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Survey of Error and Fault Detection Mechanisms

Abstract

This report describes diverse error detection mechanisms that can be utilized within a

resilient system to protect applications against various types of errors and faults, both hard

and soft. These detection mechanisms have different overhead costs in terms of energy,

performance, and area, and also differ in their error coverage, complexity, and programmer

effort.

In order to achieve the highest efficiency in designing and running a resilient computer

system, one must understand the trade-offs among the aforementioned metrics for each

detection mechanism and choose the most efficient option for a given running environment.

To accomplish such a goal, we first enumerate many error detection techniques previously

suggested in the literature.

1 Introduction

Error detection mechanisms form the basis of an error resilient system as any fault during
operation needs to be detected first before the system can take a corrective action to tolerate
it. Myriad error detection techniques have been proposed in the literature, where each option
has different tradeoff options in terms of energy, performance, area, coverage, complexity, and
programmer effort; however, there is no single technique that is optimal for all parts of a complex
computer system, all conditions of a large variety of applications, or all operating scenarios. Thus,
adaptability and tunability become crucial aspects of an error-resilient system with high efficiency.
In that respect, we must fully understand each error detection technique, in the context of a
specific system, to choose the best option for a given operating scenario and application.

Detection mechanisms proposed thus far can be classified in three different ways as shown in
Table 1: based on type of redundancy, placement in the system hierarchy, or detection coverage.
Type of redundancy can be space-redundant, where hardware is replicated, or time-redundant,
where software code is replicated. On the other hand, not all techniques utilize redundancy;
thus, type of redundancy does not provide a comprehensive coverage of all available error
detection mechanisms. Whether redundant or not, all techniques, however, are fully covered by a
categorization based on placement in the system hierarchy or detection coverage. Placement of
detection mechanisms can be at the circuit, architecture, software system, or application levels or
involve a combination of these levels in a hybrid approach. Finally, these detection techniques
cover hard, soft or both types of errors.

In short, this report lists all the detection techniques that can be applied to the Echelon system
and provides a qualitative trade-off analysis, which will help achieve a tunable and adaptable
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Table 1: Classification of error detection mechanisms
Criterion Category

Redundancy type
Space-redundant

Time-redundant

System hierarchy

Circuit-level

Architecture-level

Software system

Application-level

Hybrid

Detection coverage
Hard errors

Intermittent errors

Transient errors

resiliency within the Echelon system. The rest of the paper is organized as follows: Section 2
explains the failure mechanisms we assume for the errors. Section 3, Section 4, and Section 5
explain and compare various error detection techniques for memory, compute, and system,
respectively. Then concluding remarks will be given in Section 6. Note that this report includes
tables summarizing and comparing the different techniques. These tables contain overhead
numbers as reported in the research papers describing the mechanisms. The overhead numbers
are not in the context of Echelon. We will evaluate the mechanisms for Echelon in the future.

2 Failure Mechanisms

In this report, we describe existing error detection techniques for both hard and soft errors. The
failure mechanisms for hard errors are permanent stuck-at faults that occur in the field, undetected
manufacturing or design flaws, or degradation-dependent faults that initially look like transient
errors but become permanent under further degradation. This type of error causes permanent
removal of a component and may trigger reconfiguration of the system. Note that we do not
cover design errors that can be detected by traditional testing methods such as boundary scan
chain or built-in self-test (BIST). We also exclude timing errors that can be detected by techniques
like Razor [1] from our discussion.

The failure mechanisms for soft errors can be classified into two types. First, energetic particle
strikes cause hole-electron pairs to be generated, effectively injecting a momentary (< 1ns) pulse
of current into a circuit node. This results in a single event upset (SEU), which we refer to as
a transient error. This type of failure mechanism is also applicable in the case of supply noise
briefly affecting a circuit’s voltage level. Second, variations introduced during manufacture
and runtime can cause temporal timing violations along the critical paths of the logic. They are
referred to as intermittent errors and they are becoming more serious as we push the margin
with techniques like dynamic voltage and frequency scaling (DVFS) to achieve higher efficiency.
While intermittent errors are actually the result of hard faults, they are often treated as soft errors
because of the difficultly of systematically reproducing the conditions that trigger an error and
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Register File

