
Adaptive Granularity Memory Systems:
A Tradeoff between Storage Efficiency and Throughput

Doe Hyun Yoon, Min Kyu Jeong, and Mattan Erez
The University of Texas at Austin

Electrical and Computer Engineering Dept.

doehyun.yoon@gmail.com, mjeong@ece.utexas.edu, mattan.erez@mail.utexas.edu

ABSTRACT

We propose adaptive granularity to combine the best of fine-
grained and coarse-grained memory accesses. We augment
virtual memory to allow each page to specify its preferred
granularity of access based on spatial locality and error-
tolerance tradeoffs. We use sector caches and sub-ranked
memory systems to implement adaptive granularity. We also
show how to incorporate adaptive granularity into memory
access scheduling. We evaluate our architecture with and
without ECC using memory intensive benchmarks from the
SPEC, Olden, PARSEC, SPLASH2, and HPCS benchmark
suites and micro-benchmarks. The evaluation shows that
performance is improved by 61% without ECC and 44%
with ECC in memory-intensive applications, while the re-
duction in memory power consumption (29% without ECC
and 14% with ECC) and traffic (78% without ECC and 66%
with ECC) is significant.

Categories and Subject Descriptors

B.3.1 [Memory Structure]: Semiconductor Memories—
Dynamic memory (DRAM); B.3.4 [Memory Structure]:
Reliability, Testing, and Fault-Tolerance—Error-Checking

General Terms

Design, Performance, Reliability

Keywords

Access granularity, ECC, Main memory

1. INTRODUCTION
The continuing improvements in device density and in the

potential performance of parallel processors place increased

This work is supported, in part, by the following organizations: The

National Science Foundation under Grant #0954107, Intel Labs Aca-

demic Research Office for the Memory Hierarchy Innovations pro-

gram, and The Texas Advanced Computing Center.

(c) ACM, 2011. This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The

definitive version was published in the Proceedings of ISCA’11 June 4-8,

San Jose, CA, USA.

pressure on the throughput, power consumption, and relia-
bility. The fundamental problem is that systems require re-
liable high-capacity memory with high throughput and low
power all at the same time, while these parameters are often
in conflict.

Current systems generally try to achieve the above goals
by tuning for mostly sequential and coarse-grained memory
accesses. Coarse-grained accesses allow efficient use of mod-
ern DDRx DRAMs and also enable effective low-redundancy
error tolerance [14]. Unfortunately, when spatial locality is
low, the coarse-grained approach is very inefficient in terms
of power and throughput. The alternative of using fine-
grained access is simply too expensive for most systems, al-
though it is used in some very high-end vector processors [6].
We present an architecture with dynamically-tunable and
adaptive memory access granularity. Our work enables the
processor to selectively use fine-grained access, only when
beneficial and still maintain the efficiency of coarse-grained
access by default. We explore the tradeoffs involved in de-
signing this adaptive granularity memory system (AGMS),
including issues relating to error tolerance and memory ac-
cess scheduling.

Prior work showed that many applications have a large
fraction of data that has low spatial locality because of non-
unit strides, indexed gather/scatter access, and other com-
plex access patterns [36, 34, 41]. Research on mitigating
the negative impact of low spatial locality on cache-based
coarse-grained access systems, however, focused exclusively
on improving cache-array utilization [28, 36]. Our observa-
tion is that improving the efficiency of the cache array is
no longer sufficient and that for many applications, memory
throughput is the bottleneck, and memory power consump-
tion is significant. Memory systems that only make fine-
grained accesses can work well when gather/scatter accesses
are dominant, but squander the benefits of coarse-grained
accesses in the common case of high spatial locality. As a
result, fine-grain-only memory systems are a poor choice for
most systems from the perspective of both performance and
cost, especially when a high level of memory reliability and
availability is required. As we discuss in Section 2, a fine-
grained access requires much more redundancy to ensure
correct execution, reducing effective capacity, bandwidth,
and power efficiency. Therefore, we argue that access gran-
ularity should be adaptive and that the system should be
dynamically optimized to meet the needs and characteristics
of applications. Fine-grained accesses should be used judi-
ciously, only when the overall tradeoffs indicate a positive
gain. We demonstrate that adapting access granularity can
be very effective with improvements in system throughput

1



SDRAM
clock

data
200MHz

Peak BW

1.6 GB/s8B

DDR
clock

data
400MHz

3.2 GB/s16B

DDR2

DDR3

clock

data

clock

data

800MHz

1600MHz

5ns

6.4 GB/s

12.8 GB/s64B

32B

(a) Timing

0

2

4

6

8

10

12

14

SDRAM-200 DDR-400 DDR2-800 DDR3-1600

T
h

ro
u

gh
pu

t [
G

B
/s

]

Data Bus Sequential Peak

Data Bus Random Peak

Stream -- 8x8

GUPS -- 8x8

(b) Effective throughput (useful data only)

Figure 1: Timing diagrams and effective throughput of several DRAM generations. 64-bit wide memory channels are assumed.
Since DRAM core clock frequency stays constant at 200MHz, the ratio of I/O to core clock frequency doubles every generation
of DDR DRAMs. Note that there are no 200MHz SDRAM products, but we present it here for comparison.

and power efficiency of more than 44% and 46%, respec-
tively.

The remainder of this paper is organized as follows: Sec-
tion 2 describes background and related work; Section 3
presents the proposed adaptive granularity memory system;
the evaluation methodology is described in Section 4; the
results and discussion is shown in Section 5; then, Section 6
concludes this paper.

2. BACKGROUND AND RELATED WORK
Before describing our adaptive-granularity architecture,

we explain the tradeoffs with respect to access granularity
in modern memory systems and discuss prior and related
work.

2.1 Fine-Grained Cache Management
While orthogonal to our research on adaptive memory

access granularity, work on cache architectures that sup-
port fine-grained data management is a necessary compo-
nent of our design. These architectures provide mechanisms
to maintain valid and dirty information at a granularity finer
than just an entire cache line. The sector cache [28] was
initially designed to reduce tag overheads by dividing each
cache line into multiple sectors and providing each sector
with its own dirty and valid bits. The decoupled sectored
cache [40] and a pool-of-sectors cache [38] refine the sec-
tor design and enable more elastic mapping between sectors
and tags to reduce the miss rate of a sector cache. The dual
cache [18] uses two L1 caches, one with large line size and the
other with small line size. Similarly the adaptive line size
cache [43] gradually changes cache line size. Other tech-
niques, spatial footprint prediction [25] and spatial pattern
prediction [13], utilize a hardware predictor to reduce fetch
traffic between L1 and L2 or to save leakage power by apply-
ing power-gating to the subblocks that are predicted to be
non-referenced; and the line-distillation cache [36] splits the
cache into a line-oriented cache and a word-oriented cache.

