socket going up
 - some pundits predict the "new Moore's Law"
 - » socket pin count & pin bandwidth growing much more slowly (ITRS)
 - signal integrity and high-speed (SERDES) I/O power problems
 - » power & heat are fundamental barriers to performance improvement
- Memory evolution has been too slow for the HPC community
 - Von Neumann's prediction remains
 - question is what should change?
 - » what follows is a brief look at almost everything

Memory and Storage

• Goal = more, more, more!!

- ideally we want
 - » reduced latency (some can be hidden with SMT tactics)
 - » improved bandwidth commensurate with processor performance growth
 - without a commensurate increase in energy consumption
 - » increased capacity per socket
 - » reduced cost of everything

Reality

- lots of constraints pins, pin bandwidth, thermals, power
 - » the goal list = conflicting constraints
- BUT new technology is emerging
 - » NVM, photonics, and architecture improvements
 - » question is how to use these to achieve MOST of the goals
 - reduced cost expectations will likely need to be compromised

• Focus today

 memory controllers, DRAM & interfaces, NVM today and future technology

Operation	Energy (pJ)
64b Floating FMA (2 ops)	100
64b Integer Add	1
Write 64b DFF	0.5
Read 64b Register (64 x 32 bank)	3.5
Read 64b RAM (64 x 2K)	25
Read tags (24 x 2K)	8
Move 64b 1mm	6
Move 64b 20mm	120
Move 64b off chip	256
Read 64b from DRAM	2000

Baselines

Source: Dally 2009

Operation	Energy (pJ)	DP FLOPs	Insts*
I\$ Fetch	33	0.67	2.0
Register Access (3W)	10.5	0.2	0.6
Access 3 D\$	100	2	6
Access 3 L2 D\$	460	9	27
Access 3 off chip	762	15	45
Access 3 from DRAM	6000	120	360

Memory Hasn't Changed Much

- DRAM device optimization
 - industry focus: minimize cost/bit & high volume markets
 - » persistent problem for the low-volume HPC community
 - slowly evolving interface standards: JEDEC, RAMBUS
- Significant change CMP memory access patterns
 - access pattern is increasingly random
 - » DRAM's optimized for row-locality 4-8KB row buffers
 - wasted energy due to "over fetch" for 64B \$_line
 - open row scheduling becomes dubious
 - server vendors moving to default closed-row policies
 e.g. IBM
 - latency hit w/ current interfaces for closed row access
 - » it's only going to get worse as core counts grow
 - signal integrity issues limit capacity & per pin bandwidth
 - » FB and BoB interfaces latency hit
 - » Inphi's iMB (isolation mem. buff) → RL-DIMMs

Main Memory Bandwidth

- How much do you need for a balanced system?
 - NSF Blue-Ribbon Advisory panel report in 2003 and a Gordon Bell et. al article in IEEE Computer, Jan. 2006 are in rough agreement
 - » 1 Byte/Flop main memory capacity
 - » 1 Byte/Flop/s main memory bandwidth
 - useful as a guideline BUT note
 - » existing supercomputer systems don't meet this metric
 - difference however between HPC & "THE CLOUD"???
 - » the Byte/Flop metric has been called conservative for the commercial side
 - » right choice based on application mix
- Power can't be ignored however
 - PetaFlop machine → PetaByte/s to the main memory
 - » n pico-joules through NOC, MC, off-chip to DRAM, DRAM and back → n WATTS – n in hundreds now - VERY SCARY!!

Changing Memory Controller Landscape

DIMM DIMM Core 1 Core 2 Core 3 Core 4 MC MC 1 L2\$ L2\$ L2\$ L2\$ Core 5 Core 6 Core 7 Core 8 L2\$ L2\$ L2\$ L2\$ Core 9 Coro Core Coro 1D 12 1 L2\$ L2\$ L2\$ L2\$ Core Core Core Core MC 13 14 15 16 MC 4 3 L2\$ L2\$ L2\$ L2\$ Т DIMM DIMM

Today's Intel Nehalem (AMD similar w/ HT)