Load/Store Queue

L1 cache

L2 cache

Main Memory

L1-L2 MSHR

Memory Controller 
Read/Write Queue

Core-to-L1 bus

L1-to-L2 bus

Memory bus

Figure 1: The memory hierarchy with uniform ECC; gray color denotes storage and intercon-
nections dedicated to redundant information. Note that ECC is applied at a finer granularity in
a register file and an L1 cache but that L2 and main memory have ECC per data line. Though
not shown, lower storage levels such as Flash memory based disks or disk caches and hard-disk
drives also have uniform ECC, but at a coarser granularity; e.g., 4kB data blocks in NAND Flash
memory

their relatively low error rate.
Soft and hard errors can also cause more coarse-grained failures at the system level. Rare

errors may be detected by the interconnection network fabric but which cannot be hidden from
other layers of the system. Additionally, entire nodes may become non-responsive because of
power failures or intermittent errors at the interface or runtime system. Note that we do not
discuss file system failures or higher level network end-to-end schemes in this report.

3 Detection Mechanisms for Memory

A common solution to address memory errors is to apply error checking and correcting (ECC)
codes uniformly across all memory locations; uniform ECC. Figure 1 illustrates an example
memory hierarchy with uniform ECC. In uniform ECC, additional storage and interconnection
wires are dedicated to storing and transferring redundant information at every level, and even
intermediate buffers such as MSHR (miss status handling register) and read/write queues in a
memory controller have uniform ECC codes. We start by describing commonly used ECC codes
in Section 3.1, then briefly review cache memory protection in Section 3.2 and main memory
protection in Section 3.3.
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Table 2: ECC storage array overheads [11].
SEC-DED SNC-DND DEC-TED

Data check
overhead

check
overhead

check
overhead

bits bits bits bits

16 6 38% 12 75% 11 69%

32 7 22% 12 38% 13 41%

64 8 13% 14 22% 15 23%

128 9 7% 16 13% 17 13%

3.1 Information Redundancy

Typically, error-detection only codes are simple parity codes, while the most common ECCs use
Hamming [2] or Hsiao [3] codes that provide single-bit-error-correction and double-bit-error-
detection (SEC-DED).

When greater error detection is necessary, double-bit-error-correcting and triple-bit-error-
detecting (DEC-TED) codes [4], single-nibble-error-correcting and double-nibble-error-detecting
(SNC-DND) codes [5], and Reed Solomon (RS) codes [6] have also been proposed. DEC-TED
and SEC-DED are a special case of BCH (Bose-Chaudhuri-Hocquenghem) code [7, 8] that detects
and corrects random bit errors, and SNC-DND and RS codes are symbol based error codes. Such
complex error codes, however, increase the overheads of ECC circuits and storage rapidly as
correction capability is increased [9, 10]. Hence, parity and SEC-DED codes are used in cache
memories for low-latency decoding while symbol-based error codes are mostly used in main
memory and disk systems. Table 2 compares the overhead of various ECC schemes. Note that the
relative ECC overhead decreases as data size increases.

3.2 Cache Memory Error Protection

In cache memory, different error codes are used based on cache levels and write-policy (write
through or write-back). If the first-level cache (L1) is write through and the LLC (Last Level
Cache; for example, L2 cache) is inclusive, it is sufficient to provide only error detection on the L1
data array because the data is replicated in L2. Then, if an error is detected in L1, error correction
is done by invalidating the erroneous L1 cache line and re-fetching the cache line from L2. Such
an approach is used in the SUN UltraSPARC-T2 [12] and IBM Power 4 [13] processors. The L2
cache is protected by ECC, and because L1 is write-through, the granularity of updating the ECC
in L2 must be as small as a single word. For instance, the UltraSPARC-T2 uses a 7-bit SEC-DED
code for every 32 bits of data in L2, an ECC overhead of 22%.

If L1 is write-back (WB), then L2 accesses are at the granularity of a full L1 cache line. Hence,
the granularity of ECC can be much larger, reducing ECC overhead. The Intel Itanium processor,
for example, uses a 10-bit SEC-DED code that protects 256 bits of data [14] with an ECC overhead
of only 5%. Other processors, however, use smaller ECC granularity even with L1 write-back
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caches to provide higher error correction capabilities. The AMD Athlon [15] and Opteron [16]
processors, as well as the DEC Alpha 21264 [17], interleave eight 8-bit SEC-DED codes for every
64-byte cache line to tolerate more errors per line at a cost of 12.5% additional overhead.