These techniques assume that off-chip memory can be
accessed with fine granularity, which is unfortunately no
longer true because modern DRAM systems evolved to pro-
vide high bandwidth with coarse access granularity. Our
adaptive granularity memory system re-enables these fine-
grained cache-management techniques. AGMS can be com-
bined with any fine-grained cache-management technique,
and in this paper we use a “sector cache” as a simple exam-
ple (see Section 3).

2.2 Memory Access Granularity Tradeoffs
Modern memory systems do not provide truly-uniform

random access. They are instead optimized for capacity first
and for high bandwidth for sequential access second. In or-
der to keep costs low, the DDRx interface relies on high
spatial locality and is requiring an ever increasing minimum
access granularity. Regardless of how much data is required
by the processor, the off-chip DRAM system returns a cer-
tain minimum amount, often referred to as a DRAM burst.
Therefore, in DDRx memory systems, the overall minimum
access granularity is a product of the DRAM chip minimum
burst length and the data width of a channel.

2.2.1 Module and Interface Tradeoffs.

Figure 1(a) shows simplified timing diagrams of data bus
usage for several DRAM generations: single data rate SDRAM,
DDR, DDR2, and DDR3. While the high density required
from DRAM practically limits its core clock frequency to
200MHz, effective I/O data rates have increased up to 1600MHz
for the latest DDR3. Note that newer DRAM generations
transfer a larger chunk of data in the same time window
(5ns in this example), doubling the peak bandwidth in each
generation. This increase in bandwidth is achieved by em-
ploying n-bit prefetch and a burst access: n is 2 in DDR,
4 in DDR2, and 8 in DDR3. As a result, the minimum ac-
cess granularity is increasing: 8B in SDRAM, 16B in DDR,
32B in DDR2, and 64B in DDR3 with a typical 64-bit wide
channel. Thus, as DRAM technology advances, the relative
cost of fine-grained accesses increases.

We carried out a simple experiment that compares the
effective DRAM throughput of sequential accesses and fine-
grained random accesses using DRAMsim [44]. We used
STREAM [31] and GUPS [16] of the HPC Challenge Bench-
marks [1] to represent sequential and random access pat-
terns, respectively. As Figure 1(b) shows, near-peak band-
width is easily achieved with sequential accesses (in STREAM),
whereas fine-grained random accesses (in GUPS) have poor
performance that barely improves over DRAM generations.
Note that we provisioned enough banks and ranks (8 banks
per rank and 8 ranks) so that bank-level parallelism can
hide the penalty of the frequent bank conflicts of random
accesses. Hence, the relatively low throughput of GUPS in
DDR2 and DDR3 is primarily due to their large minimum
access granularity. Only a fraction of the data transferred is
actually used, lowering effective throughput.

A narrower data path can be used to decrease the mini-
mum access granularity because the granularity is a prod-

2



ABUS DBUS 64/8

x8 x8 x8 x8 x8 x8 x8 x8 x8

(a) Conventional coarse-grain only

DBUS 16/8ABUS

x8 x8 x8

DBUS 16/8ABUS

x8 x8 x8

DBUS 16/8ABUS

x8 x8 x8

DBUS 16/8ABUS

x8 x8 x8

(b) Many-narrow-channels

DBUS 16/8ABUS

x8 x8 x8

DBUS 16/8

x8 x8 x8

DBUS 16/8

x8 x8 x8

DBUS 16/8

x8 x8 x8

r
e
g
/
d
e
m
u
x

(c) Sub-ranked

Figure 2: Comparison of a conventional memory system, a many-narrow-channels approach, and a sub-ranked memory system
similar to MC-DIMM. The many-narrow-channels and sub-ranked in this figure provide 16B access granularity with DDR3.
Gray boxes and arrows represent ECC storage and transfers, which increase significantly in (b) and (c) as a result of finer access
granularity support. ABUS represents address/command bus and DBUS X/Y represents data bus, where X bits are for data
and Y bits are for ECC.

uct of minimum burst length and channel width. The burst
length is dictated by the DRAM technology, but the chan-
nel width is a system design parameter. We can find such
implementations in vector processors like the Cray Black
Widow [6]: Its memory subsystem has many 32-bit wide
DDR2 DRAM channels, providing 16B minimum access gran-
ularity. We refer to this style of memory subsystem as many-
narrow-channels. Although the many-narrow-channels ap-
proach reduces minimum access granularity, such a design
is inherently very expensive.

An alternative approach to this supercomputing-based many-
narrow-channels design is to use DRAM sub-ranking. Re-
cently, there have been multiple proposals for memory sys-
tems that can control individual DRAM devices within a
rank: Rambus’s micro-threading [45] and threaded mem-
ory module [46]; HP’s MC-DIMM (multi-core dual in-line
memory module) [8, 7]; Mini-rank memory system [51]; and
Convey’s S/G DIMM (scatter/gather dual in-line memory
module) [10]. In this paper, we collectively refer to these
techniques as sub-ranked memory systems. Figure 2 com-
pares a conventional coarse-grain-only memory system, a
many-narrow-channels approach, and a sub-ranked memory
system similar to MC-DIMM.

Most sub-ranked memory proposals [46, 51, 8, 7] focus on
energy efficiency of coarse-grained accesses by mitigating the
“overfetch” problem. The ability of sub-ranked memory to
support fine-grained accesses is briefly mentioned in [45, 10],
but the tradeoffs are neither discussed nor evaluated. Unlike
prior work on sub-ranked memory, AGMS provides efficient
fine-grained access and dynamic reliability tradeoffs. Also,
to the best of our knowledge we provide the first quantitative
evaluation of sub-ranked memory systems for fine-grained
access.

