Low Power/Low Voltage Computing

Shih-Lien Lu

Intel Labs October 13, 2010

Acknowledgement: Alaa Alameldeen, Keith Bowman, Zeshan Chishti, Dinesh Somasekhar, James Tschanz, Chris Wilkerson, Wei Wu

LACSS Workshop

Power Limit

- Mark Seager
 - -2 Petaflop -> 6 MW (1.27 PF -> 2MW)
 - Linear scaling: 1 Exaflop -> 3GW (1.6GW)
 - With idea technology scaling @ constant die size and freq
 - 3 generation: ~380MW (200MW)
 - 4 generation: ~190MW (100MW)
 - This talk addresses challenges facing aggressive voltage scaling

Resiliency: A Familiar Topic

- Resilient design employs techniques that handle faults to give correct operation
- Past Focus: Increase Reliability
- Resiliency as Part of Optimization

Reduce or Eliminate Guardbands

Margins added for rare occurrences impact **<u>Power</u>** and **<u>Performance</u>**

Faults Caused by Vcc Reduction

• Decreases SRAM stability, more failing bits

Vcc > Vmin : Memory fully functional Vcc < Vmin : A few bits fail Vcc << Vmin : Multiple bits fail

More timing violations—reduces frequency

Vcc > Vmin : No timing violations Vcc < Vmin : Some violations Vcc << Vmin : More violations

Addressing On-die Memory Errors

- Cache line disabling
 - Coarse grain
 - Fine grain Wilkerson et. al. ISCA 2008
- Multi-segmented ECC
 - Take part of the cache to store ECC bits
 - Segmented protection
 - OLSC: simple and modular encode/decode
- Variable Strength ECC
 - Current project

50% EPI reduction With small performance loss

On-die Memory Fault Types

- Persistent
 - Permanent defect
 - Read/Write stability
 - Retention
- Transient
 - Particle strike
 - Proximity disturbance
- Erratic

SRAM Failures Result from Mismatched Devices in a Single Cell

Contention between READ and WRITE on device sizes Ex: Weak pass device (X1) vs. a strong pull up device (P1) can cause a write failure

>Random within-die variations primarily responsible

4 Types of SRAM Failures

- Write failure
 - Device mismatch prevents cell from flipping
- Read failure
 - Cell flips during read
- Access failure
 - Insufficient differential increases latency.
- Retention failure
 - Reduced margin, failures occur due to noise

Resiliency Techniques

- Require testing (a priori info)
 - Advantages
 - More information means simpler (cheaper) remedy
 - Disadvantages
 - Test cost
 - Faults cannot be tested not covered
 - Techniques
 - Sparring physical redundancy
 - Disabling graceful degradation

Spares

- Extra capacity
- Column redundancy
 - Random cell failure
 - Column mux
 - BIST & fuse
- Row redundancy
 - Word line failure
 - Multi-bit failure
 - Word-line segmentation
- Block redundancy

Disabling

- Wide dynamic range
- Graceful degradation
 - Static and dynamic sizing
 - Bank disabling
 - Fine grain disabling
- Example
 - Cache design

Known Methods (2MB Cache)

Vmin for Proposed Techniques

L1WDis_L2BFix Normalized to ST Cell

Performance loss ~5%

Voltage/Area/Energy Comparison

	Vccmin (mV)	Norm Area	Norm EPI
6T Cell	825	1.0	1.0
ST Cell (circuit sol.)	530	2.0	0.45
L1WDis_L2BFix	500	1.08 (L1) 1.00 (L2)	0.47

Lower Voltage & EPI (Energy Per Inst) vs 6T

Much less area overhead than ST Cell

Summary for this Example

- Vccmin limits energy scaling
 - Ability to reduce voltage critical but limited by memory reliability
- The ability to detect/avoid failures allows low voltage operation and reduces energy
- Configurable approach that "trades off cache capacity"
 - Maximizes performance at high voltage
 - Enables ~50% improvement in energy per instruction when operating at low voltage

Resiliency Techniques (2)

- No a priori information (through testing)
 - Adv
 - Lower test cost
 - Disadv
 - Overhead
- Techniques
 - ECC
 - Random error
 - Correlated error

Our Observations with ECC

- Use of systematic H' matrix instead of nonsystematic
- Separate error detection from correction
- Codes with different strength can share H matrix
- Trade code density with logic complexity and modularity

Non-Persistent Failures

- Exhibit sporadic failing behavior
- Examples: soft errors, erratic failures
- Also exhibit supply voltage dependence
- Cannot be detected by apriori memory testing
- Both persistent and non-persistent failures affect Vccmin

Approach

- Key Idea:
- Adaptive cache that works at both high and low voltages
 - As big as possible when performance is important (high voltages)
 - Sacrifice capacity when power is most important (low voltages)
 - In low voltage mode, use a portion of cache to store ECC
 - Enough check bits to correct both persistent and non-persistent errors
 - No additional testing to isolate defective bits

Trading off Code Density for Simplicity

- Traditional codes optimized for check bit overhead
- But, complexity grows rapidly with no. of corrections
- We need large number of corrections
 - E.g., up to 10 corrections in each cache line for 500 mV operation
- Traditional BCH-based code too complex for such corrections
- Solution: Orthogonal Latin Square Codes (OLSC)
- Less complexity at the cost of more check bits