Recent research on low-power caches uses strong multi-bit error correction capabilities to
tolerate failures due to reduced margin. This includes low-VCC caches as well as reduced-refresh-
rate embedded DRAM caches. Word disabling and bit fix [18] tradeoff cache capacity for reliability
in low-VCC operation. These techniques result in 50% and 25% capacity reductions, respectively.
Multi-bit Segmented ECC (MS-ECC) [19] uses Orthogonal Latin Square Codes (OLSC) [20] that
can tolerate both faulty bits in low-VCC and soft errors, sacrificing 50% of cache capacity. Abella
et al. [21] study performance predictability of low-VCC cache designs using subblock disabling.
Wilkerson et al. [22] suggest Hi-ECC, a technique that incorporates multi-bit error-correcting
codes to reduce refresh rate of embedded DRAM caches. Hi-ECC implements a fast decoder for
common-case single-bit-error correction and a slow decoder for uncommon-case multi-bit-error
correction.

3.3 Main Memory Error Protection

Today’s computer systems opt to use commodity DRAM devices and modules in main memory.
Hence, main memory error protection uses DRAM modules that can store redundant information
and apply ECC to detect and correct errors. This ECC DIMM (dual in-line memory module)
requires a larger number of DRAM chips and I/O pins than a non-ECC DIMM.

Typically, an ECC DIMM is used to provide SEC-DED for each DRAM rank, and do so without
impacting memory system performance. The SEC-DED code [2, 3] uses 8 bits of ECC to protect 64
bits of data. To do so, an ECC DIMM with a 72-bit wide data path is used, where the additional
DRAM chips are used to store both the data and the redundant information. An ECC DIMM is
constructed using 18 ×4 chips (×4 ECC DIMM) or 9 ×8 chips (×8 ECC DIMM). Note that an
ECC DIMM only provides additional storage for redundant information, but that actual error
detection/correction takes place at the memory controller, yielding the decision of error protection
mechanism to system designers.

A recent study, however, shows memory chip failures, possibly due to packaging and global
circuit issues, cause significant downtime in datacenters [23]. Hence, business critical servers and
datacenters demand chipkill-correct level reliability, where a DIMM is required to function even
when an entire chip in it fails. Chipkill-correct “spreads” a DRAM access across multiple chips and
uses a wide ECC to allow strong error tolerance [24, 12, 25]. The error code for chipkill-correct is a
single-symbol-error-correcting and double-symbol-error-detecting (SSC-DSD) code. It uses Galois
Field (GF) arithmetic [4] with b-bit symbols to tolerate up to an entire chip failing in a memory
system. The 3-check-symbol error code [5] is a special case of RS code and the most efficient SSC-
DSD code in terms of redundancy overhead. The code-word length of the 3-check-symbol code is,

6



x4 x4 x4 x4 x4 x4 x4 x4 x4
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Memory

Controller

144-bit wide data path

- Data: 128 bits

- ECC: 16 bits Address/Cmd bus
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DDR2 x4 ECC-DIMM

Figure 2: Baseline chipkill correct DRAM configuration (gray DRAMs are dedicated to ECC
storage).

however, limited to 2b + 2 symbols, so it is a poor match for ×4 configuration; using ×4 DRAMs
leads to a granularity mismatch that results in data words that are 60 bits long - a non power of
two (3 4-bit check symbols can correct a symbol error in 15 data symbols). Instead, SNC-DND
code [26] with 4 check symbols is used for×4 DRAMs, where the 4th check symbol allows a longer
code-word. Four 4-bit check symbols provide SSC-DSD protection for 32 4-bit data symbols,
resulting in an access granularity of 128 bits of data with 16 bits of redundant information; this
wide data-path is implemented using two ×4 ECC DIMMs in parallel as shown in Figure 2.
This organization is used by the Sun UltraSPARC-T1/T2 [12] and the AMD Opteron [25]. This
chipkill memory system works well with DDR2 using minimum burst of 4; the minimum access
granularity is 64B (4 transfers of 128bits). It is, however, problematic with DDR3 or future memory
systems; longer burst combined with a wide data path for chipkill-correct ECC codes leads to
larger access granularity [27].