2.2.2 Error Protection and Access Granularity.

One important tradeoff that favors coarse-grained access
is the efficiency of the error protection scheme. The high
density of DRAM coupled with the large number of DRAM
chips in many systems make memory one of the most sus-
ceptible components [39]. The most effective method to
improve reliability is to tolerate errors using error-checking
and correcting (ECC) codes [27]. With ECC, every access
to memory is accompanied by an ECC operation to ensure
that the access is correct. One pertinent characteristic of
commonly used ECC is that its overhead grows sub-linearly
with the size of the data it protects (O (log

2
n), where n is

the size of the data). Therefore, the finer-grained the access,
the larger the overhead of ECC. Moreover, since we cannot
use an arbitrary width DRAM chip, the actual overhead in

64B 8B

(a) 64B

32B 8B 32B 8B

(b) 32B

16B 8B 16B 8B 16B 8B 16B 8B

(c) 16B

8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B 8B

(d) 8B

Figure 3: Tradeoff between access granularity and redun-
dancy overheads. White and gray boxes represent data and
ECC blocks respectively assuming a minimum access granu-
larity of 8B (×8 DRAM chips and burst-8 accesses in DDR3).
The finer the granularity, the higher the overhead of redun-
dancy.

terms of chip count can be even larger. This ECC overhead
manifests itself in reduced storage efficiency (more DRAM
chips for the same data capacity) and lower effective pin
bandwidth and power efficiency (more pins and watts for
the same data bandwidth). For example, typical overhead
with ECC DIMMs is 12.5% with 8 bits of ECC information
for every 64 bits of data (or a 16 bits of ECC for 128 bits
of data). In Cray’s Black Widow [6], many-narrow-channels
memory subsystem has 25% overhead: 7-bit SEC-DED (sin-
gle bit-error correct and double bit-error detect) for each 32
bits of data, but the actual overhead is 8 bits when using ×8
DRAM chips. Furthermore, providing 8B access granular-
ity with DDR3 using the many-narrow-channels approach
requires 100% ECC overhead (a 5-bit ECC provides SEC-
DED protection for 8-bit data, but we still need at least one
×8 DRAM chip to store ECC information, resulting in 8
overhead bits per 8-bit of data) as well as additional con-
trol overhead. Supporting ECC in a sub-ranked memory
system is also very expensive: MC-DIMM requires a 37.5%
or higher ECC overhead for chipkill-correct [7], for example.
Figure 3 summarizes the tradeoff between access granularity
and storage efficiency.

In summary, neither a conventional coarse-grained mem-
ory system nor a fine-grained memory system, including
many-narrow-channels and sub-ranking schemes, can pro-
vide optimal throughput and efficiency. Optimizing the sys-
tem for coarse-grained accesses sacrifices throughput when
spatial locality is low, while tuning for fine-grained accesses
makes the overheads of control and/or ECC significant. Mod-
ern computing systems, however, require all of these merits:
high throughput both for coarse-grained and fine-grained ac-

3



cesses and high reliability and availability levels, and all of
these at low power and storage overheads.

2.2.3 Other Related Work.

Our adaptive granularity memory system is closely related
to the Impulse memory controller [49]; it uses a shadow ad-
dress space to provide the illusion of contiguous data for non-
unit stride or indexed gather/scatter accesses. The Impulse
memory controller translates a shadow address to poten-
tially multiple physical addresses, and then collects multiple
fine-grained data blocks to form a dense coarse-grained data
block, reducing traffic on the bus between the cache con-
troller and the off-chip memory controller. Unfortunately,
on chip memory controllers in recent architectures as well
as ever-increasing memory access granularity neutralize Im-
pulse’s advantages. Moreover, it is unclear how to support
both fine-grained memory accesses and ECC with Impulse.

Similar to the tradeoff between storage efficiency and fine-
grained throughput presented in this work, RAID-Z imple-
mented in the ZFS file system [4] uses different reliability
schemes for stores with varying granularities. RAID-Z, how-
ever, has completely different management mechanisms and
characteristics because it deals with the much larger data
blocks of hard disk drives.

3. ADAPTIVE GRANULARITY MEMORY

SYSTEM
We propose the adaptive granularity memory system (AGMS)

that combines the best of fine-grained and coarse-grained ac-
cesses. AGMS uses a coarse-grained configuration for mem-
ory regions with high spatial locality and a fine-grained con-
figuration for memory regions with low spatial locality. The
proposed mechanism is a vertical solution that requires col-
laboration between several system levels: The application
provides preferred granularity information (Section 3.1); the
OS manages per-page access granularity by augmenting the
virtual memory (VM) interface (Section 3.2); a sector cache
manages fine-grained data in the cache hierarchy (Section 3.3);
and a sub-ranked memory system and mixed-granularity
memory scheduling provide efficient handling of multiple
access granularities within off-chip memory system (Sec-
tion 3.4 and Section 3.5). We also discuss the tradeoffs in
making granularity decisions (Section 3.6).

3.1 Application Level Interface
As explained in the previous section, the adaptive granu-

larity memory system requires different memory protection
schemes for different access granularities. The degree of re-
dundancy, and thus the memory layout, has to change (see
Section 3.4 for details). Consequently, the processor can-
not adapt the granularity independent of the software. The
tuning/adaptation can be done either statically at compile
time or dynamically by the OS (we discuss the dynamic
case later). In the static approach, the programmer or an
auto-tuner provides granularity information through a set of
annotations, hints, compiler options, and defaults that as-
sociate a specific tolerance mechanism with every memory
location.1 We envision that the programmer will declare

1
Note that a physical memory location can only be protected using

a single mechanism at any given time because the protection scheme
and redundant information need to be checked and updated consis-
tently.

a preferred access granularity when memory is allocated.
More accurately, we allow the programmer to override the
default access granularity using annotations and compiler
hints. In Fortran, programmer annotations can take the
form of another array attribute; in C, we can add a param-
eter to malloc.

3.2 OS Support
Granularity and protection schemes are applied when phys-

ical memory is allocated and are thus closely related to the
virtual memory manager. We augment the virtual memory
interface to allow software to specify the preferred access
granularity for each page. The per-page access granularity
is stored in a page table entry (PTE) when a page is allo-
cated. This information is propagated through the memory
hierarchy along with requests, miss status handling registers,
and cache lines so that the memory controller can use the
information to control DRAM channels. Since most archi-
tectures have reserved bits in a PTE, we can accommodate
the preferred access granularity similar to per-page cache
attributes in the ×86 ISA [22].

Because the OS manages both access granularity and vir-
tual memory, it is possible to dynamically adapt the gran-
ularity without application knowledge. This would require
hardware support for determining access granularity, such
as the mechanisms proposed for fine-grained cache manage-
ment [25] as well as the OS to copy (migrate) pages or change
granularity when paging. We leave further exploration of
this idea to future work and discuss it further in Section 3.6.

3.3 Cache Hierarchy
AGMS issues both coarse- and fine-grained requests to

main memory and thus needs to manage both granularities
of data within the cache hierarchy. The simplest way is to
use a cache with a line size equal to the smallest access gran-
ularity, e.g. 8B. A better design choice is a sector cache [28].
A cache line in a sector cache is divided into multiple sec-
tors, and each sector maintains its own valid and dirty bits,
but there is only one tag for each multi-sectored cache line.
Since sector caches do not increase address tag overhead, the
additional cost is only the storage for valid and dirty bits:
14 bits per cache line when a 64B cache line is divided into
eight 8B sectors.

While the more advanced cache architectures described
in Section 2.1 can provide better management of fine-grained
data, we choose a simple sector cache in this work to better
isolate performance gains from adaptive granularity mem-
ory access; the simple sector cache allows a fair comparison
between the adaptive granularity memory system and a con-
ventional coarse-grain-only architecture.