Likely Future

MC Managed Timing Parameters

Parameter	Description	
tAL	added latency to column accesses for posted CAS	
tBURST	data burst duration on the data bus	
tCAS	interval between CAS and start of data return	
	column command delay - determined by internal burst	
tCCD	timing	
tCMD	time command is on bus from MC to device	
	column write delay, CAS write to write data on the bus	
tCWD	from the MC	
	rolling temporal window for how long four banks can	
tFAW	remain active	
tOST	interval to switch ODT control from rank to rank	
tRAS	row access command to data restore interval	Complex!!!
	interval between accesses to different rows in same bank	-
tRC	= tRAS+tRP	
tRCD	interval between row access and data ready at sense amps	
tRFC	interval between refresh and activation commands	
	interval for DRAM array to be precharged for another row	
tRP	access	
	interval between two row activation commands to same	
tRRD	DRAM device	
tRTP	interval between a read and a precharge command	
tRTRS	rank to rank switching time	
	write recovery time - interval between end of write data	
tWR	burst and a precharge command	
	interval between end of write data burst and start of a	
tWTR	column read command	

Access Dependent Timing Equations

	Prev	Next	Rank	Bank	Min. Timing	Notes	
A=row access	Α	Α	S	S	tRC		
R=col rd	Α	Α	S	d	tRRD	plus tFAW for 5th RAS same rank	
	P -	A	S	d	tRP		
w=coi_wr	F	A	S	S	tRFC		
P=precharge	Α	к	S	S	tRCD-tAL	tAL=0 unless posted CAS	
F=Refresh	в	в	~	-		+PUDST of providus CAS, some rank	
	ĸ	ĸ	5	a	T, ICCD)	tBORST OF previous CAS, same fank	
s=same	R	R	Ь	а	TRTRS	tBURST prev. CAS diff. rank	
d=different	iv.	I.	ų	ų	tCWD+		
a=anv					tBURST+		
a-any	w	R	s	а	tWTR	tBURST prev CASW same rank	
					tCWD+tBU		
					RST+tRTRS-		
	W	R	d	а	tCAS	tBURST prev CASW diff rank	Eve eleert
	Α	W	S	S	tRCD-tAL		Eye chart
					tCAS+tBUR		Dotaile loss important
	_				ST+tRTRS-		Details less important
	ĸ	w	а	а		tBURST prev. CAS any rank	
	14/	147	-	_		PUDST BEOK CASW come roak	
	vv	vv	5	a		tBORST prev CASW same rank	
	w	w	Ь	а	ST	tBURST prev CASW diff rank	
	A	P	s	s	tRAS		
		-	-	-	tAL+tBURS		
					T+ tRTP-		
	R	Р	s	s	tCCD	tBURST of previous CAS, same rank	
					tAL+tCWD		
					+		
		_			tBURST+tW		
	W	P	S	S	R	tBURST prev CASW same rank	
	F	F	S	а	tRFC		
	Р	F	S	а	trfc		

Basic MC Components

- Note
 - as memory access cost increases w.r.t. compute on CPU's
 - » combining transaction and command scheduling is important
 - address translation targets rank and bank
 - » transaction turned into a series of DRAM commands
 - optimization options occur with interleaved transactions
 - while still respecting device timing restrictions
 - goal: maximize data bus utilization

DRAM memory controller

Ideas for Memory Controller Improvement

Micro-pages (ASPLOS 2010) Predictor Based Row Policy Management Multiple MC/Socket issues (PACT 2010)

DRAM Access Inefficiencies - I

- Over fetch due to large row-buffers.
 - 8 KB read into row buffer for a 64 byte cache line.
 - Row-buffer utilization for a single request < 1%.
- Why are row buffers so large?
 - Large arrays minimize cost-per-bit.
 - Striping a cache line across multiple chips (arrays) improves data transfer bandwidth.

DRAM Access Inefficiencies - II

- Open page policy
 - Row buffers kept open with the hope that subsequent requests will be row buffer hits.
- FR-FCFS request scheduling (First-Ready FCFS)
 - Memory controller schedules requests to open row -buffers first.

	Access Latency	Access Energy
Row-buffer Hit	~ 75 cycles	~ 18 nJ
Row-buffer Miss	~ 225 cycles	~ 38 nJ

• Diminishing locality in multi-cores.