4 Detection Mechanisms for Compute

Error detection mechanisms can be categorized in number of ways depending on the criteria. They
can be classified into space-redundant or time-redundant techniques, or they can be classified
based on the type of errors they can detect. Here, we will differentiate them based on the system
level hierarchy they are implemented at. At the lowest level, there are circuit-level techniques;
then, a technique can be implemented one level up in architecture. Next, a software system can
be introduced to handle the detection, and application itself can be in charge of detection. Finally,
there are hybrid techniques, which mix multiple of these to achieve higher efficiency. We will
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Table 3: Comparison of circuit-level detection techniques. Overheads quoted from papers and
not yet brought into Echelon’s context.

Hardening Hardening heuristics Circuit monitoring

Hazucha et
al. [29]

Lunardini et
al. [30]

Mohanram et
al. [31] Rao et al. [32] Zoellin et

al. [33]
Ndai et
al. [34]

Narsale et
al. [35]

Mechanism Redundant
transistors Gate resizing Partial

duplication

Gate resizing
and flip-flip

selection

Selective gate
resizing

Current
mirror

Supply rail
monitor

Error
coverage High High Configurable Low Configurable High High

Performance
overhead None

-50%, Faster
due to bigger

transistors
None None None Configurable Negligible

Power
overhead 30-40% 400% Depends on

error coverage Minimal Depends on
error coverage

Depends on
performance

overhead
20%

Area
overhead 40% 100% Depends on

error coverage 5%
Depends on

error coverage
(10-50%)

Unknown 20%

discuss each technique with respect to its cost and types of errors it covers.

4.1 Circuit-level Techniques

Fault-tolerance and redundancy can be introduced at design-time with little effect on the overall
architecture. These techniques are attractive when dealing with small parts of the design, or when
some amount of redundancy is already present for other reasons (one example is scan-chains that
are used for testing) [28]. This type of circuit is sometimes referred to as a hardened circuit as many
were originally designed for high-radiation environments. Most commonly, these designs use
latches based on multiple flip-flops and possibly special logic circuits with built-in verification.
To the best of our knowledge, hardened designs typically require roughly twice the area and a
longer clock-cycle than an equivalent conventional circuit [29, 30]. Because of this high and fixed
overhead, there has been some work in providing sufficient error coverage through the logic
delay timing slack and vulnerability-proportional hardening of components for the cost-effective
error resiliency of mainstream designs [31, 32, 33]. These heuristic approaches report very low
area and delay overheads given a target error coverage of less than 100%. However, no heuristic
approach is able to provide complete error coverage while requiring less than twice the area.

There are other classes of error detecting circuitry aiming at reducing the overhead of harden-
ing or replicating. They usually monitor either switching current [34] or supply voltage [35] to tell
if there is an unexpected event. Circuit monitoring techniques provide high error coverage with
modest overhead; however, real-world problems like process variation and supply voltage droop
complicate the actual implementation of such mechanisms. Table 3 compares various circuit-level
error detection techniques. Note that some of the techniques are configurable so that trade-offs
can be made between different metrics.
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4.2 Architecture-level Techniques

In order to detect errors, some degree of redundancy must be introduced in the architecture.
Code-based techniques operate by providing a redundant representation of numbers with the
property that certain errors can be detected and sometimes corrected through the analysis and
handling of the resulting erroneous number. Code-based techniques offer several distinct advan-
tages over alternative strategies for protecting computation—they run concurrently, generally
detecting and reporting errors online with minimal latency, and they operate through selective
redundancy, requiring only a fractional increase in area to provide error coverage. The amount of
error coverage provided by a code-based technique is rarely complete, but is often quantifiable
and may be tuned to the system requirements to provide low-cost error detection for a target
failure rate. When code-based techniques are not applicable, or require too much custom design,
execution redundancy is the most common architectural alternative. Through the use of redun-
dant execution at the module level, errors can be detected with very high coverage and little
design cost. Execution redundancy usually has high fixed overhead close to 100%, either in space
or time.

4.2.1 Code-based Techniques

While the regular structure of memory arrays enable the efficient protection through parity-based
codes or communication codes, these error-correcting codes are not ideally suited for arithmetic
operations. AN codes and residue codes are the most well known examples of error codes which
are designed to detect and correct errors which occur during the processing of integer arithmetic
operations. AN codes, also known as linear residue codes, product codes, and residue-class codes [36],
represent a given integer N by its product with a constant A. Therefore, the addition of two
numbers N1 + N2 can be checked by testing the equality of Equation 1. Variants which work
under other operations of interest exist [37]; error detection (and perhaps correction) is applied at
the functional unit granularity, as there is no separability between the coded circuitry and the
circuitry which performs the original operation.