3.4 Main Memory

Sub-Ranked Memory Systems. We leverage the sub-
ranked memory system approach because it enables fine-
grained accesses with minimal control overhead. We use
a 64-bit wide memory channel with DDR3 DRAMs: eight
×8 DRAMs per rank. Figure 4(a) shows the main memory
architecture for this study. The minimum access granular-
ity in our system is 8B since we can control each memory
device independently. Though sub-ranked memory systems
can provide multiple granularities (8B, 16B, 24B, 32B, and
64B), we restrict access granularity to 64B (coarse-grained)
and 8B (fine-grained) in this paper. A fine-grained 8B re-

4



DBUS

x8 x8 x8 x8 x8 x8 x8 x8 x8

ABUS

SR0 SR1 SR2 SR3 SR4 SR5 SR6 SR7 SR8

r
e
g
/
d
e
m
u
x

(a) Sub-ranked memory system

SR0

SR1

SR2

SR3
ABUS

SR4

SR5

SR6

SR7

d
e
m
u
x

(b) 1× ABUS

reg

reg

clk

clk

Double 

Data Rate 

ABUS

SR0

SR1

SR2

SR3

SR4

SR5

SR6

SR7

d
e
m
u
x

d
e
m
u
x

(c) 2× ABUS

Quad 

Data Rate 
ABUS

SR1
reg

φ0

SR0

d
e
m
u
x

reg

φ1

SR2

SR3

d
e
m
u
x

reg

φ2

SR4

SR5d
e
m
u
x

reg

φ3

SR6

SR7d
e
m
u
x

(d) 4× ABUS

Figure 4: Sub-ranked memory with a register/demux architecture of 1×, 2×, and 4× ABUS bandwidth. We use a register/demux
similar to the one suggested in MC-DIMM [8]. Note that we do not use a register with the 1× ABUS configuration.

quest is serviced by a burst of 8 transfers from a single ×8
DRAM chip, and a coarse-grained 64B request is serviced
by a burst of 8 transfers from 8 ×8 DRAM chips in a rank.

Address Bus Bandwidth. Because each fine-grained ac-
cess reads or writes only 8B of data, it requires a factor of 8
more memory requests to achieve the equivalent throughput
of coarse-grained accesses. In other words, fine-grained ac-
cesses will saturate an address/command bus (ABUS) that
is designed for coarse-grained accesses, and greater com-
mand signaling bandwidth is required for fine-grained ac-
cesses to fully utilize the DRAM bandwidth. Many commer-
cial high-end systems including Power 7 [24] and Cray Black
Widow [6] as well as the custom address/command bus in
the Convey S/G DIMM [10] and decoupled DIMM [52] al-
ready use or suggest 3 to 4 times, or even more, faster signal-
ing for the ABUS. Increasing ABUS bandwidth is a matter
of overall system optimization in terms of cost, power, and
performance. We explore the design space of ABUS band-
width later in this section.

Figure 4(b)-(d) show the architectures of the register/demux
used in the sub-ranked memory system, and Figure 4(c) and
Figure 4(d) show how 2× and 4× ABUS bandwidths are pro-
vided. While the 2× ABUS scheme can be achieved by using
double data rate signaling as with the data bus (DBUS) with
a relatively simple register/demux, the 4× ABUS scheme,
which uses quad data rate signaling, may increase design
complexity due to signal integrity issues.

Memory controllers. An interesting challenge in imple-
menting adaptive granularity, compared to fixed granularity
memory systems, is the effective co-scheduling of memory
requests with different granularities; this includes buffering,
scheduling, and providing quality of service. The example
in Figure 5(a) illustrates how a coarse-grained request is un-
fairly deferred when there are many fine-grained requests,
assuming the commonly used FR-FCFS [37] scheduling pol-
icy. The coarse-grained request at time 2 cannot be immedi-
ately issued due to pending fine-grained requests F0 and F3,
which were queued at time 0 and time 1 respectively. While
the coarse-grained request waits in the queue, other fine-
grained requests (F1, F2, and F0) arrive and are scheduled
quickly since a fine-grained request can be serviced once its
single associated sub-rank becomes ready. Coarse-grained
requests, on the other hand, can only be scheduled when all
sub-ranks are available at the same time. As a result, the
coarse-grained request is serviced only after all fine-grained
requests are serviced, potentially degrading performance sig-
nificantly.

We propose two solutions to address this problem: (i)
to give higher priority to coarse-grained requests; and (ii)

Request

order

0 1 2 3 4 5 6

F0 F3 F1 F2 F0

7 8 9 10 11 12 13 14 15

ABUS

DBUS0

DBUS1

DBUS2

DBUS3

C

time

F0

F3

F1

F2

F0 C0

C1

C2

C3

F0 F3 F1 F2 F0 C

(a) Basic FR-FCFS scheduling

Request

order

0 1 2 3 4 5 6

F0 F3 F1 F2 F0

7 8 9 10 11 12 13 14 15

ABUS

DBUS0

DBUS1

DBUS2

DBUS3

C

time

F0

F3

F1

F2

F0C0

C1

C2

C3

F0 F3 F1 F2 F0C

(b) Priority on coarse-grained requests

Request

order

0 1 2 3 4 5 6

F0 F3 F1 F2 F0

7 8 9 10 11 12 13 14 15

ABUS

DBUS0

DBUS1

DBUS2

DBUS3

C

time

F0

F3

F1

F2

F0C0

C1

C2

C3

F0 F3 C1 C2 F2 F0C0 F1C3

(c) Splitting coarse-grained requests

Figure 5: Scheduling examples. Fx represents a fine-grained
request to sub-rank x, and C represents a coarse-grained
request. There are four sub-ranks, and a memory device
returns a 4-cycle burst after a request is made. FR-FCFS
scheduling is used, and data bus contention is the only con-
straint in scheduling in this simple example.

to split a coarse-grained request into multiple fine-grained
requests. The first solution prioritizes a coarse-grained re-
quest when its service is unfairly deferred due to fine-grained
requests. Supporting different request priorities is a com-
mon feature of modern out-of-order memory schedulers. As
shown in Figure 5(b) when the scheduler detects that a
coarse-grained request is deferred due to fine-grained re-
quests (at time 2), it raises the priority of the coarse-grained
request. This prevents fine-grained requests with normal
priority from being scheduled. As a result, the coarse-grained
request finishes at time 9, after which fine-grained requests
are serviced.