DRAM Row-Buffer Hit Rates

Within a relatively small time interval - row hit rate is relatively small

Basic Idea

- Micro-pages
 - finer granularity tracking than OS page size
 - in this case 1KB
- Identify "hot" micro-pages
 - via memory controller accounting and OS daemon
- Reserve DRAM rows for hot micro-pages
 - book keeping overhead is < 0.1% of main memory capacity</p>
- EPOCH based accounting
 - expose EPOCH length to OS for flexibility
- Promote cold micro-pages to superpage
 - to extend TLB reach in lightly used areas

Two Approaches

- SW Reduced OS Page Size (ROPS)
 - reduce page size to 1KB
 - migrate hot pages via DRAM copy
- Hardware assisted migration (HAM)
 - add level of address indirection
 - » initial data placement via typical first touch policy
 - » maintain a mapping table
 - » copy hot micropages to reserved rows
 - » populate/update mapping table every 50M cycle epoch

Results

- Schemes evaluated
 - baseline
 - profiled oracle
 - » best-effort estimate of what will happen next epoch based on previous profile run
 - epoch based ROPS & HAM
- Simulation platform
 - SIMICS
 - DRAMsim based DRAM timing
 - » timing and energy parameters from Micron datasheets

Simulation Parameters

CPU	4-core Out-of-Order CMP, 2 GHz freq.
L1 Inst. and Data Cache	Private, 32 KB/2-way, 1-cycle access
L2 Unified Cache	Shared, 128 KB/8-way, 10-cycle access
Total DRAM Capacity	4 GB
DIMM Configuration	8 DIMMs, 1 rank/DIMM, 64 bit channel, 8 devices/DIMM
Active Row-Buffers per DIMM	4
DIMM-Level Row- Buffer Size	8 KB

Note – more diverse parameter set underway

Micro-Page vs. OS Page Accessed per Epoch

LACSS Oct. 13, 2010

UTAH ARCH

Modest % Change in Performance

LACSS Oct. 13, 2010

% Reduction in Memory System Power

LACSS Oct. 13, 2010

Micro-Page Conclusions

- On average, for applications with room for improvement and with our best performing scheme
 - Average performance 1 9% (max. 18%)
 - Average memory energy consumption ↓ 18% (max. 62%).
 - Average row-buffer utilization 1 38%
- Hardware assisted migration offers better returns due to fewer overheads of TLB shoot-down and misses.
- Ongoing Work
 - try other grain, epoch sizes w/ multi-MC & more cores

Predictor Based Row Buffer Management

- Basic idea for MC scheduling policy
 - neither open row or closed row MC scheduling is likely optimal for all DRAM rows
 - » particularly in multi-core workloads
 - similar to branch prediction idea
 - DRAM row accesses tend to follow a pattern
 - » use a dynamic predictor to determine when to close a row
 - 2 variants
 - » keep track of time
 - Kahn patent 6799241 selects between 1k, 2k, 5k cycles for all pages
 - TBP dynamically adjusts time on a per-page basis
 - » keep track of access count
 - ABP bases prediction on # of accesses

For 8 cores & 8 threads

Tracks all DRAM-rows accessed

Per Row Based Prediction

Exact Miss-High Miss - Low

a. Time-based predictor (TBP)

b. Access-based predictor (ABP)

Access based is better

Relative Throughput

a. Relative Throughput, Single Core

b. Relative Throughput, 8 Cores/8 Threads

Throughput variation increases with core/thread count

Row/Page Hits vs. Misses

Page conflicts are much worse than page empty misses – hence ABP performance is better for all workloads

Energy is also Important

Open Page Close Page Kahn04 TBP ABP

8 core system – simulation and actual measurements within 5%

Controller Based Prediction

- Initial results promising
- Downside further work required
 - refine the tactics
 - » simulation needs to consider much larger core/thread counts
 - and more diverse app set
 - average isn't the right metric (kudo's to Jim Smith)
 - » plus consider multiple MC issues
 - area and power impact of memory controller
 - » these results track DRAM energy and performance
 - » but MC model is weak for both delay and power