Multi-bit Segmented ECC (MS-ECC)

Orthogonal Latin Square Codes (OLSC)

- Modular error correction hardware
 - More regular implementation than BCH
- Based on majority voting
 - Example: TMR triplicates data and uses majority function
- Instead of keeping multiple copies of data bits,
 - Encode orthogonal groups of data bits to form check bits
 - For t-corrections in m2 data bits, need 2tm check bits

Methodology

- Two modes of operation:
 - High voltage: 1.3V, 3 GHz
 - Low voltage: 0.5V, 500 MHz
- 32K 8-way L1 caches, 2M 8-way L2 cache
- Compare
 - Baseline: SECDED ECC
 - MS-ECC: 64-bit segments, 4 corrections per segment
 - 50% capacity, 1-cycle added latency overhead
 - Compare against: Bit-fix with SECDED ECC (BFXECC)
 - Can correct 10-bit persistent and 1-bit non-persistent errors

Reliability (2MB Cache)

26

Performance Overhead

10% IPC degradation relative to unrealistic defect-free baseline

Energy

SCHEME	VCCMIN (mV)	FREQUENCY (MHz)	Norm. Power	NORM. EPI
BASELINE	725	1400	1	1
BFXECC	630	1000	0.57	0.8
MS-ECC	520	700	0.29	0.58

MS-ECC reduces energy-per-instruction by 42% relative to baseline SECDED ECC

Summary for This Example

- Reducing supply voltage key to higher energy efficiency
- Supply voltage reduction limited by memory reliability
- MS-ECC: novel technique to mitigate bit failures
 - Leverages error correction codes based on OLSC
 - Does not rely on testing to isolate defects
 - Reduces Vccmin by ~ 200 mV, EPI by 42%

Addressing Logic Errors

- Timing faults
- Error detection sequential
- Detect timing faults at the circuit level
- Replay pipeline at the microarchitecture level
- A research processor in 45nm
 - "A 45nm resilient and adaptive microprocessor core for dynamic variation tolerance," ISSCC 2010

Error-Detection Sequential (EDS) Implementation

- Contains additional scan-enabled latch for testing
 - > mode=0: EDS

mode

CLK

> mode=1: FF

Adaptive clock control enables dynamic F_{CLK} change

- TRC monitors critical path delays
- Non-intrusive design

J. Tschanz, et al., Symp. VLSI Circuits, 2009.

Tunable Replica Circuit (TRC)

- TRC tuned to track critical paths per pipeline stage
- TRC must always fail if any critical path fails
- TRC error initiates pipeline error recovery

EDS & TRC Overheads

Circuit Blocks		TRC
Error Detection & Accumulation Area Overhead		0.8%
ECU & Clock Control Area Overhead		1.4%
Min-Delay Buffer Insertion Area Overhead		_
Total Area Overhead		2.2%
Total Power Overhead (iso-F _{CLK} , iso-V _{CC})		0.6%

Error-Recovery Circuits

1) Instruction Replay at ¹/₂F_{CLK}

- Clock divider generates ½F_{CLK} without PLL re-lock
- Clock high-phase delay remains unchanged

2) Multiple Issue Instruction Replay at F_{CLK}

- Does not require clock control
- Issue <u>replica instructions</u> to setup pipeline registers
- Last issue is a valid instruction

Characteristics & Measurements

Technology	45nm CMOS
Die Area	13.64 mm ²
Core Area	0.39 mm ²
Core F _{MAX}	1.45GHz at 1.0V
Core Power	135mW at 1.0V

- Programs compiled from C code
- Caches and settings loaded via JTAG scan

Measured Throughput (TP) vs F_{CLK}

38

Measured Energy vs Throughput

- TRC & EDS resilient circuits enable:
 - > 41% throughput gain at equal energy
 - > 22% energy reduction at equal throughput

Summary of This Example

- Simple microprocessor core employs resiliency to mitigate dynamic variation guardbands
- Error-detection circuits:
 - > Error-detection sequential (EDS)
 - > Tunable replica circuit (TRC)
- Error-recovery circuits:
 - Instruction replay at ½F_{CLK}
 - > Multiple issue instruction replay at F_{CLK}
- Silicon measurements indicate:
 - > 41% throughput gain at iso-energy
 - > 22% energy reduction at iso-throughput
- Resilient & adaptive circuits enable the microprocessor to adjust to operating variations for maximum efficiency

Networking Approach

•In networking failures at each layer may be dealt with within the layer or passed to layer above.

Example: Internet Protocol

Unified Adaptive Design Framework

 Adaptive design proposes to handle failures in each layer by reporting failures to the next layer which delivers a response.

Global Optimization By Reconfiguring at the Appropriate Layer

Conclusion

- Resiliency as part of the optimization equation for performance/energy
- Memory is easier
- Logic is much harder
 - We addressed a solution for timing faults
 - Other transient faults?
 - Permanent fault?
 - Reconfigurable logic helpful?
- Cross-layer resiliency