Containment Domains: a Full System Approach to Computational Resiliency

Containment Domains API (C++)

Revision 0.1
Michael Sullivan Ikhwan Lee Jinsuk Chung
Song Zhang Seong-Lyong Gong Derong Liu
Michael LeBeane Kyushick Lee Mattan Erez

Up to date HTML version at 1ph.ece.utexas.edu/users/CDAPI
mailto:cds@lph.ece.utexas.edu

Locality, Parallelism, and Hierarchy Group

Department of Electrical and Computer Engineering
The University of Texas at Austin

This research was, in part, funded by the U.S. Government with partial support from the Department of Energy under Awards DE-
SC0008671 and DE-SC0008111. The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the U.S. Government.

Generated by Doxygen 1.8.7 on Sun May 18 2014

lph.ece.utexas.edu/users/CDAPI
mailto:cds@lph.ece.utexas.edu

Contents

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Containment Domains e e e 1
0.1.1 Containment Domains Overview e 1
Examples e e e e 2
0.2.1 Examples e 2
0.2.1.1 SpMV Example e 2
Todo List o e 5
Module Index e 5
0.4.1 Modules e 5
Namespace Index e 6
051 Namespace List. 6
Class Index e 6
0.6.1 ClassList e 6
File Index o e 6
0.7.1 FileList e e 6
Module Documentation e e 7
0.8.1 CD-Related Definitions 7
0.8.1.1 Detailed Description e 7
0.8.1.2 Enumeration Type Documentation o 7
0.8.2 PGAS-Specific Methodsand Types o i 9
0.8.2.1 Detailed Description 9
0.8.2.2 Enumeration Type Documentation o 9
0.8.2.3 Function Documentation 9
0.8.3 ErrorReporting 11
0.8.3.1 Detailed Description 11
0.8.3.2 Enumeration Type Documentation o 11
0.8.3.3 Function Documentation 13
0.8.4 Preservation/Restoration Typesand Methods 15
0.8.4.1 Detailed Description 15

0.8.4.2 Enumeration Type Documentation o 15

CONTENTS

0.9

0.10

0.8.4.3 Function Documentation L 16
0.85 CDInitFunctions e 18
0.8.5.1 Detailed Description 18
0.8.5.2 Function Documentation 18
0.8.6 Global CD Accessor Functions 19
0.8.6.1 Detailed Description 19
0.8.6.2 Function Documentation 19
0.8.7 CD Hierarchy-Related Methods (create, begin, ...) 21
0.8.7.1 Detailed Description 21
0.8.7.2 Function Documentation L 21
0.8.8 Detection and Recovery Methods 25
0.8.8.1 Detailed Description 25
0.8.8.2 Function Documentation 25
0.8.9 Methods for Interacting with the CD Framework and Tuner. 29
0.8.9.1 Detailed Description 29
0.8.9.2 Function Documentation L 29
0.8.10 Profiler-related methods 31
0.8.10.1 Detailed Description e 31
0.8.10.2 Function Documentation L 31
0.8.11 CD Event Functions for Non-Blocking Calls 32
0.8.11.1 Detailed Description 32
0.8.11.2 Function Documentation 32
0.8.12 Internal Functions for Customizable Recovery 33
0.8.12.1 Detailed Description 33
0.8.12.2 Function Documentation 33
Namespace Documentation L e e e e e 35
0.9.1 cdNamespace Reference e 35
0.9.1.1 Detailed Description 36
Class Documentation e e 36
0.10.1 cd::CDEventClass Reference 36
0.10.1.1 Detailed Description 37
0.10.1.2 Member Data Documentation 37
0.10.2 cd:CDHandle Class Reference 37
0.10.2.1 Detailed Description 38
0.10.2.2 Member Data Documentation Lo 38
0.10.3 CDlInternalPtr Class Reference e 39
0.10.3.1 Detailed Description e 39

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

CONTENTS v

0.11

0.12

0.10.4 cd::CDNameT Struct Reference 39
0.10.4.1 Detailed Description 39
0.10.5 cd::DegradedMemErrinfo Class Reference 40
0.10.5.1 Detailed Description 40
0.10.6 RecoverObject Class Reference 41
0.10.6.1 Detailed Description 41
0.10.6.2 Member Function Documentation oo 41
0.10.7 cd::RegenObject Class Reference 41
0.10.7.1 Detailed Description 42
0.10.7.2 Member Function Documentation o 42
0.10.8 cd::SoftMemErrinfo Class Reference 42
0.10.8.1 Detailed Description L 43
0.10.9 cd::SysErnT Struct Reference e 43
0.10.9.1 Detailed Description 44
File Documentation e e e e 44
0.11.1 cd.h FileReference 44
0.11.1.1 Detailed Description e 46
Example Documentation L. e e 46
0.12.1 SPMV.CC . . . o o ot e e e e 46
.. 50

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.1 Containment Domains 1

0.1 Containment Domains

Containment Domains APl v0.1 (C++)

Author

Kyushick Lee, Jinsuk Chung, Song Zhang, Seong-Lyong Gong, Derong Liu, Mattan Erez

Date
March 2014

Note
Print version available at http://lph.ece.utexas.edu/public/CDs
The purpose of this document is to describe a CD API for programming CD-enabled applications. A complete discussion

of the semantics of containment domains is out of scope of this document; the latest version of the semantics is available
athttp://lph.ece.utexas.edu/public/CDs.

0.1.1 Containment Domains Overview

Containment domains (CDs) are a new approach that achieves low-overhead resilient and scalable execution (see
http://lph.ece.utexas.edu/public/CDs). CDs abandon the prevailing one-size-fits-all approach to re-
silience and instead embrace the diversity of application needs, resilience mechanisms, and the deep hierarchies ex-
pected in exascale hardware and software. CDs give software a means to express resilience concerns intuitively and
concisely. With CDs, software can preserve and restore state in an optimal way within the storage hierarchy and can
efficiently support uncoordinated recovery. In addition, CDs allow software to tailor error detection, elision (ignoring
some errors), and recovery mechanisms to algorithmic and system needs.

Todo Write a more significant introduction and put sections for what are currently modules

For now, the documentation is organized around the following "modules”, which can also be accessed through the
"Modules" tab on the HTML docs.

+ CD Init Functions

» Global CD Accessor Functions

» CD Hierarchy-Related Methods (create, begin, ...)

* Preservation/Restoration Types and Methods

» Detection and Recovery Methods

— Error Reporting
— Internal Functions for Customizable Recovery

» Methods for Interacting with the CD Framework and Tuner
» PGAS-Specific Methods and Types

» CD Event Functions for Non-Blocking Calls

+ CD-Related Definitions

» Examples

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

http://lph.ece.utexas.edu/public/CDs
http://lph.ece.utexas.edu/public/CDs
http://lph.ece.utexas.edu/public/CDs

CONTENTS

Note

0.

This research was, in part, funded by the U.S. Government with partial support from the Department of Energy
under Awards DE-SC0008671 and DE-SC0008111. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied,

of the U.S. Government.

2 Examples

0.2.1 Examples

0.2.1.1 SpMV Example

/%
Co
Al

TH

Re
mo
me

1.
no

2.
no
do

3.
co

pyright 2014, The University of Texas at Austin
1 rights reserved.

IS FILE IS PART OF THE CONTAINMENT DOMAINS RUNTIME LIBRARY

distribution and use in source and binary forms, with or without
dification, are permitted provided that the following conditions are
t:

Redistributions of source code must retain the above copyright
tice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright
tice, this list of conditions and the following disclaimer in the
cumentation and/or other materials provided with the distribution.

Neither the name of the copyright holder nor the names of its
ntributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

B A N R

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

@file spmv.cc
@author Mattan Erez
@date March 2014

@brief Hierarchical SpMV CD Example

The SpMV computation consists of iteratively multiplying a constant
matrix by an input vector. The resultant vector is then used as the
input for the next iteration. We assume that the matrix and vector
are block partitioned and assigned to multiple nodes and cores. This
simple application demonstrates many of the features of CDs and how
they can be used to express efficient resilience.

One of the advantages of containment domains is that preservation and
recovery can be tailored to exploit natural redundancy within the
machine. A CD does not need to fully preserve its inputs at the
domain boundary; partial preservation may be utilized to increase
efficiency if an input naturally resides in multiple locations.
Examples for optimizing preserve/restore/recover routines include
restoring data from sibling CDs or other nodes which already have a
copy of the data for algorithmic reasons.

Hierarchical SpMV exhibits natural redundancy which can be
exploited through partial preservation and specialized

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.2

Examples

* ok ok o ok ok ok ot

#in

cla
pub

recovery. The input vector is distributed in such a way that

redundant copies of the vector are naturally distributed throughout

the machine. This is because there are \f$ N_0 \times N_0 \f$ fine-grained
sub-blocks of the matrix, but only \f$ N_O \f$ sub-blocks in the vector.

This is a hierarchical/recursive form of SpMV that uses some
pseudocode just to demonstrate the usage of the CD API

clude "cd.h"
ss VInRegen : public RegenType {
lic:

VInRegen (uint64_t task_num, uint subpartition) {

}

c

pro
u
u

bi
*
*
*
*
*

*/

voi

task_num_ = task_num; subparition_ = subpartition;

DErrType Regenerate (voidx data_ptr, uinté64_t len) {
// During recovery (re—execution) Preserve acts like Restore
// Writing this regeneration, which is really recovering data from
// a sibling that has the same copy of the input vector is
// difficult without assuming a specific parallelism
// runtime. Unfortunately, both my MPI and UPC are rusty so I
// can’t do it right now. The idea is that we know which sibling
// has data that we need based on the matrix partitioning and that
// we know our subpartition number. We can then use the
// parallelism runtime (or whoever tracked the task recursion) to
// know which thread/rank/... this sibling is in, but we still
// need to know its pointer to do a one-sided transfer of the data
// because recovering this CD is independent of the sibling).

tected:
int64_t task_num_;
int subpartition_;

@brief The recursive part that decomposes the problem for parallelism and containment.