Our second solution splits a coarse-grained request into
many fine-grained requests so that each fine-grained request
(belonging to a single coarse-grained request) can be oppor-
tunistically scheduled. The original coarse-grained request

5



x8 x8 x8 x8 x8 x8 x8 x8 x8

64B data 8B ECC

8 burst

(a) Coarse-grained

x8 x8 x8 x8 x8 x8 x8 x8 x8

8B data + 8B ECC

8 burst

Not used

(b) Fine-grained

Figure 6: Coarse-grained and fine-grained accesses with ECC

finishes when all its fine-grained requests are serviced. Fig-
ure 5(c) shows such an example. At time 2, the coarse-
grained request is split into four fine-grained requests (C0,
C1, C2, and C3), and the coarse-grained request finishes
when all of them are serviced (at time 9). A caveat to this
solution is that it potentially increases ABUS bandwidth
requirement. We compare the two solutions in more detail
later in this subsection.

3.4.1 Data layout.

When ECC is not used, the data layout in physical mem-
ory is the same for both fine-grained and coarse-grained
pages. When ECC is enabled, on the other hand, we need
to use a different data layout for fine-grained pages to ac-
count for the higher required redundancy. Figure 6 com-
pares a coarse-grained and fine-grained accesses with ECC
in a DDR3-based system. Fine-grained data can provide
higher throughput with low spatial locality, but it increases
the ECC overhead since every data block needs its own ECC
code. The 8B minimum access granularity dictates at least
8B for ECC.

In this paper, we use a simple scheme in which a fine-
grained physical page is twice as large as a coarse-grained
nominal page, e.g. 8kB of storage for a 4kB data page.
Each 8B of data is associated with 8B of ECC. Hence, a
fine-grained request is serviced by accessing 16B in total.
Memory controllers must interpret this change in address-
ing when making fine-grained data accesses with ECC, and
the OS should manage physical memory pages accordingly.
As a result, fine-grained pages have low storage efficiency,
but can still provide better throughput than always using
coarse-grained accesses. We store data and its associated
ECC in different memory devices, providing better reliabil-
ity than other embedded-ECC designs [51, 19, 15], which
store ECC in the same DRAM row as the data it protects.
A more generalized and flexible scheme such as Virtualized
ECC [48] can manage ECC without changing physical data
layout and can even handle granularities other than 64B
and 8B easily, but we leave exploring such configurations to
future work. We assume that ECC DIMMs are used, and
ECC information for coarse-grained accesses is stored in the
dedicated ECC DRAM chips.

3.5 AGMS Design Space
We now explore the design space of AGMS. We describe

the details of the simulation settings and system parameters
in Section 4. We use GUPS for exploring the design space be-
cause it is very memory-intensive and has many fine-grained
requests. Furthermore, GUPS is often used as the gold stan-
dard for evaluating memory systems and network designs

in large-scale systems and is considered to be a challenging
benchmark [1]. We later show that AGMS provides signifi-
cant benefits to real applications in addition to this impor-
tant micro-benchmark.
GUPS performs a collection of independent read-modify-

write operations to random locations (8B elements in our ex-
periments). GUPS has two buffers: an index array and a data
array. The index array is accessed sequentially. The values
stored in the index array are random numbers that are used
for addressing the data array to be updated. For adaptive
granularity, we define the index array as a coarse-grained
region and the data array as a fine-grained region. We sim-
ulate a 4-core system with an instance of GUPS per core and
a single 1067MHz DDR3 channel. We choose this relatively
low-bandwidth configuration because it is representative of
future systems that are expected to have larger compute to
memory bandwidth ratios than current systems. Limited
experiments with higher bandwidth yielded very similar re-
sults in the case of GUPS.

Figure 7(a)-(b) show the throughput of various system
configurations using weighted speedup [17]. Compared to
CG (coarse-grain-only), the AG schemes improve system
throughput significantly: 100−130% with nominal 1× ABUS
bandwidth, 150−200% with 2× ABUS, and up to 480% with
4× ABUS. Note that with AG, the index array uses coarse-
grained accesses and the data array is accessed with fine
granularity. The performance of the AG schemes with 1×
and 2× ABUS is limited by ABUS bandwidth: They have
almost 100% ABUS utilization, while data bus (DBUS) uti-
lization is only 25% (1× ABUS) and 50% (2× ABUS). With
4× ABUS, DBUS utilization reaches more than 70%. Note
that even with 1× ABUS, the effective throughput is still
twice as high as that of a coarse-grain-only system.

The throughput of the baseline AG system is limited by
coarse-grained requests to the index array that are unfairly
deferred due to many fine-grained accesses. This effect is
more pronounced with 2× or 4× ABUS. AGpriority and AGsplit

overcome this inefficiency by allowing coarse-grained requests
to complete in a timely manner. AGpriority performs slightly
better when ABUS bandwidth limits overall throughput (1×
ABUS), but AGsplit is best when ABUS bandwidth is higher
(2× and 4× ABUS).

When ECC is enabled, the AG schemes improve perfor-
mance by 120 − 130% with 1× ABUS, 200 − 210% with
2× ABUS, and up to 250% with 4× ABUS. One anoma-
lous case is AGsplit with 1× ABUS, where the throughput
of AGsplit+ECC is better than that of AGsplit . The reason
is that AGsplit+ECC makes coarser requests because of the
ECC data and thus requires less ABUS bandwidth. The
coarse-grained requests are split into only four finer-grained
requests (as opposed to eight requests with AGsplit without
ECC). Note that 4× ABUS does not provide any further im-
provements because the data bus is already heavily utilized
(more than 70%) with 2× ABUS due to the extra bandwidth
consumed by the redundant ECC information.

Figure 7(c) and Figure 7(d) compare the DRAM power
consumption of the evaluated configurations. In general,
the AG schemes consume much less power than CG be-
cause they avoid accesses and transfers of unnecessary data
and mitigate DRAM “overfetch” [7]. Having higher ABUS
bandwidth increases DRAM system utilization and DRAM
power consumption. The significant improvements to sys-

6



1.0

2.2

3.5

3.9

2.3

3.9

4.4

2.0

4.0

5.8

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1x ABUS 2x ABUS 4x ABUS

S
y
s

te
m

 T
h

r
o

u
g

h
p

u
t

CG

AG

AGpriority

AGsplit

(a) Weighted speedup (non-ECC)

1.0

2.2

3.1 3.1

2.3

3.0 3.0

2.2

3.0

3.5

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1x ABUS 2x ABUS 4x ABUS

CG+ECC

AG+ECC

AGpriority+ECC

AGsplit+ECC

(b) Weighted speedup (ECC)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

1x ABUS 2x ABUS 4x ABUS

D
R

A
M

 p
o

w
e

r
 [

W
]

CG

AG

AGpriority

AGsplit

(c) DRAM power (non-ECC)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1x ABUS 2x ABUS 4x ABUS

D
R

A
M

 p
o

w
e

r
 [

W
]

CG+ECC

AG+ECC

AGpriority+ECC

AGsplit+ECC

(d) DRAM power (ECC)

Figure 7: GUPS 4-core simulation for design space exploration. CG is a conventional fixed-granularity coarse-grained system; AG
is the baseline adaptive granularity system with standard FR-FCFS scheduling; AGpriority and AGsplit are the adaptive granularity
memory systems where the former uses higher priority for deferred coarse-grained requests and the latter splits coarse-grained
requests into multiple fine-grained requests; The suffix +ECC represents ECC support in each configuration.

tem throughput, however, compensate for this increased power,
leading to superior power efficiency.