A ∗ N1 + A ∗ N2
?= A ∗ (N1 + N2) (1)

A class of arithmetic error codes called residue codes is largely equivalent to AN codes, but has
significant practical implementation advantages [36]. Figure 3 shows an overview of the error
detection process using residue codes. Most arithmetic operations can be checked by testing the
equality of Equation 2, where |N|A = N mod A and ⊕ is the operation of interest. If both sides
of Equation 2 are equal, it is likely that no error has occurred. If both sides are not equal, then
some error has occurred. Residue codes are more flexible than AN codes–a single residue checker
can detect errors in numerous operations–and provide separability between the circuitry that
performs the original computation and that checks the computation. This separation simplifies
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implementation, reduces the intrusiveness of designs, and can make it easier to detect errors
without impacting the delay of the original circuit.

|N1 ⊕ N2|A
?=

∣∣|N1|A ⊕ |N2|A
∣∣

A (2)

1

Figure 3: An overview of the residue code error detection process.

The arithmetic error control codes are especially useful because they are preserved under
arithmetic operations. While non-arithmetic error codes are not, they may also be applied to
integer operations through a process called check prediction. Parity codes [38], checksum codes [39],
and Berger codes [40] have all been successfully applied to protect computer arithmetic.

There is no known direct check prediction or error coding method for floating-point arithmetic.
However, more intrusive methods of error detection exist which use residue checking or Burger
check prediction in a piecewise fashion within the floating-point unit to provide resiliency [39].
These methods, while intrusive and requiring custom design, report low area overheads.

4.2.2 Execution Redundancy

Code-based techniques are cost-effective; however, they require custom design and are relatively
inflexible for covering errors in a variety of hardware structures. In the general case, a viable
option is to replicate the execution of some logic and compare the results. At the architecture
level, hardware components can be replicated at varying granularity from a single module to an
entire core. [41] suggests that a simple checker module can be used to detect errors in execution.
Further analyses show that the hardware costs are modest and that performance degradation is
low. While being a promising design point for complex modern control-intensive superscalar
processors, this method is not applicable to compute-intensive architectures. The reason is that
the main computational engine is in essence as simple as the suggested checker, and the overall
scheme closely resembles full hardware replication of a large portion of the processor as done in
the lockstepped IBM G5 processor [42].
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Table 4: Comparison of architecture-level detection techniques. Overheads quoted from papers
and not yet brought into Echelon’s context.

Pipeline manipulaion Hardware replication
Redundant

multithreading
(RMT)

Chip
Multiprocessor

RMT

SITR [43] RazorII [44] DIVA [41] Lockstepped
pipeline [42] [45, 46, 47, 48] [50, 51]

Mechanism Time redundancy Detecting
circuitry

Partial
replication Full replication Time redundancy Space and time

redundancy

Error types Transient,
intermittent

Transient,
intermittent All Hard, transient Transient Hard, transient

Performance
Overhead Low Low Low Very high (> 2.0X) High (1.5− 2.0X) Modest (< 1.5X)

Energy
Overhead Low Low Low Very high (> 2.0X) High (1.5− 2.0X) Modest (< 1.5X)

Area
Overhead Low Low Low High None None

Instead of replicating an architectural module, small augmentations can be made to the
processor pipeline [43, 44]. In [43], pipelined functional units perform two redundant waves
of computation consecutively. This is done by holding the value of input latch for two cycles.
By comparing the results at the end of the pipeline, both transient and intermittent errors are
detected with relatively low overhead. [44] presents a specially designed flip-flop for pipeline
registers. The proposed flip-flop detects spurious transitions and generates error signals that
trigger the architectural replay mechanism for recovery.1

A different set of techniques relies on the fact that control-intensive processor execution
resources are often idle and utilizes them for time-redundant execution that can be initiated by
the microarchitecture [45, 46, 47, 48, 49]. In compute-intensive processors however, resources are
rarely idle, and therefore these schemes are not directly applicable. Unlike the time redundant
multithreading techniques mentioned above, similar approaches can be taken in the space domain.
In [50, 51], two (or more) copies of the program/thread run concurrently on a chip multi-processor.
Again, hardware can be introduced to reduce software overhead for initiation and comparison [50],
and efficient comparison is an important issue as discussed in [52]. Table 4 summarizes various
architecture-level techniques discussed so far.