For simplicity, we assume that the input matrix has been
pre-partitioned to the appropriate number of levels to allow the
recursion to work correctly.

d SpMVRecurse (const SparseMatrixx matrix,
const HierVectorx v_in,
HierVectorx v_out,
const CDHandle* current_cd,
uint num_tasks

) A

(num_tasks > RECURSE_DEGREE) {
uint tasks_per_child = num_tasks/RECURSE_DEGREE; // assume whole multiple
for (int child=0; child < RECURSE_DEGREE; child++) {
// assume that all iterations are all in parallel
CDHandlex child_cd;
// Creating the children CDs here so that we can more easily use
// a collective mpi_comm_split-like Create method. This would be
// easier if done internally by parallelism runtime/language
child_cd = current_cd->CreateAndBegin(child, tasks_per_child);
// Do some preservation
CDEvent preserve_event;
child_cd->Preserve (preserve_event,
matrix->Subpartition(child), // Pointer to
// start of subpartition within recursive matrix
matrix—->SubpartitionLen(child), // Length in
// bytes of subpartition
kCopy | kParent, // Can either create another
// copy or use the parent’s
// preserved matrix with
// appropriate offset
"Matrix",
"Matrix", matrix->PartitionOffset (),
0,
kReadOnly
)i
// Regen object for input vector, assuming there is a
// parallelism runtime that tracks recursion tree through task numbers
VInRegen v_in_regen (ParRuntime: :MyTaskNum(), child);
child_cd->Preserve (preserve_event, // Chain this event

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

4 CONTENTS

v_in->Subpartition (child),
v_in->SubpartitionLen(child),
kCopy | kParent | kRegen,
"vIn",
"vIn", v_in->PartitionOffset (),
&v_in_regen
)i
// Do actual compute
SpMVRecurse (matrix—->Subpartition (child),
v_in->Subpartition (child),
v_out->Subpartition(child),
child_cd, tasks_per_child);
// Complete the CD
preserve_event->Wait (); // Make sure preservation completed
child_cd->Complete () ;
child_cd->Destroy();

{
- (int child=0; child < num_tasks; child++) {
// assume that all iterations are all in parallel
CDHandlex child_cd;
CDHandlex child_cd = current_cd->Create();
child_cd->Begin();
// Do some preservation
CDEvent preserve_event;
child_cd->Preserve (preserve_event,
matrix->Partition(), // Pointer to
// start of subpartition within recursive matrix
matrix->PartitionLen(), // Length in
// bytes of subpartition
kCopy | kParent, // Can either create another
// copy or use the parent’s
// preserved matrix with
// appropriate offset
"Matrix",
"Matrix", matrix->PartitionOffset (),
0,
kReadOnly
)i
VInRegen v_in_regen (ParRuntime: :MyTaskNum(), child);
child_cd->Preserve (preserve_event, // Chain this event
v_in->Partition(),
v_in->SubpartitionLen(),
kCopy | kParent | kRegen,
"vIn",
"vIn", v_in->PartitionOffset (),
&v_in_regen
)i
// Do actual compute
SpMVLeaf (matrix—->Subpartition (child),
v_in->Subpartition(child),
v_out->Subpartition(child),
child_cd, tasks_per_child);
child_cd->Complete();
child_cd->Destroy();

v_out—->ReduceSubpartitions (num_tasks);
}

void SpMVLeaf (const SparseMatrix* matrix,
const HierVectorx v_in,
HierVectorx v_out,
const CDHandle* current_cd,
uint num_tasks
) o

for (uint row=0; row < matrix->NumRows (); row++) {
v_out[row] = 0.0;
for (unit col = matrix->RowStart[row];
col < matrix->RowStart[row+1l];
col++) |
uint prev_idx = 0;
uint idx = matrix->Index[col];
v_out [row] += matrix->NonZero[col]l*v_in[idx];
CDAssert (idx >= prev_idx); // data structure sanity check
prev_idx = idx;

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.3 Todo List 5

0.3 Todo List

Member cd::CDHandle::GetErrorProbability (SysErrT error_type, uint error_num,)
Decide on rate vs. number+probability

Member cd::CDHandle::RegisterRecovery (uint error_name_mask, uint error_loc_mask, RecoverObject
xrecover_object=0)
Does registering recovery also imply turning on detection? Or is that done purely through RequireErrorProbability()?

Member cd::CDHandle::RequireErrorProbability (SysErrT error_type, uint error_num, float probability, bool
fail_over=true)

Decide on rate vs. number+probability

Member cd::CDHandle::SetPGASUsage (void xdata_ptr, uint64_t len, PGASUsageT region_type=kShared)
Do we want to expose explicit logging functions?

Class cd::CDNameT

Decide on whether to represent a CD name as (level, num) oras typedef std::vector<uint> CDName«
T; to represent the path through the tree branches.

Member cd::SysErrLocT
is SysErrLocT comprehensive enough for portability?

Member cd::SysErrNameT
Is SysErrNameT comprehensive enough for portability?

segv (segmentation violations) can be used as proxy for soft memory errors using the existing kernel infrastructure

Group cd_error_probability
What about specifying leniant communication-related errors for relaxed-CDs context?

Member CDInternalPtr::InternalReexecute ()
Discuss other aspects of reexecution (e.g., logging). [FIXME] Discuss other aspects of reexecution (e.g., logging).

page Containment Domains
Write a more significant introduction and put sections for what are currently modules

Class RecoverObject
Write some example for custom recovery (see GVR interpolation example, although they do it between versions).

0.4 Module Index

0.4.1 Modules

Here is a list of all modules:

CD-Related Definitions L e e 7
PGAS-Specific Methods and Types e 9
Error Reporting e e 11
Preservation/Restoration Typesand Methods L o 15
CD InitFunctions e e 18
Global CD Accessor Functions e 19
CD Hierarchy-Related Methods (create, begin, ...) 21

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

6 CONTENTS

Detection and Recovery Methods e 25
Methods for Interacting with the CD Frameworkand Tuner 29
Profiler-related methods L 31
CD Event Functions for Non-Blocking Calls 32
Internal Functions for Customizable Recovery 33

0.5 Namespace Index

0.5.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

cd
Containment Domains namespace for global functions, types, and main interface 35

0.6 Class Index

0.6.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

cd::CDEvent

An object that provides an event identifier to a non-blocking CD runtimecall 36
cd::CDHandle

An object that provides a handle to a specific CD instance 37
CDlInternalPtr

A class that represents the interface to the internal implementation of anactualCD 39
cd::CDNameT

Atype to uniquely name a CD inthetree 39
cd::DegradedMemErrinfo

Interface to degraded memory error information L L L oL 40
RecoverObject

Recovery method that can be inherited and specializedbyuser 4
cd::RegenObject

Interface for specifying regeneration functions for preserve/restore 41
cd::SoftMemErrinfo

Interface to soft memory error information L L L L 42
cd::SysErT

Type for specifying errors and failure Lo 43

0.7 File Index

0.7.1 File List

Here is a list of all documented files with brief descriptions:

cd.h
Containment Domains APIv0.1 (C+4) o o e 44

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 7

0.8 Module Documentation

0.8.1 CD-Related Definitions

Classes

« struct cd::CDNameT

A type to uniquely name a CD in the tree.

Enumerations

» enum cd::CDModeT { cd::kStrict =0, cd::kRelaxed }

Type for specifying whether a CD is strict or relaxed.
» enum cd::CDExecutionModeT { cd::kExec =0, cd::kReexec }

Type for specifying whether the current CD is executing for the first time or is currently reexecuting as part of recovery.
« enum cd::PreserveUseT { cd::kUnsure =0, cd::kReadOnly = 1, cd::kReadWrite = 2 }

Type to indicate whether preserved data is from read-only or potentially read/write application data.

0.8.1.1 Detailed Description

The CD-Related Definitions module includes general CD-related type definitions that don’t fall into other type definitions
(Error Reporting and Preservation/Restoration Types and Methods).

0.8.1.2 Enumeration Type Documentation

0.8.1.2.1 enum cd::CDExecutionModeT

Type for specifying whether the current CD is executing for the first time or is currently reexecuting as part of recovery.

During reexecution, data is restored instead of being preserved. Additionally, for relaxed CDs, some communication
and synchronization may not repeated and instead preserved (logged) values are used. See http://lph.ece.«
utexas.edu/public/CDs for a detailed description. Note that this is not part of the cd_internal namespace
because the application programmer may want to manipulate this when specifying specialized recovery routines.

Enumerator

kExec First execution.
kReexec Rexecution.

0.8.1.22 enumcd::CDModeT

Type for specifying whether a CD is strict or relaxed.

This type is used to specify whether a CD is strict or relaxed. The full definition of the semantics of strict and relaxed
CDs can be found in the semantics document under http://lph.ece.utexas.edu/public/CDs. In brief,
concurrent tasks (threads, MPI ranks, ...) in two different strict CDs cannot communicate with one another and must first
complete inner CDs so that communicating tasks are at the same CD context. Tasks in two different relaxed CDs may
communicate (verified data only). Relaxed CDs typically incur additional runtime overhead compared to strict CDs.

Enumerator

kStrict A strict CD.
kRelaxed A relaxed CD.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

http://lph.ece.utexas.edu/public/CDs
http://lph.ece.utexas.edu/public/CDs
http://lph.ece.utexas.edu/public/CDs

8 CONTENTS

0.8.1.2.3 enum cd::PreserveUseT

Type to indicate whether preserved data is from read-only or potentially read/write application data.

See also

CDHandle::Preserve(), CDHandle::Complete()

Enumerator

kUnsure by the CD (treated as Read/Write for now, but may be optimized later) Not sure whether data being
preserved will be written

kReadOnly Data to be preserved is read-only within this CD.
kReadWrite Data to be preserved will be modified by this CD.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 9

0.8.2 PGAS-Specific Methods and Types
Enumerations

» enum cd::PGASUsageT { cd::kShared = 0, cd::kPotentiallyShared, cd::kPrivatized, cd::kPrivate }
Different types of PGAS memory behavior for relaxed CDs.

Functions

» CDErT cd::CDHandle::SetPGASUsage (void xdata_ptr, uinté4_t len, PGASUsageT region_type=kShared)

Declare how a region of memory behaves within this CD (for Relaxed CDs)
* CDErT cd::CDHandle::SetPGASOwnerWrites (void xdata_ptruinté4_t len, bool owner_writes=true)

Simplify optimization of discarding relaxed CD log entries.

0.8.2.1 Detailed Description
0.8.2.2 Enumeration Type Documentation

0.8.2.2.1 enumcd::PGASUsageT

Different types of PGAS memory behavior for relaxed CDs.

Please see the CD semantics document at http://1ph.ece.utexas.edu/public/CDs for a full description
of PGAS semantics. In brief, because of the logging/tracking requirements of relaxed CDs, it is important to identify
which memory accesses may be for communication between relaxed CDs vs. memory accesses that are private (or
temporarily privatized) within this CD.

Enumerator

kShared Definitely shared for actual communication.

kPotentiallyShared CD, essentially equivalent to kShared for CDs. Perhaps used for communication by this
kPrivatized communication during this CD. Shared in general, but not used for any

kPrivate Entirely private to this CD.

0.8.2.3 Function Documentation

0.8.2.3.1 CDErT cd::CDHandle::SetPGASOwnerWrites (void xdata_ptruint64_t len, bool owner_writes =t rue)

Simplify optimization of discarding relaxed CD log entries.

When using relaxed CDs, the CD runtime may log all communication with tasks that are in a different CD context. While
privatizing some accesses reduces logging volume, all logged entries must still be propagated and preserved up the CD
tree for distributed recovery. Log entries may be discarded when both the task that produced the data and the task that
logged it are in the same CD (after descendant CDs complete and "merge"). This can always be guaranteed when the
least-common strict ancestor is reached, but may happen sooner. In order to identify the earliest opportunity to discard
a log entry, the CD runtime must track producers, which is impractical in general. In the specific and common scenario of
"owner computes”, however, it is possible to track the producer with low overhead. The SetPGASOwnerWrites() method
i used to indicate this behavior.

Returns

kOK on success.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

http://lph.ece.utexas.edu/public/CDs

10 CONTENTS

Parameters
in len | pointer to data to be "Typed"; _ currently must be in same address space as
calling task, but will extend to PGAS fat pointers later [in] Length of preserved
data (Bytes)
in owner_writes | Is the current CD the only CD in which this address range is written (until strict
ancestor is reached)?

0.8.2.3.2 CDEnT cd::CDHandle::SetPGASUsage (void * data_ptr, uint64_t len, PGASUsageT region_type = kShared)

Declare how a region of memory behaves within this CD (for Relaxed CDs)

Declare the behavior of a region of PGAS/GAS memory within this CD to minimize logging/tracking overhead. Ideally,
only those memory accesses that really are used to communicate between this relaxed CD and another relaxed CD are
logged/tracked.