Based on the evaluation results shown in Figure 7, in the
rest of the paper, we use AGsplit with 2× ABUS both for
non-ECC and ECC configurations. Although 4× ABUS im-
proves GUPS significantly, GUPS’s access pattern of almost
exclusively fine-grained requests is not common in real ap-
plications. Therefore, we choose a 2× ABUS configuration
over a 4× ABUS system given its design complexity and
power overhead of a 4× ABUS system. Both AGpriority and
AGsplit perform equally well with 2× ABUS bandwidth in
general, but AGsplit can utilize bandwidth more efficiently
in a few cases.

3.6 Access Granularity Tradeoffs
While fine-grained accesses can utilize off-chip bandwidth

more efficiently than coarse-grained ones, we should also
consider that fine-grained access may degrade performance
because of potentially higher average memory access latency.
Ideally, bottom-line performance can be used to determine
granularity, but the high cost of copying (migrating) a page
to change its data layout (when ECC is used) for a different
access granularity dictates that such changes be infrequent.
As a result, common approaches to “experiment” dynami-
cally and monitor performance are ill-suited for granularity
selection. Instead, we propose a heuristic that incorporates
metrics of spatial locality and DRAM characteristics.

The first component of our heuristic is cache spatial local-
ity. Fine-grained accesses avoid fetching unnecessary data
and utilize scarce off-chip bandwidth resources more effec-
tively. Minimizing traffic generally reduces memory power
consumption and can maximize system throughput when
memory throughput is the bottleneck. We estimate the spa-
tial locality of a page by averaging the number of words used
in each fetched cache line for that page. Thus, we can es-
timate the average traffic for fetching a line from a page as
follows:

• The cost for a coarse-grained access (64B) is 73B: 64B
data, 8B ECC, and 1B for control.

• The cost for a fine-grained access (8B) depends on the
number of words referenced. For each referenced word,
we need 17B: 8B data, 8B ECC, and 1B for control.

Consequently, fine-grained accesses minimize the amount of
traffic if an average cache line in a page has fewer than 4
referenced words (for the configuration parameters used in
this paper).

Minimizing traffic, however, does not always guarantee
higher overall performance or efficiency. The reason is that
with fine-grained requests, multiple accesses to the same line
will all be treated as cache misses (they hit in the tag array,
but miss on the actual data word because of the sector cache
design). These misses could have been avoided with coarse-
grained accesses. Thus, if memory bandwidth is not the bot-
tleneck, fine-grained accesses can degrade performance. We
account for this effect by considering DRAM access charac-
teristics that make fetching additional data relatively cheap.

The second component of the heuristic is DRAM page hit
rate. A high DRAM page hit rate reduces the potential
gains of fine-grained data access since the relative overhead
of fetching an entire cache line is smaller when page hit rate
is high. When the page hit rate is low, fine-grained accesses
allow more rapid transitions between pages and also increase
the level of parallelism in the memory system (sub-rank level
parallelism in addition to rank and bank level parallelism).
Thus, if the page hit rate is high, pre-fetching extra data
with coarse-grained accesses does not significantly impact
effective memory throughput and can improve cache hit rate
and average load latency.

We combine cache-line spatial locality and page hit rate by
adding a penalty (α) to fine-grained accesses when page hit
rate is high: We opt for fine granularity if α× fine-grained-
cost ≤ coarse-grained-cost. α is 1.0 when only one word
is referenced for more than 70% of cache lines in a page.
Otherwise, α is determined by DRAM page hit-rate: 1.0 if
page hit-rate is lower than 60%; 1.3 if lower than 70%; 1.8
if lower than 80%; and 3.0 otherwise. These weights were
chosen arbitrarily, and we determined that performance is
insensitive to this choice to a large extent.

The two components of the granularity-decision heuristic
can be calculated statically, using programmer hints or com-
piler analyses, or dynamically, by allowing the OS to track
access characteristics. In this paper, we use an intermediate
approach to identify fine-grained data regions using off-line
profiling. Instead of modifying the application code and
OS, we use the profiler to guide our decisions. We discuss
the potential merits of this approach compared to dynamic
prediction in the evaluation section, but overall, we deter-
mine that once an application starts running, its granularity
characteristics are stable. Note that the OS can always dy-
namically override granularity decisions and set all pages to
coarse-grained if it determines that to be the most beneficial
approach.

7



Table 1: Benchmark statistics: Last-level cache (LLC) MPKI,
DRAM page hit rates and IPC are estimated from the base-
line cycle-accurate simulation with a single core; average
number of used words per cache line is gathered using PIN.

Benchmark
Input

IPC
LLC

DRAM Avg.

size MPKI
page referenced
hit words per
rate cache line

SPEC
mcf ref 0.24 31.3 19.1% 3.59
omnetpp ref 0.49 11.6 47.8% 3.22
libquantum ref 0.45 15.6 98.9% 4.09
bzip2 ref 0.80 3.2 57.1% 3.63
hmmer ref 0.98 0.87 91.3% 7.93
astar ref 0.87 0.59 44.0% 2.86
lbm ref 0.56 22.9 82.6% 3.92
PARSEC
canneal 400k elements 0.32 17.2 14.1% 1.87
streamcluster 16k points 0.49 14.5 86.8% 7.24
SPLASH2

OCEAN 10262 grid 0.54 18.6 92.6% 6.68
Olden
mst 2k nodes 0.12 41.6 40.5% 2.30
em3d 200k nodes 0.19 39.4 27.4% 2.62
HPCS
SSCA2 64k nodes 0.27 25.4 25.5% 2.63
Micro-benchmarks
Linked List 342 lists 0.04 111.9 34.2% 1.99
GUPS 8M elements 0.08 174.9 10.9% 1.84
STREAM 2M elements 0.4 51.9 96.5% 7.99

4. EVALUATIONMETHODOLOGY
We evaluate AGMS using a combination of PIN-based em-

ulation [30] to collect granularity statistics for full applica-
tion runs and detailed cycle-based simulations to determine
impact on performance and power. For the cycle-based sim-
ulations, we use the Zesto simulator [29] integrated with
a detailed DRAM simulator [23] that supports sub-ranked
memory systems as well as variable ABUS bandwidth as de-
scribed in Section 3.4. The DRAM simulator models mem-
ory controllers and DRAM modules faithfully, simulating
buffering of requests, FR-FCFS [37] scheduling of DRAM
commands, contention on shared resources such as ABUS
and DBUS, and all latency and timing constraints of DDR3
DRAM. Banks and sub-ranks are XOR interleaved to mini-
mize conflicts [50].