Multiple MC Problems

- Pin limitations imply an increase in queuing delay
 - Almost 8x increase in queuing delays from single core/one thread to 16 cores/16 threads
- Multi-core implies an increase in row-buffer interference
 - Increasingly randomized memory access stream
 - Row-buffer hit rates bound to go down
- Longer on- and off-chip wire delays imply an increase in NUMA factor
 - NUMA factor defined as slowest/fastest access
- NUMA factor already at 1.5 today

Problems - II

- DRAM access time in systems with multiple on-chip MCs is governed by
 - Distance between requesting core and responding MC.
 - Load on the on-chip interconnect.
 - Average queuing delay at responding MC
 - Bank and rank contention at target DIMM
 - Row-buffer hit rate at responding MC

Bottomline : Intelligent management of data is required

Adaptive First Touch Policy

 Basic idea : Assign each new virtual page to a DRAM (physical) page belonging to MC (j) that minimizes the following cost function –

Constants α , β and λ can be made programmable

Dynamic Page Migration Policy

- Programs change phases!!
 - Can completely stop touching new pages
 - Can change the frequency of access to a subset of pages
- Leads to imbalance in MC accesses
 - For long running programs with varying working sets, AFT can lead to some MCs getting overloaded

Solution : Dynamically migrate pages between MCs at runtime to decrease imbalance

Catch-22: energy cost & time to migrate in order to save time and energy later.

Dynamic Page Migration Policy - Challenges

Selecting recipient MC

- Move pages to MC with *least* value of cost function
- Selecting *N* pages to migrate
 - Empirically select the best possible value
 - Can also be made programmable

Methodology

- Simics based simulation platform
- DRAMSim based DRAM timing.
- DRAM energy figures from CACTI 6.5
- Baseline : Assign pages to closest MC

CPU	16-core Out-of-Order CMP, 3 GHz freq.
L1 Inst. and Data Cache	Private, 32 KB/2-way, 1-cycle access
L2 Unified Cache	Shared, 2 MB KB/8-way, 4x4 S- NUCA, 3 cycle bank access
Total DRAM Capacity	4 GB
DIMM Configuration	8 DIMMs, 1 rank/DIMM, 64 bit channel, 8 devices/DIMM
α, β ,λ , Λ, Γ	10, 20, 100, 100, 100

Results – DRAM Locality

Results – Reasons for Benefits

Multiple MC Summary

- Multiple, on-chip MCs will be common in future CMPs, with multiple cores sharing one MC
 - Intelligent data mapping will need to be done to reduce average memory access delay
- Adaptive First Touch policy
 - Increases performance by 17.1%
 - Decreases DRAM energy consumption by 14.1%
- Dynamic page migration, improvement on AFT
 - Further improvement over AFT by 17.7%, 34.8% over baseline.
 - Increases energy consumption by 5.2%

Rethinking DRAM & Dimm Micro-architecture

ISCA 2010

Typical Layout

Optimize cost/bit in cheap process (no Cu, 3 metal process)

Mainstream DRAM Issues

• 2 types of circuits

- on pitch
 - » bit and word repeat distance, bit-line sense amps, local word -line drivers, word and column logic close to the mats
- off-pitch the other stuff
 - » typically limited by signal and power wiring constraints
- Most costly changes
 - #1: bit-line sense amp stripe
 - #2: local word-line driver stripe
 - #3: column logic
 - #4: row logic

Technology transition	Disruptive change	Background
Range from 250nm to 200nm to 140nm to 110nm	Stitched wordline to segmented wordline	Minimum feature size of aluminum wiring no longer feasible. The time when different vendors did this transition has a large spread
110nm to 90nm	Increase in number of cells per bitline and / or local wordline	Leads to smaller die size. Better control of technology and design make step possible.
110nm to 90nm	Introduction of dual gate oxide	Allows lower voltage operation and better performance of standard logic transistors.
90nm to 75nm	Introduction of p+ gate doping of PMOS transistors	Buried channel pfet performance not sufficient for standard logic of high data rate DRAMs.
90nm to 75nm	Introduction of 3- dimensional access transistor	Planar transistor device length got too short for threshold voltage control.
75nm to 65nm	Cell architecture 8f2 folded bitline to 6f2 open bitline	Leads to smaller die size. Better control of technology and design make step possible.
55nm to 44nm	Cu metallization	Lower resistance and / or capacitance in wiring for improved performance and / or power reduction.
40nm to 36nm	Cell architecture 6f2 to 4f2 with vertical access transistor	Leads to smaller die size. Better control of technology and design expected to make step possible.
36nm to 31nm	High-k dielectric gate oxide	Better subthreshold behavior and reduced gate leakage.