Warning

For now, we are using an address to mark the type, but it is quite possible that using actual types and casting is
better. Unfortunately types cannot be done through an API interface and require a change to the language. It is
not clear how much overhead will be saved through just this API technique and we will explore language changes
(see discussion below).

In the UPC++ implementation, this API call should not be used, and a cast from shared_array to privatized«
_array (or shared_var to privatized_var) is preferred. UPC++ implementation should be quite straight-
forward

Todo Do we want to expose explicit logging functions?

Discussion on 3/11/2014:

Just in UPC runtime, perhaps cram a field that says log vs. unlogged into the pointer representation (steal one bit). That
we can perhaps do just in the runtime. A problem is that all pointer operations (e.g., comparisons) need to know about
this bit.

If adding to the compiler, then should be done at same point as strict and relaxed are done.

There is also a pragma that can be used for changing the default behavior from shared to privatized (assuming that all
or at least vast majority of accesses) within a code block are such. This might be easier than casting.

Parameters
in data_ptr | pointer to data to be "Typed"; __ currently must be in same address space as
calling task, but will extend to PGAS fat pointers later
in len | Length of preserved data (Bytes)
in region_type | How is this memory range used (shared for comm or not?)

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 11

0.8.3 Error Reporting

Classes

« class cd::SoftMemErrinfo

Interface to soft memory error information.
* class cd::DegradedMemErrinfo

Interface to degraded memory error information.
« struct cd::SysErT

Type for specifying errors and failure.

Enumerations

+ enum cd::SysErrNameT {
cd::kOK =0, cd::kSoftMem = 0b1, cd::kDegradedMem = 0b01, cd::kSoftComm = 0b001,
cd::kDegradedComm = 0b0001, cd::kSoftComp = 0b00001, cd::kDegradedResource =0b000001, cd::kHard«
Resource = 0b0000001,
cd::kFileSys = 0b00000001 }

Type for specifying system errors and failure names.
+ enum cd::SysErrLocT {
cd::kOK =0, cd::kIntraCore = 0b1, cd::kCore = 0b01, cd::kProc = 0b001,
cd::kNode = 0b0001, cd::kModule = 0b00001, cd::kCabinet = 0b000001, cd::kCabinetGroup =0b0000001,
cd::kSystem = 0b00000001 }

Type for specifying errors and failure location names.
« enum cd::CDErT { cd::kOK =0, cd::kAlreadylnit, cd::kError }

Type for specifying error return codes from an API call — signifies some failure of the API call itself, not a system failure.

Functions

« uint cd::DeclareErrName (const char xname_string)

Create a new error/failure type name.
* CDErT cd::UndeclareErrName (uint error_name_id)

Free a name that was created with DeclareErrorName()
+ uint cd::DeclareErrLoc (const char xname_string)

Create a new error/failure type name.
» CDErT cd::UndeclareErrLoc (uint error_name_id) class SysErrinfo

Free a name that was created with DeclareErrLoc()
0.8.3.1 Detailed Description

The Error Reporting module includes the definition of types and methods used for system and CD runtime error/failure
reporting.
0.8.3.2 Enumeration Type Documentation

0.8.3.21 enumcd::CDErrT

Type for specifying error return codes from an API call — signifies some failure of the API call itself, not a system failure.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

12 CONTENTS

Unlike SysErrNameT, CDErrT is not for system errors, but rather errors originating from the CD framework itself.

For now, only returning OK or error, but will get more elaborate in future versions of this API.
Enumerator

kOK No errors/failures. Call executed without error.
kAlreadylnit Init called more than once.
kError Call did not execute as expected.

0.8.3.2.2 enum cd::SysErrLocT

Type for specifying errors and failure location names.
Please see SysErrNameT for discussion of intent and defintions

This is really not that suitable for all topologies, but the intent really is to be rather comprehensive to maintain portability
— how do we resolve this?

Todo is SysErrLocT comprehensive enough for portability?

See also

SysErrNameT, DeclareErrLoc(), UndeclareErrLoc()

Enumerator

kOK No errors/failures. Call executed without error.
kintraCore Within a part of a core.

kCore A core.

kProc Processor.

kNode Same as processor?

kModule Module.

kCabinet A cabinet.

kCabinetGroup Some grouping of cabinets.
kSystem Entire system.

0.8.3.2.3 enum cd::SysErrNameT

Type for specifying system errors and failure names.

This type represents the interface between the user and the system with respect to errors and failures. The intent
is for these error/failure names to be fairly comprehensive with respect to system-based issues, while still providing
general/abstract enough names to be useful to the application programmer. The use categories/names are meant to
capture recovery strategies that might be different based on the error/failure and be comprehensive in that regard.
The DeclareErrName() method may be used to create a programmer-defined error that may be associated with a
programmer-provided detection method.

We considered doing an extensible class hierarchy like GVR, but ended up with a hybrid type system. There are prede-
fined bit vector constants for error/failure names and machine location names. These may be extended by application
programmers for specialized detectors. These types are meant to capture abstract general classes of errors that may
be treated differently by recovery functions and therefore benefit from easy-to-access and well-defined names. Ad-
ditional error/failure-specific information will be represented by the SysErrinfo interface class hierarchy, which may be
extended by the programmer at compiler time. Thus, each error/failure is a combination of SysErrNameT, SysErrLocT,
and SysErrinfo.

This needs more thought

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 13

Warning

The SysErrNameT and SysErrLocT are extensible by a runtime call to generate a new constant, but SysErrInfo is
a class hierarchy and extended at compile time by inhereting the interface — is this a problem? Should we go the
GVR way with all extensions done at runtime and all accesses with potential runtime methods and no compile-time
typing?

Todo Is SysErrNameT comprehensive enough for portability?

segv (segmentation violations) can be used as proxy for soft memory errors using the existing kernel infrastructure

See also

SysErrLocT, DeclareErrName(), UndeclareErrName()

Enumerator

kOK No errors/failures. Call executed without error.

kSoftMem Soft memory error (info includes address range and perhaps syndrome)

kDegradedMem Hard memory error that disabled some memory capacity (info includes address range(s))
kSoftComm (info includes message info) Soft communication error

kDegradedComm Some channel loss.

kSoftComp includes affected PC and perhaps bounds on the error?) Soft compute error (info
kDegradedResource functionality Resource lost some

kHardResource (control/reachability failure). Resource entirely lost

kFileSys Some file

0.8.3.3 Function Documentation

0.8.3.3.1 uint cd::DeclareErrLoc (const char x name_string)

Create a new error/failure type name.

Returns

Returns a "constant" corresponding to a free bit location in the SysErrNameT bitvector.

See also

SysErrNameT, SysErrLocT, UndeclareErrLoc()

Parameters

] name_string \ user-specified name for a new error/failure location

0.8.3.3.2 uint cd::DeclareErrName (const char x name_string)

Create a new error/failure type name.

Returns

Returns a "constant" corresponding to a free bit location in the SysErrNameT bitvector.

See also

SysErrNameT, SysErrLocT, UndeclareErrName()

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

14 CONTENTS

Parameters

name_string | user-specified name for a new error/failure type

0.8.3.3.3 CDErT cd::UndeclareErrLoc (uint error_name_id)

Free a name that was created with DeclareErrLoc()

Returns

Returns kOK on success.

See also

SysErrNameT, SysErrLocT, DeclareErrLoc()Interface to error/failure-specific information

An abstract interface to specific error/failure information, such as address range, core number, degradation, specific lost
functionality, ...

This is an empty interface because the information is very much error dependent. Also defining a few specific initial
examples below. This follows the GVR ideas pretty closely.

See also

SoftMemErrinfo, DegradedMemErrinfo

Parameters

error_name_id | D to free

0.8.3.3.4 CDEnT cd::UndeclareErrName (uint error_name_id)
Free a name that was created with DeclareErrorName()
Returns

Returns kOK on success.
See also

SysErrNameT, SysErrLocT, DeclareErrName()

Parameters

error_name_id | D to free

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 15

0.8.4 Preservation/Restoration Types and Methods
Classes

« class cd::RegenObject

Interface for specifying regeneration functions for preserve/restore.

Enumerations

« enum cd::PreserveMechanismT { cd::kCopy =0b001, cd::kRef =0b010, cd::kRegen =0b100 }

Type for specifying preservation methods.

Functions

* CDErT cd::CDHandle::Preserve (void xdata_ptr, uint64_t len, uint_t preserve_mask=kCopy, const char xmy«
_name=0, const char xref_name=0, uint_64t ref_offset=0, const RegenObject *xregen_object=0, PreserveUseT
data_usage=kUnsure)

Preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.

* CDErrT cd::CDHandle::Preserve (CDEvent &cd_event, void xdata_ptr, uint64_t len, uint_t preserve_mask=kCopy,
const char xmy_name=0, const char xref_name=0, uint_64t ref_offset=0, const RegenObject xregen_object=0,
PreserveUseT data_usage=kUnsure)

Non-blocking preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.

0.8.4.1 Detailed Description

The Preservation/Restoration Types and Methods module contains all preservation/restoration related types and meth-
ods.

0.8.4.2 Enumeration Type Documentation

0.8.4.2.1 enum cd::PreserveMechanismT

Type for specifying preservation methods.
See http://lph.ece.utexas.edu/public/CDs for a detailed description.

The intent is for this to be used as a mask for specifying multiple legal preservation methods so that the autotuner can
choose the appropriate one.

See also

RegenObject, CDHandle::Preserve()

Enumerator

kCopy Prevervation via copy copies the data to be preserved into another storage/mem location

kRef Preservation via reference indicates that restoration can occur by restoring data that is already preserved in
another CD. Restriction: in the current version of the API only the parent can be used as a reference.

kRegen Preservation via regenaration is done by calling a user-provided function to regenerate the data during
restoration instead of copying it from preserved storage.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

http://lph.ece.utexas.edu/public/CDs

16 CONTENTS

0.8.4.3 Function Documentation

0.8.4.3.1 CDEnT cd::CDHandle::Preserve (void x data_ptr, uint64_t len, uint_t preserve_mask =kCopy, const char x my_name =
0, const char x ref_name = 0, uint_64t ref offset = 0, const RegenObject x« regen_object = 0, PreserveUseT
data_usage = kUnsure)

Preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.

Preserves application data so that it can be restored for correct CD recovery (typically reexecution).

Preserve() preserves data on the first execution of the CD (kExec) but acts to restore data when a CD is reexecuted
(kReexec). Success is defined as successfully preserving or restoring 1en bytes of contiguous data starting at
address data_ptr.

In many cases there is more than one way to preserve data and the best way to do depends on machine-specific
characteristics. It is therefore possible to call Preserve() with a set of possible correct and legal preservation methods
and have an autotuner select the best one. This is done by setting the appropriate bits in the preserve_mask
parameter based on the constants defined by PreserveMethodT.

Returns

kOK on success and kError otherwise.

See also
Complete()
Parameters
in data_ptr | pointer to data to be preserved; __currently must be in same address space as
calling task, but will extend to PGAS fat pointers later
in len | Length of preserved data (Bytes)
in preserve_mask | Allowed types of preservation (e.g., kCopy | kRegen), default only via copy
in my_name | Optional C-string representing the name of this preserved data for later preserve-
via-reference
in ref_name | Optional C-string representing a user-specified name that was set by a previous
preserve call at the parent.; Do we also need an offset into parent preserva-
tion?
in ref_offset | explicit offset
regen_object | within the named region at the other CD (for restoration via reference) [in] optional
user-specified function for regenerating values instead of restoring by copying
in data_usage | This flag is used to optimize consecutive Complete/Begin calls where there is
significant overlap in preserved state that is unmodified (see Complete()).