Workloads. We use a mix of several applications from
SPEC CPU 2006 [42], PARSEC [9], Olden [12], SPLASH2 [47],
and the HPCS [2] benchmark suites as well as micro-benchmarks
such as GUPS [16], STREAM [31], and Linked List [3] (Ta-
ble 1). We choose mostly memory-intensive applications
without spatial locality, but also include applications that
are not memory intensive and/or have high spatial local-
ity. Note that with adaptive granularity, all applications can
perform at least as well as on the baseline system because
coarse-grained accesses are used by default, but we report
numbers based on the heuristic described in Section 3.6.

For the cycle-based simulations, we ran a representative
region from each application. We use Simpoint [20] to de-
termine the regions for SPEC applications and manually
skipped the initialization of the simpler and more regularly-
behaved Olden, PARSEC, and SPLASH2 benchmark suites,
HPCS SSCA2, and the micro-benchmarks. The size of each
representative region is 200M instructions for the 4-core sim-
ulations and 100M instructions for the 8-core simulations.
For the PIN-based experiments, we ran all applications to
completion.

Table 2: Simulated base system parameters.

Processor core 4GHz x86 out-of-order core (4 or 8 cores)
L1 I-caches 32kB private, 2-cycle latency, 64B cache line
L1 D-caches 32kB private, 2-cycle latency, 64B cache line
L2 caches 256kB private for instruction and data

7-cycle latency, 64B cache line
Last-Level caches shared cache, 64B cache line
(LLC) 4MB 13-cycle latency for 4-core systems

8MB 17-cycles latency for 8-core systems
64B cache line

On-chip memory FR-FCFS scheduler [37]
controller 64-entry read queue, 64-entry write queue

XOR-based bank, sub-rank mapping [50]
Main memory 1 72-bit wide DDR3-1066 channel

64-bit data and 8-bit ECC, ×8 DRAM chips
8 banks per rank, 4 ranks per channel
parameters from Micron 1Gb DRAM [32]

Data page profiling. To collect profiling information, we
use PIN [30] and emulate a 1-level 1MB 8-way set-associative
cache with 64B lines. During program execution, we pro-
file which 8B words are referenced within each cache line.
We then aggregate the per-cache line cost across each 4kB
page and determine the granularity recommendation that
can be overridden dynamically by the OS (see Section 3.6),
although we do not override the decision in this study. We
use this static profiling method to report the ECC storage
overheads of fine-grained pages in Section 5.1 and to iden-
tify fine-grained data pages for the cycle-based simulations
(Section 5.2–5.3).

System Configurations. Table 2 gives the parameters of
the baseline coarse-grain-only system used in our cycle-based
simulations. The cache hierarchy of the base system has an
instruction pointer prefetcher for the instruction caches and
a stream prefetcher for the data caches.

We use the following configurations for evaluating the po-
tential of the AGMS approach.

• CG+ECC: coarse-grain-only system as described in Ta-
ble 2. ECC is stored in dedicated DRAMs.

• CGsub-ranked+ECC: coarse-grain-only system, but it
uses a sub-ranked memory system, similar to MC-DIMM [7].
We use the best configuration from [7], 4 sub-ranks per
rank (see Figure 2(c)). For ECC support, we assume
that each sub-rank has a dedicated ECC DRAM so
that a 64B request is served by a burst of 32 transfers
out of three ×8 DRAMs.

• FG+ECC: fine-grain-only system. The memory con-
troller accesses only requested words (8B), but every
fine-grained access is accompanied by 8B ECC; an 8B
request is served by a burst of 8 transfers out of two
×8 DRAMs, of which one is for data and the other
is for ECC. As a result, the effective memory channel
is only 32 bits wide. Caches have 8 sectors per cache
line.

• AG+ECC: AGMS with the AGsplit scheme described
in Section 3.4 and 2× ABUS. As FG+ECC, AG+ECC
also uses sector caches in L1D and L2 caches and LLC.

In addition to the above configurations with ECC, we also
evaluate systems without ECC: CG, CGsub-ranked, FG, and
AG. These non-ECC configurations are identical to their
ECC counterparts except that they do not support ECC.
CG and CGsub-ranked do not have dedicated ECC DRAMs.
FG and AG (for fine-grained accesses) do not transfer ECC,
yielding twice the peak fine-grained data rates of FG+ECC

8



Table 3: PIN-based data page profiling.

Benchmark Total data
Fine-grained Fraction of
data fine-grained data

SPEC
mcf 1676MB 1676MB 100%
omnetpp 175MB 159MB 91%
libquantum 122MB 0.1MB 0.1%
bzip2 208MB 124MB 59%
hmmer 64MB 0.1MB 0.2%
astar 349MB 258MB 74%
lbm 409MB 6.3MB 1.5%
PARSEC
canneal 158MB 157MB 99%
streamcluster 9MB 0.1MB 1.6%
SPLASH2
OCEAN 56MB 0.1MB 0.1%
Olden
mst 201MB 193MB 96%
em3d 89MB 28MB 31%
HPCS
SSCA2 186MB 18MB 10%
Micro-benchmarks
Linked List 178MB 178MB 100%
GUPS 192MB 64MB 33%
STREAM 47MB 0.1MB 0.2%

and AG+ECC. Note that the AG schemes (AG and AG+ECC)
can emulate the CG schemes (CG and CG+ECC) and the
FG schemes (FG and FG+ECC) when we set all pages to
coarse-grained or fine-grained, respectively.

Power models. We estimate DRAM power consump-
tion using a power model developed by Micron Corpora-
tion [5]. For processor power analysis, we use the IPC-
based mechanism presented in [7]: The maximum power per
core is estimated as 16.8W based on a 32nm Xeon processor
model using the McPAT 0.7 tool [26]; and half of the maxi-
mum power is assumed to be static (including leakage) with
the other half being dynamic power that is proportional to
IPC. In our experience, this rather simple measure of pro-
cessor core power produces a power estimate that matches
WATTCH [11] results well. Furthermore, our study focuses
on main memory, and our mechanisms have minimal impact
on the processor core’s power behavior. We estimate LLC
power using CACTI 6 [33]. To account for the cost of sector
caches and the sub-ranked memory system with 2× ABUS
and the register/demux, we add a 10% power penalty to the
LLC and DRAM power consumption in AGMS, which we
believe to be very conservative.