Most of the techniques described above are designed for control-intensive processors, and
thus their efficiency in compute-intensive architectures like Echelon is limited. We are currently
evaluating an alternative solution for compute-intensive processors which we call duplex execu-
tion. Duplex execution uses redundant execution units to run the same computation twice. The
difference between this and previous approaches is that in duplex execution only the execution
units are replicated rather than the entire pipeline. Given the trend that the data movement is
consuming more power than the actual computation, duplex execution can save energy by only
reading and writing data once while computing twice with them.

1Even though the detection is done at circuit-level, the technique in its entirety is discussed in the context of
processor pipeline, hence belonging to this section.
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Table 5: Comparison of detection techniques in software system. Overheads quoted from papers
and not yet brought into Echelon’s context.

TIMA [55] ED4I [54] SWIFT [56] SWAT [61] Shoestring [62]

Replication Instruction Instruction Instruction None Some instruction

Control flow check Yes No Yes Implicit Implicit

Error types Hard, transient All Hard, transient All All

Error coverage High High High Low Low

Performance Overhead 200% 80% 41% 5-14% 16%

Energy Overhead Roughly the same as performance overhead

4.3 Software Systems

The main advantage of implementing error detection mechanisms in software is that it is not
intrusive to the design and can be applied to most systems without modifying the underlying
hardware structures. The most straightforward approaches in software have been replication and
re-execution. Several automated frameworks have been developed in this context ranging from
intelligent full re-execution [53] to compiler insertion of replicated instructions and checks [54, 55,
56]. There exist a number of mechanisms for the low-cost detection of control errors [57, 58, 59, 60];
the aforementioned software-only resiliency frameworks devote much of their attention to control
flow checking, which is not a high priority for compute-intensive architectures.

Recently, another class of error detection techniques has been proposed that relies on software
level symptoms to detect errors. These techniques impose very little performance overhead as
compared to the replication based techniques. However, this advantage comes at the cost of
lower error coverage. In [61], symptoms such as fatal traps or application aborts are used to
identify both hardware faults and transient errors, and compiler-inserted range-based invariants
are used to detect silent data corruption that escapes those symptom checks. A similar symptom
based approach is presented in [62]. To increase the error coverage, however, compiler analysis is
performed to identify more vulnerable instructions, and these instructions are further protected
with instruction duplication. A comparison of the different techniques discussed above is given
in Table 5. The symptom based nature of SWAT and Shoestring gives protection against all types
of errors whereas other instruction replication techniques do not detect intermittent errors except
for ED4I. ED4I introduces data diversity in redundant copies of the program providing limited
protection against intermittent errors.

4.4 Application-level Techniques

The most comprehensive information about the application is available at this level, enabling a
much more efficient detection than other techniques. However, it might not always be possible
for the programmer to find a good application-level technique for a given application. Also, error
coverage is usually lower than other techniques based on more aggressive redundancy.
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4.4.1 Algorithmic Based Fault Tolerance (ABFT)

Algorithmic-based checking allows for cost-effective fault tolerance by embedding a tailored
checking, and possibly correcting, scheme within the algorithm to be performed. It relies on
a modified form of the algorithm that operates on redundantly encoded data, and that can
decode the results to check for errors which might have occurred during execution. Since the
redundancy coding is tailored to a specific algorithm, various trade-offs between accuracy and
cost can be made by the user [63, 64]. Therein also lies this technique’s main weakness as it is
not applicable to arbitrary programs and requires time-consuming algorithm development. In
the case of linear algorithms amenable to compiler analysis, an automatic technique for ABFT
synthesis was introduced in [63]. ABFT enabled algorithms have been developed for various
applications including linear algebra operations such as matrix multiplication [65, 66] and QR
decomposition [67] as well as the compiler synthesis approach mentioned above, FFT [68], and
multi-grid methods [69]. A full description of the actual ABFT techniques is beyond the scope of
this paper. It should be mentioned that the finite precision of actual computations adds some
complication to these algorithms but can be dealt with in the majority of cases.