0.8.4.3.2 CDEnT cd::CDHandle::Preserve (CDEvent & cd_event, void x data_ptr, uint64_t len, uint_t preserve_mask = kCopy,
const char x my_name = O, const char x ref_name = 0, uint_64t ref_offset = 0, const RegenObiject x regen_object = O,
PreserveUseT data_usage =kUnsure)

Non-blocking preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.

Preserves application data so that it can be restored for correct CD recovery (typically reexecution).

Preserve() preserves data on the first execution of the CD (kExec) but acts to restore data when a CD is reexecuted
(kReexec). Success is defined as successfully preserving or restoring 1en bytes of contiguous data starting at
address data_ptr.

In many cases there is more than one way to preserve data and the best way to do depends on machine-specific
characteristics. It is therefore possible to call Preserve() with a set of possible correct and legal preservation methods

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation

17

and have an autotuner select the best one. This is done by setting the appropriate bits in the preserve_mask
parameter based on the constants defined by PreserveMethodT.

The CDEvent object will be initialized to wait on this particular call if it is empty. If the CDEvent already contains an
event, then this new event is chained to it — in this way, the user can use a single CDEvent::Wait() call to wait on a
sequence of non-blocking calls.

Returns

kOK on success and kError otherwise.

See also
Complete()
Parameters
in, out cd_event | enqueue this call onto the cd_event
in data _ptr | pointer to data to be preserved; __ currently must be in same address space as
calling task, but will extend to PGAS fat pointers later
in len | Length of preserved data (Bytes)
in preserve_mask | Allowed types of preservation (e.g., kCopy | kRegen), default only via copy
in my_name | Optional C-string representing the name of this preserved data for later preserve-
via-reference
in ref_name | Optional C-string representing a user-specified name that was set by a previous
preserve call at the parent.; Do we also need an offset into parent preserva-
tion?
in ref_offset | explicit offset
regen_object | within the named region at the other CD [in] optional user-specified function for
regenerating values instead of restoring by copying
in data _usage | This flag is used to optimize consecutive Complete/Begin calls where there is
significant overlap in preserved state that is unmodified (see Complete()).

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

18 CONTENTS

0.8.5 CD Init Functions
Functions

+ CDHandle x* cd::Init (bool collective=trueCDErrT xerror=0)

Initialize the CD runtime.

0.8.5.1 Detailed Description

The CD Init Functions are used for initialization.

0.8.5.2 Function Documentation

0.8.5.2.1 CDHandlex cd::Init (bool collective =t rueCDErrT xerror=0)

Initialize the CD runtime.

Creates all necessary CD runtime components and data structures, initializes the CD runtime, and creates and begins
the root CD. At this point, the current CD is the root. cd: : Init () should only be called once per application.

There are two variants of this function. The first is a collective operation across all SPMD tasks currently in the applica-
tion. All tasks get a handle to the single root and begin the CD in a synchronized manner. The second variant is called
locally by a single task and synchronization, as well as broadcasting the handle are up to the programmer. Use of this
second variant is discouraged.

Returns

Returns a handle to the root CD; Returns kOK if successful, AlreadyInit if called more than once, and k«
Error if initialization is unsuccessful for some reason.

The handle to the root is also registered in some globally accessible variable so that it can be accessed by cd::Get«
CurrentCD() and cd::GetRootCD().

Parameters

in collective | Collective operation (default) or called from only a single task (discouraged)
[in,out] Pointer for error return value (kOK on success, kAlreadylnit if trying to
re-initialize, and kError on other failures); no error value returned if error=0.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 19

0.8.6 Global CD Accessor Functions
Functions

» CDHandle * cd::GetRootCD ()

Accessor function to root CD of the application.
+ CDHandle * cd::GetCurrentCD ()

Accessor function to current active CD.
* CDErT cd::SetCurrentCD (const CDHandle *cd)

Accessor function for setting the current active CD.

0.8.6.1 Detailed Description

The Global CD Accessor Functions are used to get the current and root CD handles if these are not explicitly tracked.

These methods are globally accessible without a CDHandle object.

0.8.6.2 Function Documentation

0.8.6.2.1 CDHandlex cd::GetCurrentCD ()

Accessor function to current active CD.

At any point after the CD runtime is initialized, each task is associated with a current CD instance. The current CD is
the deepest CD in the tree visible from the task that has begun but has not yet completed. In other words, whenever a
CD begins, it becomes the current CD. When a CD completes, its parent becomes the current CD.

Returns

returns a pointer to the handle of the current active CD; Returns 0 if CD runtime is not yet initialized or because of
a CD implementation bug.

0.8.6.2.2 CDHandlex cd::GetRootCD ()

Accessor function to root CD of the application.

Returns

returns a pointer to the handle of the root CD; Returns 0 if CD runtime is not yet initialized or because of a CD
implementation bug.

0.8.6.2.3 CDEnT cd::SetCurrentCD (const CDHandle x cd)

Accessor function for setting the current active CD.

At any point after the CD runtime is initialized, each task is associated with a current CD instance. The current CD is
the deepest CD in the tree visible from the task that has begun but has not yet completed. In other words, whenever a
CD begins, it becomes the current CD. When a CD completes, its parent becomes the current CD.

This function is needed when using a non-collective CDHandle::Begin() or CDHandle::Complete() and the CD that is
now beginning contains multiple tasks.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

20 CONTENTS

Returns

returns a pointer to the handle of the current active CD; Returns 0 if CD runtime is not yet initialized or because of
a CD implementation bug.

See also

CDHandle::Begin(), CDHandle::Complete()

Parameters

in \ cd \ pointer to CDHandle of the CD instance that is now the current CD.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 21

0.8.7 CD Hierarchy-Related Methods (create, begin, ...)
Functions

» CDHandle x cd::CDHandle::Create (char xname=0, CDModeT type=kStrict, uint error_name_mask=0, uint
error_loc_mask=0, CDErT xerror=0)

Single-task non-collective Create.
+ CDHandle * cd::CDHandle::Create (uint_t color, uint_t num_tasks_in_color, char xname=0, CDModeT type=k«
Strict, uint error_name_mask=0, uint error_loc_mask=0, CDErrT xerror=0)

Collective Create.
+ CDHandle * cd::CDHandle::CreateAndBegin (uint_t color, uint_t num_tasks_in_color, char xname=0, CDModeT
type=KkStrict, uint error_name_mask=0, uint error_loc_mask=0, CDErrT xerror=0)

Collective Create+Begin.
* CDErrT cd::CDHandle::Destroy (bool collective=false)

Destroys a CD.
* CDErT cd::CDHandle::Begin (bool collective=true)

Begins a CD.
* CDErT cd::CDHandle::Complete (bool collective=true, bool update_preservations,)

Completes a CD.
+ CDNameT cd::CDHandle::GetName ()

Get the name/location of this CD.
» CDHandle * cd::CDHandle::GetParent ()

Get CDHandle to this CD’s parent.

0.8.7.1 Detailed Description
0.8.7.2 Function Documentation

0.8.7.2.1 CDEnNT cd::CDHandle::Begin (bool collective =t rue)

Begins a CD.

Begins the CD and sets it as the current CD for the calling task. If collective=true then the Begin() call is a
collective across all tasks that collectively created this CD. It is illegal to call a collective Begin() on a CD that was
created without a collective Create(). If collective=false, the user is responsible for first synchronizing all tasks
contained within this CD and then updating the current CD in each task using cd::SetCurrentCD().

Important constraint: Begin() and Complete() must be called from within the same program scope (i.e., same
degree of scope nesting).
Returns

Returns kOK when successful and kError otherwise.

See also

Complete()

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

22

CONTENTS

Parameters

in

collective

Specifies whether this call is a collective across all tasks contained by this CD or
whether its to be run by a single task only with the programmer responsible for
synchronization.

0.8.7.2.2 CDErT cd::CDHandle::Complete (bool collective = t rue, bool update_preservations)

Completes a CD.

Completes the CD and sets its parent as the current CD for the calling task. If collect ive=t rue then the Complete()
call is a collective across all tasks that collectively created this CD. It is illegal to call a collective Complete() on a CD
that was created without a collective Create(). If collective=false, the user is responsible for first synchronizing
all tasks contained within this CD and then updating the current CD in each task using cd::SetCurrentCD().

Important constraint: Begin() and Complete() must be called from within the same program scope (i.e., same
degree of scope nesting).

Warning

The update preservation (advance) optimization semantics may not yet be supported.

Returns

Returns kOK when successful and kError otherwise.

See also
Begin()
Parameters
in collective | Specifies whether this call is a collective across all tasks contained by this CD or
whether its to be run by a single task only with the programmer responsible for
synchronization
in update_« | Flag that indicates whether preservation should be updated on Complete rather
preservations | than discarding all preserved state. If t rue then Complete followed by Begin can

be much more efficient if the majority of preserved data overlaps between these
two consecutive uses of the CD object (this enables the Cray CD AdvancePoint«—
InTime functionality).

0.8.7.2.3 CDHandlex cd::CDHandle::Create (char = name = 0, CDModeT type = kStrict, uint error_name_mask = 0, uint
error_loc_mask =0, CDErrT x error=0)

Single-task non-collective Create.

Creates a new CD as a child of this CD. The new CD does not begin until Begin() is called explicitly.

This version of Create() is intended to be called by only a single task and the value of the returned handle explicitly
communicated between all tasks contained within the new child. An alternate collective version is also provided. It is
expected that this non-collective version will be mostly used within a single task or, at least, within a single process

address space.

Returns

Returns a pointer to the handle of the newly created child CD; returns 0 on an error (error code returned in a

parameter).

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 23

Parameters
in name | Optional user-specified name that can be used to "re-create" the same CD object
if it was not destroyed yet; useful for resuing preserved state in CD trees that are
not loop based.
in type | Strict or relaxed
in error_name_« | each 1 in the mask indicates that this CD should be able to recover from that
mask | error type.
in error_loc_mask | each 1 in the mask indicates that this CD should be able to recover from that
error type.
in, out error | Pointer for error return value (kOK on success and kError on failure); no error
value returned if error=0.

0.8.7.2.4 CDHandlex cd::CDHandle::Create (uint_t color, uint_t num_tasks_in_color, char x name = 0, CDModeT type = kStrict,
uint error_name_mask = 0, uint error_loc_mask = 0, CDErrT x error=0)

Collective Create.

Creates a new CD as a child of the current CD. The new CD does not begin until CDHandle::Begin() is called explicitly.
This version of Create() is intended to be called by all tasks that will be contained in the new child CD. It functions as a
collective operation in a way that is analogous to MPI_comm_split, but only those tasks that are contained in the new
child synchronize with one another.

Returns

Returns a pointer to the handle of the newly created child CD; returns 0 on an error.

Parameters
in color | The "color" of the new child to which this task will belong
in num_tasks_in_« | The total number of tasks that are collectively creating the child numbered "color";
color | the collective waits for this number of tasks to arrive before creating the child
in name | Optional user-specified name that can be used to "re-create" the same CD object
if it was not destroyed yet; useful for resuing preserved state in CD trees that are
not loop based.
in type | Strict or relaxed
in error_name_« | each 1 in the mask indicates that this CD should be able to recover from that
mask | error type.
in error_loc_mask | each 1 in the mask indicates that this CD should be able to recover from that
error type.
in, out error | Pointer for error return value (kOK on success and kError on failure); no error
value returned if error=0.