History of Disruptive Changes to date

Memory Trends

• Energy

- large scale systems attribute 25-40% of total power to the memory subsystem
- capital acquisition costs = operating costs over 3 years
- energy is a first-order design constraint
- Access patterns
 - increasing socket, core, and thread counts
 - increasingly random access stream
 - Iocality increasingly non-existent

Memory Trends

Related Work

- Overfetch
 - Ahn et al. (SC '09), Ware et al. (ICCD '06), Sudan et al. (ASPLOS '10)
- DRAM Low-power modes
 - Hur et al. (HPCA '08), Fan et al. (ISLPED '01), Pandey et al. (HPCA '06)
- DRAM Redesign
 - Loh (ISCA '08), Beamer et al. (ISCA '10)
- Chipkill mechanisms
 - Yoon and Erez (ASPLOS '10)

Consider

- Rethink DRAM design for modern constraints
 - Low-locality, reduced energy consumption, optimize TCO
- Selective Bitline Activation (SBA)
 - Minimal design changes
 - Considerable dynamic energy reductions for small latency and area penalties
- Single Subarray Access (SSA)
 - Significant changes to memory interface
 - Large dynamic and static energy savings
- Chipkill-level reliability
 - Reduced energy and storage overheads for reliability

- Activate only those bitlines corresponding to the requested cache line – reduce dynamic energy
 - Some area overhead depending on access granularity – note #1 cost adder
 - we pick 16 cache lines for 12.5% area overhead
- Requires no changes to the interface and minimal MC scheduling changes

SSA Architecture

SSA Basics

- Entire DRAM chip divided into small subarrays
- Width of each subarray is exactly one cache line
- Fetch *entire* cache line from a single subarray in a single DRAM chip – SSA
- Groups of subarrays combined into "banks" to keep peripheral circuit overheads low
- Close page policy and "posted-RAS" similar to SBA
- Data bus to processor essentially split into 8 narrow buses

SSA Operation

SSA Impact

- Energy reduction
 - Dynamic fewer bitlines activated
 - Static smaller activation footprint more and longer spells of inactivity – better power down
- Latency impact
 - Limited pins per cache line serialization latency
 - Higher bank-level parallelism shorter queuing delays
- Area increase
 - More peripheral circuitry and I/O at finer granularities area overhead (< 5%)

Methodology

- Simics based simulator
 - 'ooo-micro-arch' and 'trans-staller'
- FCFS/FR-FCFS scheduling policies
- Address mapping and DRAM models from DRAMSim
- DRAM data from Micron datasheets
- Area/Energy numbers from heavily modified CACTI 6.5
- PARSEC/NAS/STREAM benchmarks
- 8 single-threaded OOO cores, 32 KB L1, 2 MB L2
- 2GHz processor, 400MHz DRAM

Dynamic Energy Reduction

Moving to close page policy – 73% energy increase on average Compared to open page, 3X reduction with SBA, 6.4X with SSA

Static Energy – Power down modes

- Current DRAM chips already support several low-power modes
- Consider the low-overhead power down mode: 5.5X lower energy, 3 cycle wakeup time
- For a constant 5% latency increase
 - 17% low-power operation in the baseline
 - 80% low-power operation in SSA

Latency Characteristics

- Impact of Open/Close page policy app. dependent: 17% decrease or 28% increase
- Posted-RAS adds about 10%
- Serialization/Queuing delay balance in SSA 30% decrease for half the apps or 40% increase for the other half

Contributors to Latency

DRAM Reliability

- Many server applications require chipkill-level reliability

 failure of an entire DRAM chip
- One example of existing systems
 - 64-bit word requires 8-bit ECC
 - Each of these 72 bits must be read out of a different chip, else a chip failure will lead to a multi-bit error in the 72-bit field – unrecoverable!
 - Reading 72 chips significant overfetch!
- Chipkill even more of a concern for SSA since entire cache line comes from a single chip