4.4.2 Assertion and Sanity-Based Fault Tolerance

A less systematic approach to software fault detection, which still relies on specific knowledge of
the algorithm and program, is to have the programmer annotate the code with assertions and
invariants [70, 71, 72]. Although it is difficult to analyze the effectiveness of this technique in the
general case, it has been shown to provide high error-coverage at very low cost.

An interesting specific case of an assertion is to specify a few sanity checks and make sure
the result of the computation is reasonable. An example might be to check whether energy is
conserved in a physical system simulation. This technique is very simple to implement, does not
degrade performance, and is often extremely effective. In fact, it is probably the most common
technique employed by users when running programs on cluster machines and grids [73].

As in the case of ABFT, when the programmer knows these techniques will be effective, they
are most likely the least costly and can be used without employing any hardware methods.

4.5 Hybrid Techniques

Most resiliency schemes focus on one or more of the aforementioned hardware or software tech-
niques to achieve a target error coverage. However, despite the number and variety of existing
techniques, the resiliency design space remains relatively sparse—achieving high error coverage
either takes prohibitively much area and power, or incurs a heavy performance overhead. In addi-
tion, not all workloads demand the same amount of error tolerance. Hybrid software-hardware
resiliency schemes, where software mechanisms operate with some architectural support, offer a
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cost effective way to explore the spatial and time-based dimensions of the design space. Hybrid
techniques also can give the flexibility to dynamically tradeoff reliability and performance to best
suit an application’s needs.

Relax [74] uses try/catch like semantics to provide reliability though a cooperative hardware-
software approach. Relax relies on low-latency hardware error detection capabilities while
software handles state preservation and restoration. The programmer uses the Relax framework
to declare a block of instructions as “relaxed”. It is the obligation of the compiler to ensure that a
relaxed code block can be re-executed or discarded upon a failure. As a result, hardware can relax
the safety margin (e.g., frequency or voltage) to improve performance or save energy, and the
programmer can tune which block of codes are relaxed and how the recovery is done.

FaulTM [75] is another research project which uses transactional semantics for reliability.
FaulTM uses hardware transactional memory with lazy conflict detection and lazy data versioning
to provide hybrid hardware-software fault-tolerance. While the programmer declares a vulnerable
block (similar to transactional memories and Relax), lazy transactional memory (in hardware)
enables state preservation and restoration of a user-defined-block. FaulTM duplicates a vulnerable
block across two different cores for reliable execution.

CRAFT [76] is a hybrid approach which combines the software-only approach of replicated
instructions and checks [56] with some time redundant multithreading-style hardware support in
order to achieve higher error coverage and slightly improved performance [46, 51]. By taking
a hybrid approach, CRAFT achieves better reliability and performance than the software-only
approach while requiring less additional area than time redundant multithreading. Performance
is still degraded to a large degree compared to aggressive hardware-based resiliency approaches,
however.

Argus [77] also takes a hybrid approach for control protection. Argus compiler generates
static control/data flow graph, and this information is inserted into the instruction stream as
basic block signatures. At runtime, hardware modules generate dynamic control/data flow graph
and perform comparisons against the static information passed from the compiler. While this
provides an economic way of protecting control, computation must also be protected in order to
avoid silent data corruption. Argus employs previously suggested techniques such as modulo
checker for protecting the ALU and Multiplier/Divider.

5 System-Level Detection Mechanisms

Detection mechanisms at higher levels in the system hierarchy encapsulate those at the single
core level and the entire system level. Potentially, another layer of hierarchy can be inserted by
grouping a certain number of cores together for management purposes, but we will touch upon
such an organization when we discuss detection mechanisms at the system level.
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5.1 Detection at the Core Level

One implementation of detection at the core level is utilized in the IBM z990 processor [78].
It integrates multiple hardware techniques discussed thus far in Sections 3 and 4 together to
create a fault-tolerant core with the most efficient detection mechanisms for different parts of the
system. Overall, the techniques used in IBM z990 are ECC, parity, retry (re-execution), mirroring
(hardware duplication), checkpointing, and rollback.