0.8.7.2.5 CDHandlex cd::CDHandle::CreateAndBegin (uint_t color, uint_t num_tasks_in_color, char x name = 0, CDModeT type
=kStrict, uint error_name_mask = O, uint error_loc_mask = 0, CDErrT x error=0)

Collective Create+Begin.
Creates a new CD as a child of the current CD. The new CD then immediately begins with a single collective call.

This version of is intended to be called by all tasks that will be contained in the new child CD. It functions as a collective
operation in a way that is analogous to MPI_comm_split, but only those tasks that are contained in the new child
synchronize with one another. To avoid unnecessary collectives, CreateAndBegin() then immediately begins the new
CD.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

24

CONTENTS

Returns

Returns a pointer to the handle of the newly created child CD; returns 0 on an error.

Parameters
in color | The "color" of the new child to which this task will belong
in num_tasks_in_« | The total number of tasks that are collectively creating the child numbered "color";
color | the collective waits for this number of tasks to arrive before creating the child
in name | Optional user-specified name that can be used to "re-create" the same CD object
if it was not destroyed yet; useful for resuing preserved state in CD trees that are
not loop based.
in type | Strict or relaxed
in error_name_« | each 1 in the mask indicates that this CD should be able to recover from that
mask | error type.
in error_loc_mask | each 1 in the mask indicates that this CD should be able to recover from that
error type.
in, out error | Pointer for error return value (kOK on success and kError on failure); no error
value returned if error=0.

0.8.7.2.6 CDErT cd::CDHandle::Destroy (bool collective=false)

Destroys a CD.

Destroys a CD by removing it from the CD tree and deleting all its data structures. Once Destroy() is called, additional
attempts to destroy the same CD instance may result in undefined behavior. Destroy() need not be a collective op-
eration because it typically comes after Complete(). However, a single task must call Destroy (cd_object=true)
while the rest call Destroy (cd_object=false).

Returns

May return kError if instance was already destroyed, but may also return kOK in such a case.

Parameters

in

collective

if true, destroy is done as a collective across all tasks that created the CD;
otherwise the behavior is that only one task destroys the actual object while the
rest just delete the local CDHandle.

0.8.7.2.7 CDNameT cd::CDHandle::GetName ()

Get the name/location of this CD.

The CDName is a (level, number_within_level) tuple.

Returns

the name/location of the CD

0.8.7.2.8 CDHandlex cd::CDHandle::GetParent ()

Get CDHandle to this CD’s parent.

Returns

Pointer to CDHandle of parent

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 25

0.8.8 Detection and Recovery Methods
Classes

+ class RecoverObject

Recovery method that can be inherited and specialized by user.

Functions

CDErrT cd::CDHandle::CDAssert (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.

* CDErT cd::CDHandle::CDAssertFail (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.
* CDErT cd::CDHandle::CDAssertNotify (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.
« std::vector< SysErT > cd::CDHandle::Detect (CDErT xerr_ret_val=0)

Check whether any errors occurred while CD the executed.

* CDErT cd::CDHandle::RegisterDetection (uint system_name_mask, uint system_loc_mask,)

Declare that this CD can detect certain errors/failures by user-defined detectors.

* CDErT cd::CDHandle::RegisterRecovery (uint error_name_mask, uint error_loc_mask, RecoverObject
xrecover_object=0)

Register that this CD can recover from certain errors/failures.

0.8.8.1 Detailed Description
0.8.8.2 Function Documentation

0.8.8.2.1 CDErT cd::CDHandle::CDAssert (bool test true, const SysErrT « error_to_report=0)

User-provided detection function for failing a CD.

A user may call CDAssert() at any time during CD execution to assert correct execution behavior. If the test fails, the
CD fails and must recover.

The CD runtime implementation may choose whether the CD fails at the point that the CDAssert() fails or whether the
assertion failure is registered but only acted upon during the CD detection phase.

Returns

kOK when the assertion call completed successfully (regardless of whether the test was true or false) and kError
if the action taken by the runtime on CDAssert() failure did not succeed.

Parameters
in test true | Boolean to be asserted as true.
in, out error_to_report | An optional error report that will be used during recovery and for system diagnos-
tics.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

26 CONTENTS

0.8.8.2.2 CDErT cd::CDHandle::CDAssertFail (bool test_true, const SysErrT « error_to_report=0)

User-provided detection function for failing a CD.

A user may call CDAssertFail() at any time during CD execution to assert correct execution behavior. If the test fails, the
CD fails and must recover.

CDAssertFail() fails immediately and calls recovery.

Returns

kOK when the assertion call completed successfully (regardless of whether the test was true or false) and kError
if the action taken by the runtime on CDAssert() failure did not succeed.

Warning

May not be implemented yet.

Parameters
in test true | Boolean to be asserted as true.
in, out error_to_report | An optional error report that will be used during recovery and for system diagnos-
tics.

0.8.8.2.3 CDEnT cd::CDHandle::CDAssertNotify (bool test _true, const SysErrT x error_to_report=0)

User-provided detection function for failing a CD.

A user may call CDAssert() at any time during CD execution to assert correct execution behavior. If the test fails, the
CD fails and must recover.

CDAssertNotify() registers the assertion failure, which is only acted upon during the CD detection phase.

Returns

kOK when the assertion call completed successfully (regardless of whether the test was true or false) and kError
if the action taken by the runtime on CDAssert() failure did not succeed.

Parameters
in test true | Boolean to be asserted as true.
in, out error_to_report | An optional error report that will be used during recovery and for system diagnos-
tics.

0.8.8.2.4 std::vector<<SysErrT> cd::CDHandle::Detect (CDErrT x err_ret val=0)

Check whether any errors occurred while CD the executed.

Only checks for those errors that the CD registered for, This function is only used for those errors that are logged during
execution and not those that require immediate recovery.

This requires more thought and a more precise description.

Returns

any errors or failures detected during this CDs execution.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 27

Parameters

in, out err_ret_val | Pointer to a variable for optionally returning a CD runtime error code indicating
some bug with Detect().

0.8.8.2.5 CDErT cd::CDHandle::RegisterDetection (uint system_name_mask, uint system_loc_mask)

Declare that this CD can detect certain errors/failures by user-defined detectors.

The intent of this method is to specify to the autotuner that detection is possible. This is needed in order to balance
between fine-grained and coarse-grained CDs and associated recovery.

Returns

kOK on success.

Parameters
in system_name_« | each 1 in the mask indicates that this CD should be able to detect any errors that
mask | are meaningful to the application (in the error type mask).
in system_loc_« | each 1 in the mask indicates that this CD should be able to detect any errors that
mask | are meaningful to the application (in the error type mask).

0.8.8.2.6 CDEnT cd::CDHandle::RegisterRecovery (uint error_name_mask, uint error_loc_mask, RecoverObject *
recover_object =0)

Register that this CD can recover from certain errors/failures.
This method serves two purposes:
It extends the specification of intent to recover provided in

Create().

It enables registering a customized recovery routine by
inheriting from the RecoverObiject class.

Returns

kOK on success.

See also

Create(), RecoverObject

Todo Does registering recovery also imply turning on detection? Or is that done purely through RequireError«
Probability()?

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

28

CONTENTS
Parameters
in error_name_« | each 1 in the mask indicates that this CD should be able to recover from that
mask | error type.
in error_loc_mask | each 1 in the mask indicates that this CD should be able to recover from that
error type.
in recover_object

pointer to an object that contains the customized recovery routine; if unspecified,
default recovery is used.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 29

0.8.9 Methods for Interacting with the CD Framework and Tuner

Functions

+ float cd::CDHandle::GetErrorProbability (SysErrT error_type, uint error_num,)

Ask the CD framework to estimate error/fault rate.
« float cd::CDHandle::RequireErrorProbability (SysErT error_type, uint error_num, float probability, bool fail_«
over=true)

Request the CD framework to reach a certain error/failure probability.
0.8.9.1 Detailed Description

Todo What about specifying leniant communication-related errors for relaxed-CDs context?

0.8.9.2 Function Documentation

0.8.9.2.1 float cd::CDHandle::GetErrorProbability (SysErrT error_type, uint error_num)

Ask the CD framework to estimate error/fault rate.

Each CD will experience a certain rate of failure/error for different failure/error mechanisms. These rates depend on the
system, the duration of the CD, its memory footprint, etc. The CD framework can estimate the expected rate of each
fault mechanism given its knowledge of the CD and system properties.

Returns

probability that the queried number of error/failure of the type queried will occur during the execution of this CD.

Note

Should this be some rate instead? Seems like it would be easier for the programmer to deal with number and
probability, but is it?

Todo Decide on rate vs. number+probability

Parameters

in error_type | Type of

error_num | error/failure queried [in] Number of errors/failures queried.

0.8.9.2.2 float cd::CDHandle::RequireErrorProbability (SysErrT error_type, uint error_num, float probability, bool fail_over =
true)

Request the CD framework to reach a certain error/failure probability.

Each CD will experience a certain rate of failure/error for different failure/error mechanisms. These rates depend on the
system, the duration of the CD, its memory footprint, etc. The CD framework may be able to apply automatic resilience
techniques, such as replication, to ensure certain errors/failures will be tolerated (or simply) detected.

Returns

probability that at least error_num errors/failurse of the type queried will occur during the execution of this
CD, after the automatic techniques are applied. Should be less than or equal to requested probability if
successful.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

30

CONTENTS

Note

Should this be some rate instead? Seems like it would be easier for the programmer to deal with number and
probability, but is it?

Todo Decide on rate vs. number+probability

Parameters
in error_type | Type of error/failure queried.
in error_num | Number of errors/failures queried.
in probability | Requested maximum probability of num_errors errors/failures not being de-
tected or even occurring during CD execution.
in fail_over | Should redundancy be added just to detect the specified error type (false) or

should enough redundancy be added to tolerate the error (fail-over/forward-error-
correction/...)

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 31

0.8.10 Profiler-related methods
Functions

» CDErrT cd::CDHandle::CDProfileStartPhase (bool collective=true, char xphase_name=0)

Notify the CD Profiler that the application is entering a different execution phase.

0.8.10.1 Detailed Description
0.8.10.2 Function Documentation

0.8.10.2.1 CDErT cd::CDHandle::CDProfileStartPhase (bool collective = t rue, char x phase_name =0)

Notify the CD Profiler that the application is entering a different execution phase.

The CD Profiler attempts to collect information and build the CD tree corresponding to the application. Because the
execution of each specific CD varies even when the code run and data processed is semantically the same, the profiler
averages out the behavior of each CD in the tree as it gets repeatedly executed (execution time, preservation volumes,
...). The CDProfileStartPhase() notifies the profiler that a new execution phase is starting and that averaging should
reset with the previous values maintained as a different very-coarse-grained sequential CD under the root CD. If the
application repeats certain phases for which statistics should be aggregated, a state name should be provided.

Returns

Returns kOK if no error.

Parameters

collective | Collective across all tasks in this CD?

phase_name | Name of new phase

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

32 CONTENTS

0.8.11 CD Event Functions for Non-Blocking Calls
Functions

* CDErT cd::CDEvent::Wait (void)

Blocking call waiting on the event to complete.
* bool cd::CDEvent::Test (void)

Non-blocking call to test whether the event completed.
0.8.11.1 Detailed Description
0.8.11.2 Function Documentation
0.8.11.2.1 bool cd::CDEvent::Test (void)
Non-blocking call to test whether the event completed.