Proposed Solution

Approach similar to RAID-5

Chipkill design

- Two-tier error protection
- Tier 1 protection self-contained error detection
 - 8-bit checksum/cache line 1.625% storage overhead
 - Every cache line read is now slightly longer
- Tier -2 protection global error correction
 - RAID-like striped parity across 8+1 chips
 - 12.5% storage overhead
- Error-free access (common case)
 - I chip reads
 - 2 chip writes leads to some bank contention
 - 12% IPC degradation
- Erroneous access
 - 9 chip operation

Main Memory Bandwidth Problem

The Main Memory Bandwidth Problem

- Increased performance → increased main memory pressure
 - caches mitigate but don't eliminate this basic fact
- Wire based interconnect has limited promise
 - pin B/W and pin count growth limit socket to memory B/W
 - » signal integrity issues also limits capacity
 - » length dependent energy consumption is problematic
- Alternatives
 - LR-Dimm, BoB, etc. helps with capacity but not bandwidth
 - RL-Dimm helps with latency but not bandwidth
- Solutions?
 - I only see one that is likely at this point
 - nano-photonics
 - » Moray's talk describes the devices
 - » helps w/ B/W, energy, and capacity but not latency

What About Photonic NOC's

- Numerous recent advances
 - HP, IBM, Columbia, Luxtera, UCSB, Cornell, MIT, Infinera ...
- Basic advantages
 - rewrite the bandwidth power rule
 - bandwidth per lane not limited by signal integrity issues
 - » wave division multiplexing
 - 8 λ available now
 - 64 λ predicted achievable in 16 nm (Vantrease et. al ISCA '08)
 - waveguide loss is very low
 - » power consumed at OE & EO endpoints
 - » length independent
 - activity factor influence is minor
- Optical bit-transport-energy (BTE) now
 - 2-3x better than wires on chip
 - 10-30x better than wires off chip

OCMM with stacked DRAM

DRAM changes

- No Global IO wiring
 - Global IO is all the wiring that multiplexes the data from the various DRAM sub blocks. Uses significant time, area and power
- Through Silicon Vias pitch matched to sense amps
 /output buffers
- Non-array functions, (controller, refresh, etc.) migrated to interface chip where possible.
- Maybe no area overhead if vias take up similar space to global IO?
 - to be determined

Stacked OCM – single optical interface

NVM and Memory/Storage Implications

FLASH Dominates Today's Products

- Mature development
 - ubiquitous use in embedded applications
 - » mobile phones, MP3 players, automotive
 - tiered storage option or solid state disk
 - » faster but more expensive than HDD
 - » naturally block oriented similar to disk
 - » has some of the same problems
 - reliability
 - translation layer requirement in the controller
 - wear leveling required for FLASH however
- Interesting products from database perspective
 - ioFusion
 - » improved interface PCIe rather than stodgy SATA
 - Oracle's Sun storage F5100 Flash array
 - Flash SO-DIMMs starting to appear
 - » JEDEC protocol compliant (a somewhat forced choice)

ioFusion

- Don't call their stuff SSD
 - they prefer to be ioMemory
- Comparison
 - disk: 15K rpmm, random seek 3.5ms, 500 IOPS
 - » big culprit is SATA interface
 - ioMemory
 - » 30 us latency (SLC Nand)
 - » 140K IOPS
- LLNL using purpose built ioFusion boards
 - checkpointing
 - » reduce checkpoint time by 100x
 - basic difference in IOPS

F5100 Factoids

- Oracle's ZFS file system management
 - optimized for Flash storage
- Key specs
 - > 1M IOPS
 - 2 TB in 1U form factor
 - » 300 watts however
- Claimed benefits
 - accelerates DB apps by 2x
 - I/O service times 15x faster
 - 100x less power compared to same capacity HDD's
 - » somewhat specious claim
 - » guess: must be some normalized performance assumption here