In IBM z990, ECC and parity are the main choice of detection mechanisms for the components
of the memory hierarchy. The main memory is protected by 2-bit symbols. Furthermore, there is
extra ECC to detect hard and soft errors on the address lines. L2 caches are again protected by
ECC, which allows purging, cleaning, and/or invalidation of data as necessary. Moreover, the
system keeps track of persistent errors in the cache, and if one exists, it shuts down the cache line
causing the error. Simultaneously, the L2 pipeline is checked against errors by parity bits placed
in each stage of the pipeline. In case of repeating errors, the system turns off the entire core. Other
SRAMs and register files are similarly protected by ECC and parity. Finally, the memory address
and command interface is covered by parity with re-execution of the memory command in cases
of failure.

The datapath and the surrounding logic also benefit from ECC and parity; however, other
more suitable techniques exist for these parts of the IBM z990. Logic in the pipeline is mirrored
and checkpointed. The results of the duplicated hardware are compared against each other, and
the core returns to the checkpointed state if the results do not match. Similarly, fetch data bus, I/O
buses, and the store address stack are protected by parity with recovery through checkpointing
and rollback. If the error persists, the entire core is turned off. Furthermore, to create an even
more robust system, the checkpoint arrays themselves are protected by ECC as a second layer of
protection. Control signals in the pipeline are protected by ECC in each stage, and the progatation
of this ECC data is checked with parity bits. I/O operations are also covered by parity with
re-execution on errors. Finally, ECC is recommended for off-chip address and control signals in
SMPs.

5.2 Detection at the System Level

5.2.1 Detecting Network Failures

In [79, 80], network communications are protected by having strong error detection on all data
paths and structures. ECC is used to protect memories and data paths. Network packet transfers
are protected with cycle redundancy checks (CRC). The network provides a 16-bit packet CRC,
which protects up to 64-byte of data and the associated headers (768 bits max). The receiving link
checks the CRC as a packet arrives, returning an error if it is incorrect. The CRC is also checked
as a packet leaves each device, and as it transitions from the router to the NIC, enabling detection
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of errors occurring within the router core. Furthermore, many of these paths and structures also
have error correction.

When an unrecoverable hardware error is detected, some form of notification is always
generated. For errors in data payloads, the errors are reported directly to the client that requested
the communication. This is usually done in the form of completion events where the error
indication is included as part of that event. For severe errors that might affect the operation of the
network, the operating system is also informed via an interrupt.

Errors in control information are more problematic in that the client information cannot be
trusted when this occurs. So a direct report to the client is not always possible. Instead, the
communication is usually dropped at the point of this kind of error. However, every communica-
tion on the network is tracked in various ways that always include hardware timeout mechanisms
to report if the communication has been lost. These timeouts are also reported via the completion
events. Again, severe errors are reported to the operating system via an interrupt if they are
detected in hardware directly associated with a node. If the error is detected in hardware not
associated with a particular node, the error is reported to the independent supervisory system
(which uses a separate network and processors).

In addition, any such errors, either in payload or control information, are always reported at
the point of occurrence, usually to the supervisory system. This reporting channel is intended to
be used for maintenance purposes.

5.2.2 Detecting Node Failures

Node failures are usually detected by closely monitoring them for health [81]. The monitoring is
accomplished by requiring an operating system thread on every node to increment a heartbeat
counter that is checked by the independent supervisory system. This thread also verifies that all
of the cores of a node are functional, at least with the ability to schedule and run the heartbeat
thread. When the supervisory system detects a lack of heartbeat, a failure event is generated.
Other nodes in the system may subscribe for that event so that they are notified of any particular
node failure.

In addition, the job launch and control system maintains a control tree of communication
connections between the nodes in a job. If any of these connections fail, the nodes at the far end of
the connection are considered down. This causes the entire job to be torn down in [81]. However,
it has been suggested that we could optionally trigger a notification to the job and a reconstruction
of the control tree. The receipt of the above node failure notifications by the job launch and
control system from the supervisory system can also optionally trigger this notification and
reconstruction.
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6 Conclusion

In this report, we enumerate diverse existing error detection mechanisms for memory, compute,
and system. The error detection mechanisms are further classified based on their redundancy type,
placement in the system hierarchy, and error type coverage. As a qualitative trade-off analysis,
techniques in each category are explained in detail and compared to one another where applicable.
It is shown that different techniques have different trade-offs in terms of performance, energy and
area. This analysis should provide an important insight in achieving efficient resiliency within
the Echelon system.
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