Returns

true if complete and false is any chained events not yet done.

0.8.11.2.2 CDErT cd::CDEvent::Wait (void)

Blocking call waiting on the event to complete.

Once CDEvent::Wait() returns, the event is empty (uninitialized), as if it has been explicitly CDEvent::Reset().

Returns

kOK on success and kError if the event timed out

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.8 Module Documentation 33

0.8.12 Internal Functions for Customizable Recovery

Functions

« virtual bool CDInternalPtr::InternalCanRecover (uint error_name_mask, unit error_location_mask)

Method to test if this CD can recover from an error/location mask.

« virtual void CDInternalPtr::InternalReexecute ()
Reexecute-style default recovery.

« virtual void CDInternalPtr::InternalEscalate (uint error_name_mask, unit error_location_mask, std::vector< Sys«
ErrT > errorsuint error_name_mask,)

Escalate error/failure to parent.

0.8.12.1 Detailed Description
0.8.12.2 Function Documentation

0.8.12.2.1 virtual bool CDInternalPtr::InternalCanRecover (uint error_name_mask, unit error_location_mask) [virtual]

Method to test if this CD can recover from an error/location mask.

Returns

Returns t rue is can recover and false otherwise.

See also

Create(), SysErrNameT, SysErrLocT

Parameters
in error_name_« | Mask of all error/fail types that require recovery
mask
in error_location_«+ | Mask of all error/fail locations that require recovery
mask

0.8.12.2.2 virtual void CDInternalPtr::InternalEscalate (uint error_name_mask, unit error_location_mask, std::vector< SysErT >
errorsuint error_name_mask) [virtual]

Escalate error/failure to parent.

Internal method used by Recover() to escalate errors/failures that cannot be handled.

Parameters
in error_name_« | Mask of all error/fail types that require recovery
mask
in error_location_« | Mask of all error/fail locations that require recovery
mask
in error_name_« | Errors/failures to recover from (typically just one).
mask

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

34 CONTENTS

0.8.12.2.3 virtual void CDInternalPtr::InternalReexecute () [virtuall]

Reexecute-style default recovery.

Default recovery method of reexecuting the CD while restoring data as execution proceeds through Preserve() calls.
The alternative is to have an explicit restore phase that restores all the data, but that places constraints on overlapping
regions of preservation intermixed with modifications and requires more sophisticated metadata.

Todo Discuss other aspects of reexecution (e.g., logging). [FIXME] Discuss other aspects of reexecution (e.g., logging).

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.9 Namespace Documentation 35

0.9 Namespace Documentation

0.9.1 cd Namespace Reference

Containment Domains namespace for global functions, types, and main interface.

Classes

+ class CDEvent
An object that provides an event identifier to a non-blocking CD runtime call.
+ class CDHandle
An object that provides a handle to a specific CD instance.
+ struct CDNameT
A type to uniquely name a CD in the tree.
« class DegradedMemErrinfo
Interface to degraded memory error information.
+ class RegenObject
Interface for specifying regeneration functions for preserve/restore.
« class SoftMemErrinfo
Interface to soft memory error information.
* struct SysEnT

Type for specifying errors and failure.

Enumerations

» enum CDModeT { kStrict =0, kRelaxed }

Type for specifying whether a CD is strict or relaxed.
» enum CDExecutionModeT { kExec =0, kReexec }

Type for specifying whether the current CD is executing for the first time or is currently reexecuting as part of recovery.
» enum PreserveUseT { kUnsure =0, kReadOnly = 1, kReadWrite = 2 }

Type to indicate whether preserved data is from read-only or potentially read/write application data.
» enum PGASUsageT { kShared = 0, kPotentiallyShared, kPrivatized, kPrivate }

Different types of PGAS memory behavior for relaxed CDs.
» enum SysErrNameT {
kOK =0, kSoftMem = 0b1, kDegradedMem = 0b01, kSoftComm = 0b001,
kDegradedComm = 0b0001, kSoftComp = 0b00001, kDegradedResource =0b000001, kHardResource =
0b0000001,
kFileSys = 0b00000001 }
Type for specifying system errors and failure names.
* enum SysErrLocT {
kOK =0, kintraCore = Ob1, kCore = 0b01, kProc = 0b001,
kNode = 0b0001, kModule = 0b00001, kCabinet = 0b000001, kCabinetGroup =0b0000001,
kSystem = 0b00000001 }
Type for specifying errors and failure location names.
» enum CDErT { kOK =0, kAlreadyInit, kError }

Type for specifying error return codes from an API call — signifies some failure of the API call itself, not a system failure.
» enum PreserveMechanismT { kCopy =0b001, kRef =0b010, kRegen =0b100 }

Type for specifying preservation methods.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

36

CONTENTS

Functions

« uint DeclareErrName (const char xname_string)

Create a new error/failure type name.

» CDErrT UndeclareErrName (uint error_name_id)

Free a name that was created with DeclareErrorName()

« uint DeclareErrLoc (const char xname_string)

Create a new error/failure type name.

» CDErT UndeclareErrLoc (uint error_name_id) class SysErrinfo

Free a name that was created with DeclareErrLoc()

« CDHandle * Init (bool collective=trueCDErrT xerror=0)

Initialize the CD runtime.

+ CDHandle x GetRootCD ()

Accessor function to root CD of the application.

+ CDHandle * GetCurrentCD ()

Accessor function to current active CD.

» CDErT SetCurrentCD (const CDHandle xcd)

Accessor function for setting the current active CD.

0.9.1.1 Detailed Description

Containment Domains namespace for global functions, types, and main interface.

All user-visible CD API calls and definitions are under the CD namespace. Internal CD APl implementation components
are under a separate cd_internal namespace; the CDInternal class of namespace cd serves as an interface where
necessary.

0.10 Class Documentation

0.10.1

An object that provides an event identifier to a non-blocking CD runtime call.

cd::CDEvent Class Reference

#include <cd.h>

Public Member Functions

- CDEnT Wait (void)

Blocking call waiting on the event to complete.

* bool Test (void)

Non-blocking call to test whether the event completed.

Protected Attributes

« cd_internal::CDEvent event_

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.10 Class Documentation 37

0.10.1.1 Detailed Description

An object that provides an event identifier to a non-blocking CD runtime call.
This is basically just an internal event handle that the user can wait on when trying to make a non-blocking call.

Events are automatically chained (see CDHandle::Preserve()),

Note

We do not rely on C++11 async/futures here because the API is meant to be somewhat portable to other lan-
guages.

0.10.1.2 Member Data Documentation

0.10.1.2.1 cd_internal::CDEvent cd::CDEvent::event_ [protected]

The implementation-specific accessor to the actual CD event; not visible to user

The documentation for this class was generated from the following file:

* cd.h

0.10.2 cd::CDHandle Class Reference

An object that provides a handle to a specific CD instance.

#include <cd.h>

Public Member Functions

+ CDHandle * Create (char *name=0, CDModeT type=kStrict, uint error_name_mask=0, uint error_loc_mask=0,
CDErT xerror=0)
Single-task non-collective Create.
+ CDHandle * Create (uint_t color, uint_t num_tasks_in_color, char xname=0, CDModeT type=kStrict, uint error«
_name_mask=0, uint error_loc_mask=0, CDErrT xerror=0)
Collective Create.
+ CDHandle * CreateAndBegin (uint_t color, uint_t num_tasks_in_color, char x*name=0, CDModeT type=kStrict,
uint error_name_mask=0, uint error_loc_mask=0, CDErrT xerror=0)
Collective Create+Begin.
+ CDErrT Destroy (bool collective=false)
Destroys a CD.
« CDErrT Begin (bool collective=true)
Begins a CD.
+ CDErT Complete (bool collective=true, bool update_preservations,)
Completes a CD.
+ CDNameT GetName ()
Get the name/location of this CD.
+ CDHandle * GetParent ()

Get CDHandle to this CD’s parent.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

38 CONTENTS

» CDErT Preserve (void xdata_ptr, uint64_t len, uint_t preserve_mask=kCopy, const char xmy_name=0, const
char xref_name=0, uint_64t ref_offset=0, const RegenObject xregen_object=0, PreserveUseT data_usage=k«
Unsure)

Preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.
* CDErT Preserve (CDEvent &cd_event, void xdata_ptr, uint64_t len, uint_t preserve_mask=kCopy, const char
xmy_name=0, const char xref_name=0, uint_64t ref_offset=0, const RegenObject *regen_object=0, Preserve:-
UseT data_usage=kUnsure)

Non-blocking preserve data to be restored when recovering (typically reexecuting the CD from right after its Begin() call.
» CDErT CDAssert (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.
» CDErT CDAssertFail (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.
» CDErT CDAssertNotify (bool test_true, const SysErrT xerror_to_report=0)

User-provided detection function for failing a CD.
« std::vector< SysErrT > Detect (CDErT xerr_ret_val=0)

Check whether any errors occurred while CD the executed.
» CDErT RegisterDetection (uint system_name_mask, uint system_loc_mask,)

Declare that this CD can detect certain errors/failures by user-defined detectors.
» CDErT RegisterRecovery (uint error_name_mask, uint error_loc_mask, RecoverObject xrecover_object=0)

Register that this CD can recover from certain errors/failures.
« float GetErrorProbability (SysErrT error_type, uint error_num,)

Ask the CD framework to estimate error/fault rate.
+ float RequireErrorProbability (SysErrT error_type, uint error_num, float probability, bool fail_over=true)

Request the CD framework to reach a certain error/failure probability.
» CDErT SetPGASUsage (void xdata_ptr, uint64_t len, PGASUsageT region_type=kShared)

Declare how a region of memory behaves within this CD (for Relaxed CDs)
+ CDErT SetPGASOwnerWrites (void xdata_ptruint64_t len, bool owner_writes=true)

Simplify optimization of discarding relaxed CD log entries.
+ CDErT CDProfileStartPhase (bool collective=true, char xphase_name=0)

Notify the CD Profiler that the application is entering a different execution phase.
Protected Attributes
» CDInternalPtr cd_instance

* bool destroy_cd_object_hint_

0.10.2.1 Detailed Description

An object that provides a handle to a specific CD instance.

All usage of CDs (other than CD Init Functions and cd_accessor_funcs) is done by utilizing a handle to a particular CD
instance within the CD tree. The CDHandle provides an implementation- and location-independent accessor for CD
operation.

Most calls currently only have blocking versions. Which should also be non-blocking other than Preserve?
0.10.2.2 Member Data Documentation

0.10.2.2.1 CDinternalPtr cd::CDHandle::cd_instance_. [protected]

The implementation-specific accessor to the actual CD instance; not visible to user

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.10 Class Documentation 39

0.10.2.2.2 bool cd::CDHandle::destroy_cd_object_hint_ [protected]

Hint set by a collective Create() so that destroying the object is called by only a single task.

The documentation for this class was generated from the following file:

* cd.h

0.10.3 CDInternalPtr Class Reference

A class that represents the interface to the internal implementation of an actual CD.

#include <cd.h>

Public Member Functions

« virtual bool InternalCanRecover (uint error_name_mask, unit error_location_mask)

Method to test if this CD can recover from an error/location mask.
« virtual void InternalReexecute ()

Reexecute-style default recovery.