System Evolution

FLASH Issues

- Good for read mostly applications
- For heavy write traffic things are getting ugly
 - claimed 10⁶ write cycles comes down
 - » 32 nm today: 10-20K reliable writes SLC
 - 5K for MLC
 - » 22 nm expected in 9 months
 - 1K writes for MLC, 4K for SLC expected
 - » NO PROJECTIONS past 22 nm
 - open question: is 22 nm end-of-life for FLASH?
 - 1 promising option (others: Intel eMLC)
 - » several Israel startups using analog "test interface"
 - initial results show 10-100x reliability improvement
 - » so maybe there is hope
 - but the digital FTL control layer grows analog hair
 - 1/5 of access latency (50ns) is device based
 - 4/5 is FTL (~200 ns)
 - Amdahl's law has something to say about this

2005 NVRAM Outlook

	Flash		FeRAM	MRAM	PCM	Probe Storage	
Cell Type	NOR 1T	NAND 1T	1T/1C	1T/1R	1T/1R	AFM-based	
Cell Size (F^2)	10	4 or 5	30-100	30-50	8-16	0.4 (no litho)	
Endurance W/R	10^6/inf		10^12/10^12	>10^14/inf 10^12/inf		10^5- 10^12/10^7-inf	
Read Time (random)	60 ns	60 ns / serial	40 + 80 ns	30 ns	60 ns	2-20ms	
Write time (byte)	1 us	200 us / page	(read + write destructive	30 ns	10 ns	0.1-1 ms for each tip < 1 us /bit	
Erase time (byte)	1 s / sector	2 ms / block	read)	30 ns	150 ns		
Scalability	Fair	Fair	Poor	Poor	Good	Very Good	
Scalability Limits	Tunnel oxide, H	/	Capacitor	Current Density	Litho	None	
Multi-bit capability	Yes		No	No	Yes No		
Relative cost/bit	Medium	Low	High	High	Medium	Very low	
Maturity	Very high		Medium	Low	Low	Very low	

Source: Pirovano ICMTD-2005

Last 5 Years

Improvements follow investment

- STT-MRAM developed by Grandis
 - » partners with Hynix in 2008
 - » Samsung, DARPA, NSF ... jump on board
- PCRAM
 - » heavy backing by IBM
 - » development by Toshiba & Samsung
 - Samsung shipping 512 Mb parts in FLASH compliant package
- 2 new technologies appear
 - CNT/NRAM Nantero
 - Memristor HP
 - » 2010 partnership w/ Hynix just announced
 - both show promise to beat STT and PCRAM options
 - » smaller cells
 - » lower read and write currents
 - » faster read and write access times

2010 View (source Grandis)

	SRAM	DRAM	Flash (NOR)	Flash (NAND)	FeRAM	MRAM	PRAM	RRAM	STT- RAM
Non-volatile	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Cell size (F ²)	50–120	6–10	10	5	15–34	16–40	6–12	6–10	6–20
Read time (ns)	1–100	30	10	50	2080	3–20	20–50	10–50	2–20
Write / Erase time (ns)	1–100	15	1 μs / 10 ms	1 ms / 0.1 ms	50 / 50	3–20	50 / 120	10–50	2–20
Endurance	10 ¹⁶	10 ¹⁶	10 ⁵	10 ⁵	10 ¹²	>1015	10 ⁸	10 ⁸	>1015
Write power	Low	Low	Very high	Very high	Low	High	Low	Low	Low
Other power consumption	Current leakage	Refresh current	None	None	None	None	None	None	None
High voltage required	No	3 V	6–8 V	16–20 V	2–3 V	3 V	1.5–3 V	1.5–3 V	<1.5 V
	Existing products						Prototype		

New NVM Contenders

- Both have promise to be better than STT or PCRAM
 - too early to tell if or when this promise will prove true

Conclusions

- Memory is a bottleneck
 - it will only be more true as socket throughput goes up & memory pressure increases
- Numerous options for improvement
 - improvements: MC, DRAM uArch, interfaces, ...
 - » the change won't be cheap
 - » big challenge is what to expose to the OS or app SW?
 - SW folks need to be proactive here
 - NVM options abound
 - » what forms of tier'ing make sense?
 - » check-pointing is ideal candidate
 - ideal choice is cheap (energy & time) writes
 - OK for reads to be a bit more expensive hopefully they are rare
- Biggest dark cloud on the horizon

cost

THANKS