+ virtual void InternalEscalate (uint error_name_mask, unit error_location_mask, std::vector< SysErrT > errorsuint
error_name_mask,)

Escalate error/failure to parent.
0.10.3.1 Detailed Description

A class that represents the interface to the internal implementation of an actual CD.

The documentation for this class was generated from the following file:

e cd.h

0.10.4 cd::CDNameT Struct Reference

A type to uniquely name a CD in the tree.

#include <cd.h>

Public Attributes

« uint level

Level within the tree (root=0)
* uint number

Unique ID within level.

0.10.4.1 Detailed Description

A type to uniquely name a CD in the tree.

A CD name consists of its level in the CD tree (root=0)and the its ID, or sequence number, within that level.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

40 CONTENTS

Note

Alternatives:

« The alternative of simply a unique name misses the idea of levels in the tree; the idea of hierarchy is central
to CDs so this is a bad alternative.

» The alternative of naming a CD by its entire "branch" leads to requiring the name to be parsed to identify the
level; the level is typically the most crucial information so this seems unduly complex.

+ A third alternative is to store the branch information as a std::vector, so the vector’s length is the level.
However, this means the name is rather long.

Todo Decide on whether to represent a CD name as (level, num) or as typedef std::vector<uint> CD+«
NameT; to represent the path through the tree branches.

The documentation for this struct was generated from the following file:

* cd.h

0.10.5 cd::DegradedMemErrinfo Class Reference

Interface to degraded memory error information.

#include <cd.h>

Public Member Functions

« std::vector< uint64_t > get_pa_starts ()

Starting physical addresses.
« std::vector< uint64_t > get_va_starts ()

Starting virtual addresses.
+ std::vector< uint64_t > get_lengths ()

Lengths of affected regions.

Protected Attributes

« std::vector< uint64_t > pa_starts_

Starting physical addresses.
 std:vector< uint64 t > va_starts

Starting virtual addresses.
« std::vector< uint64_t > lengths_

Lengths of affected regions.
0.10.5.1 Detailed Description

Interface to degraded memory error information.
This is meant to potentially be extended.

The documentation for this class was generated from the following file:

* cd.h

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.10 Class Documentation 41

0.10.6 RecoverObject Class Reference

Recovery method that can be inherited and specialized by user.

#include <cd.h>

Public Member Functions

« virtual void Recover (CDInternalPtr xcd_instance, uint error_name_mask, unit error_location_mask, std::vector<
SysErT > errors)

Recover method to be specialized by inheriting and overloading.

0.10.6.1 Detailed Description

Recovery method that can be inherited and specialized by user.

The purpose of RecoverObject is to provide an interface to enable a programer to create custom Recover routines. The
idea is that for each CD, each error type+location may be bound to a specialized recovery routine, which is expressed
through a Recover object. The Recover object inherits the default RecoverObject and extends or replaces the default
restore+reexecute recovery method.

Todo Write some example for custom recovery (see GVR interpolation example, although they do it between versions).

See also

CDHandle::RegisterRecovery()

0.10.6.2 Member Function Documentation

0.10.6.2.1 virtual void RecoverObject::Recover (CDInternalPtr « cd_instance, uint error_name_mask, unit error_location_mask,
std::vector<< SysnT > errors) [inline], [virtuall]

Recover method to be specialized by inheriting and overloading.

Recover uses methods that are internal to the CD itself and should only be called by customized recovery routines that
inherit from RecoverObject and modify the Recover() method.

Parameters
cd_instance | A pointer to the actual CD instance so that the internal methods can be called.
in error_name_« | Mask of all error/fail types that require recovery
mask
in error_location_«~ | Mask of all error/fail locations that require recovery
mask
in errors | Errors/failures to recover from (typically just one).

The documentation for this class was generated from the following file:

e cd.h

0.10.7 cd::RegenObject Class Reference

Interface for specifying regeneration functions for preserve/restore.

#include <cd.h>

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

42 CONTENTS

Public Member Functions
« virtual CDErT Regenerate (void *data_ptr, uinté4_t len)=0
Pure virtual interface function for regenerating data as restoration type.
0.10.7.1 Detailed Description

Interface for specifying regeneration functions for preserve/restore.

An interface for a data regeneration function that can be used to restore "preserved" data instead of making a copy of
the data to be preserved.

See also

PreserveMethodT, CDHandle::Preserve()

0.10.7.2 Member Function Documentation

0.10.7.2.1 virtual CDErrT cd::RegenObject::Regenerate (void * data_ptr, uinté4_tlen) [pure virtual]

Pure virtual interface function for regenerating data as restoration type.

Must be implemented by programmer.

Returns

Should return a CD error value if regeneration is not successful.

Parameters

data_ptr | Pointer to data that is to be regenerated.

len | Length of data to be regenerated.

The documentation for this class was generated from the following file:

« cd.h

0.10.8 cd::SoftMemErrinfo Class Reference

Interface to soft memory error information.

#include <cd.h>

Public Member Functions

 uint64_t get_pa_start ()
Starting physical address.

* uint64_t get_va_start ()
Starting virtual address.

* uint64_t get_length ()
Length of affected access.

» char[] get_data ()

Data value read (erroneous)

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.10 Class Documentation

43

* uint64_t get_syndrome_len ()
Length of syndrome.

 char[] get_syndrome ()

Value of syndrome.

Protected Attributes

* uint64_t pa_start_
Starting physical address.
e uint64 _tva_start

Starting virtual address.
* uint64_t length_

Length of affected access.

» char x data_

Data value read (erroneous)

* uint64_t syndrome_len_

Length of syndrome.

+ char x syndrome_

Value of syndrome.

0.10.8.1 Detailed Description

Interface to soft memory error information.

This is meant to potentially be extended.

The documentation for this class was generated from the following file:

* cd.h

0.10.9 cd::SysErT Struct Reference

Type for specifying errors and failure.

#include <cd.h>

Public Attributes

» SysErrNameT error_name_

Name of error.

» SysErrLocT error_location_

Location of error.

» SysErrinfo error_info_

Error-specific extra information.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

44 CONTENTS

0.10.9.1 Detailed Description

Type for specifying errors and failure.

This type represents the interface between the user and the system with respect to errors and failures. We considered
doing an extensible class hierarchy like GVR, but ended up with predefined bitvector constants because of the pain
involved in setting up and using deep class hierarchies. However, the bitmask way is dangerously narrow and may lead
to less portable (and less future-proof code). Basically we chose C over C++ style here :-(

This needs more thought

The documentation for this struct was generated from the following file:

* cd.h

0.11 File Documentation

0.11.1 cd.h File Reference

Containment Domains API v0.1 (C++)

#include <vector>

Classes

« struct cd::CDNameT

A type to uniquely name a CD in the tree.
+ class cd::SoftMemErrinfo

Interface to soft memory error information.
« class cd::DegradedMemErrinfo

Interface to degraded memory error information.
« struct cd::SysErT

Type for specifying errors and failure.
« class cd::RegenObject

Interface for specifying regeneration functions for preserve/restore.
» class cd::CDHandle

An object that provides a handle to a specific CD instance.
+ class cd::CDEvent

An object that provides an event identifier to a non-blocking CD runtime call.
« class CDInternalPtr

A class that represents the interface to the internal implementation of an actual CD.
« class RecoverObject

Recovery method that can be inherited and specialized by user.

Namespaces

* cd

Containment Domains namespace for global functions, types, and main interface.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.11 File Documentation 45

Enumerations

» enum cd::CDModeT { cd::kStrict =0, cd::kRelaxed }
Type for specifying whether a CD is strict or relaxed.
» enum cd::CDExecutionModeT { cd::kExec =0, cd::kReexec }
Type for specifying whether the current CD is executing for the first time or is currently reexecuting as part of recovery.
« enum cd::PreserveUseT { cd::kUnsure =0, cd::kReadOnly = 1, cd::kReadWrite = 2 }
Type to indicate whether preserved data is from read-only or potentially read/write application data.
+ enum cd::PGASUsageT { cd::kShared = 0, cd::kPotentiallyShared, cd::kPrivatized, cd::kPrivate }
Different types of PGAS memory behavior for relaxed CDs.

» enum cd::SysErrNameT {
cd::kOK =0, cd::kSoftMem = 0b1, cd::kDegradedMem = 0b01, cd::kSoftComm = 0b001,
cd::kDegradedComm = 0b0001, cd::kSoftComp = 0b00001, cd::kDegradedResource =0b000001, cd::kHard«
Resource = 0b0000001,
cd::kFileSys = 0b00000001 }
Type for specifying system errors and failure names.

« enum cd::SysErrLocT {
cd::kOK =0, cd::kIntraCore = 0b1, cd::kCore = 0b01, cd::kProc = 0b001,
cd::kNode = 0b0001, cd::kModule = 0b00001, cd::kCabinet = 0b000001, cd::kCabinetGroup =0b0000001,
cd::kSystem = 0b00000001 }

Type for specifying errors and failure location names.
« enum cd::CDErT { cd::kOK =0, cd::kAlreadylnit, cd::kError }

Type for specifying error return codes from an API call — signifies some failure of the API call itself, not a system failure.
« enum cd::PreserveMechanismT { cd::kCopy =0b001, cd::kRef =0b010, cd::kRegen =0b100 }

Type for specifying preservation methods.

Functions

+ uint cd::DeclareErrName (const char xname_string)

Create a new error/failure type name.

* CDErT cd::UndeclareErrName (uint error_name_id)

Free a name that was created with DeclareErrorName()
« uint cd::DeclareErrLoc (const char xname_string)

Create a new error/failure type name.
* CDErT cd::UndeclareErrLoc (uint error_name_id) class SysErrinfo

Free a name that was created with DeclareErrLoc()
+ CDHandle x* cd::Init (bool collective=trueCDErrT xerror=0)

Initialize the CD runtime.
+ CDHandle * cd::GetRootCD ()

Accessor function to root CD of the application.
+ CDHandle * cd::GetCurrentCD ()

Accessor function to current active CD.
* CDErT cd::SetCurrentCD (const CDHandle *cd)

Accessor function for setting the current active CD.

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

46

CONTENTS

0.11.1.1 Detailed Description
Containment Domains APl v0.1 (C++)

Author

Kyushick Lee, Jinsuk Chung, Song Zhang, Seong-Lyong Gong, Derong Liu, Mattan Erez

Date
March 2014

0.12 Example Documentation

0.12.1 spmv.cc

/%
Copyright 2014, The University of Texas at Austin
All rights reserved.

THIS FILE IS PART OF THE CONTAINMENT DOMAINS RUNTIME LIBRARY

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met :

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

@file spmv.cc
@author Mattan Erez
@date March 2014

@brief Hierarchical SpMV CD Example

The SpMV computation consists of iteratively multiplying a constant
matrix by an input vector. The resultant vector is then used as the
input for the next iteration. We assume that the matrix and vector
are block partitioned and assigned to multiple nodes and cores. This
simple application demonstrates many of the features of CDs and how
they can be used to express efficient resilience.

One of the advantages of containment domains is that preservation and
recovery can be tailored to exploit natural redundancy within the
machine. A CD does not need to fully preserve its inputs at the
domain boundary; partial preservation may be utilized to increase
efficiency if an input naturally resides in multiple locations.
Examples for optimizing preserve/restore/recover routines include

T

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.12 Example Documentation

restoring data from sibling CDs or other nodes which already have a
copy of the data for algorithmic reasons.

Hierarchical SpMV exhibits natural redundancy which can be

exploited through partial preservation and specialized

recovery. The input vector is distributed in such a way that

redundant copies of the vector are naturally distributed throughout

the machine. This is because there are \f$ N_0 \times N_0 \f$ fine-grained
sub-blocks of the matrix, but only \f$ N_0 \f$ sub-blocks in the vector.

This is a hierarchical/recursive form of SpMV that uses some
pseudocode just to demonstrate the usage of the CD API

* ok ok o R R ok b o % b ot

#include "cd.h"

class VInRegen : public RegenType {

public:
VInRegen (uint64_t task_num, uint subpartition) {
task_num_ = task_num; subparition_ = subpartition;

}

CDErrType Regenerate (voids data_ptr, uint64_t len) {
// During recovery (re—execution) Preserve acts like Restore
// Writing this regeneration, which is really recovering data from
// a sibling that has the same copy of the input vector is
// difficult without assuming a specific parallelism
// runtime. Unfortunately, both my MPI and UPC are rusty so I
// can’t do it right now. The idea is that we know which sibling
// has data that we need based on the matrix partitioning and that
// we know our subpartition number. We can then use the
// parallelism runtime (or whoever tracked the task recursion) to
// know which thread/rank/... this sibling is in, but we still
// need to know its pointer to do a one-sided transfer of the data
// because recovering this CD is independent of the sibling).

protected:
uint64_t task_num_;
uint subpartition_;

@brief The recursive part that decomposes the problem for parallelism and containment.

pre-partitioned to the appropriate number of levels to allow the

*
*
* For simplicity, we assume that the input matrix has been
*
* recursion to work correctly.

void SpMVRecurse (const SparseMatrixx matrix,
const HierVectorx v_in,
HierVectorx v_out,
const CDHandlex current_cd,
uint num_tasks

) |

(num_tasks > RECURSE_DEGREE) {
uint tasks_per_child = num_tasks/RECURSE_DEGREE; // assume whole multiple
for (int child=0; child < RECURSE_DEGREE; child++) {
// assume that all iterations are all in parallel
CDHandlex child_cd;
// Creating the children CDs here so that we can more easily use
// a collective mpi_comm_split-like Create method. This would be
// easier if done internally by parallelism runtime/language
child_cd = current_cd->CreateAndBegin(child, tasks_per_child);
// Do some preservation
CDEvent preserve_event;
child_cd->Preserve (preserve_event,
matrix->Subpartition(child), // Pointer to
// start of subpartition within recursive matrix
matrix—->SubpartitionLen(child), // Length in
// bytes of subpartition
kCopy |kParent, // Can either create another
// copy or use the parent’s
// preserved matrix with
// appropriate offset
"Matrix",
"Matrix", matrix->PartitionOffset(),
0,
kReadOnly

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

48 CONTENTS

)i
// Regen object for input vector, assuming there is a
// parallelism runtime that tracks recursion tree through task numbers
VInRegen v_in_regen (ParRuntime: :MyTaskNum(), child);
child_cd->Preserve (preserve_event, // Chain this event
v_in->Subpartition(child),
v_in->SubpartitionLen (child),
kCopy | kParent | kRegen,
"vIn",
"vIn", v_in->PartitionOffset (),
&v_in_regen
)i
// Do actual compute
SpMVRecurse (matrix—->Subpartition (child),
v_in->Subpartition (child),
v_out—>Subpartition(child),
child_cd, tasks_per_child);
// Complete the CD
preserve_event->Wait (); // Make sure preservation completed
child_cd->Complete () ;
child_cd->Destroy();

se |
for (int child=0; child < num_tasks; child++) {
// assume that all iterations are all in parallel
CDHandlex child_cd;
CDHandlex child_cd = current_cd->Create();
child_cd->Begin();
// Do some preservation
CDEvent preserve_event;
child_cd->Preserve (preserve_event,
matrix->Partition(), // Pointer to
// start of subpartition within recursive matrix
matrix->PartitionLen(), // Length in
// bytes of subpartition
kCopy|kParent, // Can either create another
// copy or use the parent’s
// preserved matrix with
// appropriate offset
"Matrix",
"Matrix", matrix->PartitionOffset (),
0,
kReadOnly
)i
VInRegen v_in_regen (ParRuntime: :MyTaskNum(), child);
child_cd->Preserve (preserve_event, // Chain this event
v_in->Partition(),
v_in->SubpartitionLen(),
kCopy | kParent | kRegen,
"vIn",
"vIn", v_in->PartitionOffset (),
&v_in_regen
)i
// Do actual compute
SpMVLeaf (matrix—>Subpartition (child),
v_in->Subpartition(child),
v_out->Subpartition(child),
child_cd, tasks_per_child);
child_cd->Complete();
child_cd->Destroy();

v_out->ReduceSubpartitions (num_tasks);

}

void SpMVLeaf (const SparseMatrix* matrix,
const HierVectorx v_in,
HierVector* v_out,
const CDHandlex current_cd,
uint num_tasks
)
for (uint row=0; row < matrix->NumRows (); row++) {
v_out[row] = 0.0;
for (unit col = matrix->RowStart[row];
col < matrix->RowStart[row+1l];
col++) |
uint prev_idx = 0;
uint idx = matrix->Index[col];
v_out [row] += matrix->NonZero[col]l*v_in[idx];

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

0.12 Example Documentation

49

CDAssert (idx >= prev_idx); // data structure sanity check
prev_idx = idx;

}

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

Index

CD-Related Definitions
kExec, 7
kReadOnly, 8
kReadWrite, 8
kReexec, 7
kRelaxed, 7
kStrict, 7
kUnsure, 8

cd, 35

Detect
Detection and Recovery Methods, 26
Detection and Recovery Methods, 25
Detect, 26

Error Reporting, 11
kAlreadylnit, 12
kCabinet, 12
kCabinetGroup, 12
kCore, 12
kDegradedComm, 13
kDegradedMem, 13
kDegradedResource, 13
kError, 12
kFileSys, 13
kHardResource, 13
kintraCore, 12
kModule, 12
kNode, 12
kOK, 12, 13
kProc, 12
kSoftComm, 13
kSoftComp, 13
kSoftMem, 13
kSystem, 12

Internal Functions for Customizable Recovery, 33

kAlreadylnit

Error Reporting, 12
kCabinet

Error Reporting, 12
kCabinetGroup

Error Reporting, 12
kCopy

Preservation/Restoration Types and Methods, 15

kCore

Error Reporting, 12
kDegradedComm

Error Reporting, 13
kDegradedMem

Error Reporting, 13
kDegradedResource

Error Reporting, 13
kError

Error Reporting, 12
kExec

CD-Related Definitions, 7
kFileSys

Error Reporting, 13
kHardResource

Error Reporting, 13
kintraCore

Error Reporting, 12
kModule

Error Reporting, 12
kNode

Error Reporting, 12
kOK

Error Reporting, 12, 13
kPotentiallyShared

PGAS-Specific Methods and Types, 9
kPrivate

PGAS-Specific Methods and Types, 9
kPrivatized

PGAS-Specific Methods and Types, 9
kProc

Error Reporting, 12
kReadOnly

CD-Related Definitions, 8
kReadWrite

CD-Related Definitions, 8
kReexec

CD-Related Definitions, 7
kRef

Preservation/Restoration Types and Methods, 15

kRegen

Preservation/Restoration Types and Methods, 15

kRelaxed
CD-Related Definitions, 7
kShared

INDEX

51

PGAS-Specific Methods and Types, 9
kSoftComm

Error Reporting, 13
kSoftComp

Error Reporting, 13
kSoftMem

Error Reporting, 13
kStrict

CD-Related Definitions, 7
kSystem

Error Reporting, 12
kUnsure

CD-Related Definitions, 8

PGAS-Specific Methods and Types
kPotentiallyShared, 9
kPrivate, 9
kPrivatized, 9
kShared, 9
Preservation/Restoration Types and Methods
kCopy, 15
kRef, 15
kRegen, 15
Profiler-related methods, 31

Generated on Sun May 18 2014 14:08:45 for CD API by Doxygen

	0.1 Containment Domains
	0.1.1 Containment Domains Overview

	0.2 Examples
	0.2.1 Examples
	0.2.1.1 SpMV Example

	0.3 Todo List
	0.4 Module Index
	0.4.1 Modules

	0.5 Namespace Index
	0.5.1 Namespace List

	0.6 Class Index
	0.6.1 Class List

	0.7 File Index
	0.7.1 File List

	0.8 Module Documentation
	0.8.1 CD-Related Definitions
	0.8.1.1 Detailed Description
	0.8.1.2 Enumeration Type Documentation

	0.8.2 PGAS-Specific Methods and Types
	0.8.2.1 Detailed Description
	0.8.2.2 Enumeration Type Documentation
	0.8.2.3 Function Documentation

	0.8.3 Error Reporting
	0.8.3.1 Detailed Description
	0.8.3.2 Enumeration Type Documentation
	0.8.3.3 Function Documentation

	0.8.4 Preservation/Restoration Types and Methods
	0.8.4.1 Detailed Description
	0.8.4.2 Enumeration Type Documentation
	0.8.4.3 Function Documentation

	0.8.5 CD Init Functions
	0.8.5.1 Detailed Description
	0.8.5.2 Function Documentation

	0.8.6 Global CD Accessor Functions
	0.8.6.1 Detailed Description
	0.8.6.2 Function Documentation

	0.8.7 CD Hierarchy-Related Methods (create, begin, ...)
	0.8.7.1 Detailed Description
	0.8.7.2 Function Documentation

	0.8.8 Detection and Recovery Methods
	0.8.8.1 Detailed Description
	0.8.8.2 Function Documentation

	0.8.9 Methods for Interacting with the CD Framework and Tuner
	0.8.9.1 Detailed Description
	0.8.9.2 Function Documentation

	0.8.10 Profiler-related methods
	0.8.10.1 Detailed Description
	0.8.10.2 Function Documentation

	0.8.11 CD Event Functions for Non-Blocking Calls
	0.8.11.1 Detailed Description
	0.8.11.2 Function Documentation

	0.8.12 Internal Functions for Customizable Recovery
	0.8.12.1 Detailed Description
	0.8.12.2 Function Documentation

	0.9 Namespace Documentation
	0.9.1 cd Namespace Reference
	0.9.1.1 Detailed Description

	0.10 Class Documentation
	0.10.1 cd::CDEvent Class Reference
	0.10.1.1 Detailed Description
	0.10.1.2 Member Data Documentation

	0.10.2 cd::CDHandle Class Reference
	0.10.2.1 Detailed Description
	0.10.2.2 Member Data Documentation

	0.10.3 CDInternalPtr Class Reference
	0.10.3.1 Detailed Description

	0.10.4 cd::CDNameT Struct Reference
	0.10.4.1 Detailed Description

	0.10.5 cd::DegradedMemErrInfo Class Reference
	0.10.5.1 Detailed Description

	0.10.6 RecoverObject Class Reference
	0.10.6.1 Detailed Description
	0.10.6.2 Member Function Documentation

	0.10.7 cd::RegenObject Class Reference
	0.10.7.1 Detailed Description
	0.10.7.2 Member Function Documentation

	0.10.8 cd::SoftMemErrInfo Class Reference
	0.10.8.1 Detailed Description

	0.10.9 cd::SysErrT Struct Reference
	0.10.9.1 Detailed Description

	0.11 File Documentation
	0.11.1 cd.h File Reference
	0.11.1.1 Detailed Description

	0.12 Example Documentation
	0.12.1 spmv.cc

	Index