5. RESULTS AND DISCUSSION
This section presents our analysis of AGMS: Section 5.1

provides data page profiling results and reports the storage
overhead of the redundant information in fine-grained pages;
Section 5.2 and Section 5.3 present cycle-based simulation
results from 4 cores and 8 cores, respectively.

5.1 Page Profiling Results
We use PIN with the simple cache model described in Sec-

tion 4 to profile fine-grained pages as well as total data pages.
The fraction of fine-grained data pages is important because
the storage overhead of ECC for fine-grained pages is twice
that of coarse-grained ones. As shown in Table 3, the frac-
tion of fine-grained pages is low in hmmer, libquantum, lbm,
streamcluster, OCEAN, em3d, SSCA2, GUPS, and STREAM, but
is nearly 100% in many applications. Therefore, declaring a
data page as fine grained must be done judiciously and used
as part of overall system optimization (trading off perfor-
mance and power-efficiency with a larger memory footprint).

Table 4: Application mix for 4-core simulations.

MIX-1 mcf omnetpp mcf omnetpp

MIX-2 SSCA2 lbm astar SSCA2

MIX-3 libquantum hmmer mst mcf

MIX-4 SSCA2 Linked List mst hmmer

For some applications, the choice is clear. As shown in the
performance analysis in Section 5.2, those applications that
have a small fraction of fine-grained pages perform very well
with AGMS. Others still gain from using AGMS, but require
significantly more memory capacity. This particular trade-
off depends on many system-level parameters, and we leave
this evaluation to future work.

5.2 4-core Cycle-Based Results
In this subsection, we present cycle-based simulation re-

sults of 4-core systems. Multi-programmed workloads are
used for the 4-core system evaluation. We use 4 replicas of
an application (suffix ×4) as well as application mixes (Ta-
ble 4). We utilize weighted speedup [17] as the metric of
system throughput. We use the fine-/coarse-grained deci-
sions from our profiler. Both profiler and simulations used
the same dataset, but the profiler was not heavily tuned.

Off-Chip Traffic and Power. First, we compare the off-
chip traffic and DRAM power consumption of CG+ECC,
CGsub-ranked+ECC, FG+ECC, and AG+ECC. Figure 8(a)
shows the total memory traffic including ECC. AG+ECC
reduces off-chip traffic by 66%, on average, compared to
CG+ECC (56% excluding the micro-benchmarks: GUPS, STREAM,
and Linked List).

The reduced off-chip traffic leads to lower DRAM power
consumption as shown in Figure 8(b). Remember that we
added a conservative 10% power penalty to the AG+ECC
configurations. AG+ECC reduces DRAM power by 7% to
21% in most applications and 14% on average. DRAM
power actually increases for GUPS, but that is a result of the
much higher performance obtained; efficiency is significantly
improved as discussed below.

CGsub-ranked+ECC, though the sub-ranked memory sys-
tem was suggested for better energy efficiency, shows in-
creased traffic and DRAM power consumption. This is mainly
due to the cost of accessing redundant information; nar-
row access width in CGsub-ranked+ECC necessitates high re-
dundancy. FG+ECC, on the other hand, is effective in re-
ducing traffic in most cases. FG+ECC, however, generates
more traffic than AG+ECC. This is, again, due to ECC
traffic; when spatial locality is high, coarse-grained accesses
not only reduce miss rate but also minimize traffic includ-
ing ECC. Though FG+ECC can minimize DRAM power
consumption, since it touches only the necessary data, the
reduced DRAM power consumption in FG+ECC does not
necessarily lead to better performance or power efficiency as
we show in the next paragraph.

Throughput and Power Efficiency. Figure 9(a) shows
the system throughput of CG+ECC, CGsub-ranked+ECC,
FG+ECC, and AG+ECC. Overall, AG+ECC improves sys-
tem throughput significantly: more than 130% in GUPS, 30%
to 70% in mst, em3d, SSCA2, canneal, and Linked List, and
44% on average (22% on average excluding micro-benchmarks).

The results also show the advantage of adapting granu-
larity compared to just using one of the mechanisms AGMS
relies on fine-grained access (FG+ECC) and memory sub-
ranking (CGsub-ranked+ECC). Even in these applications that

9



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

T
ra

ff
ic

 [
B

y
te

s
/I

n
s

tr
]

FG ECC

FG Data

CG ECC

CG Data

1. CG+ECC

2. CGsub-rank+ECC

3. FG+ECC

4. AG+ECC

24 32 35 47 18 24

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(a) Traffic

0.0

2.0

4.0

6.0

8.0

10.0

12.0

mcf x4 omnetpp 
x4

mst x4 em3d x4 canneal 
x4

SSCA2 
x4

linked list 
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

D
R

A
M

 p
o

w
e

r 
[W

]

CG+ECC CG-subrank+ECC FG+ECC AG+ECCAG+ECCCG+ECC CGsub-rank+ECC FG+ECC

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(b) DRAM Power

Figure 8: 4-core system off-chip traffic and power.

0.0

1.0

2.0

3.0

4.0

5.0

mcf x4 omnetpp 
x4

mst x4 em3d x4 canneal 
x4

SSCA2 
x4

linked list 
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

S
y
s

te
m

 T
h

ro
u

g
h

p
u

t 

CG CG-subranked

FG+ECC AG+ECCAG+ECC

CG+ECC CGsub-rank+ECC

FG+ECC

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(a) System throughput

0.0

0.5

1.0

1.5

2.0

2.5

mcf x4 omnetpp 
x4

mst x4 em3d x4 canneal 
x4

SSCA2 
x4

linked list 
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

T
h

ro
u

h
p

u
t /

 P
o

w
e
r

CG+ECC

CG-subrank+ECC

FG+ECC

AG+ECCAG+ECC

CG+ECC

CGsub-rank+ECC

FG+ECC

2.8 3.1

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(b) Normalized system power efficiency

Figure 9: 4-core throughput and power efficiency.

can benefit from fine-grained access, AG+ECC consistently
matches or outperforms FG+ECC.

We further evaluate applications with high spatial local-
ity in Figure 10. AG+ECC, with most pages being coarse-
grained, shows no degradation except bzip2 relative to CG+ECC.
FG+ECC, on the other hand, degrades system through-
put significantly: 17% in libquantum, 34% in bzip2, 36%
in OCEAN, 50% in streamcluster, and 48% in STREAM. lbm
is the only case that FG+ECC improves throughput (7%).
Though lbm has very high DRAM page hit rate (82.6%),
lbm references fewer than 4 words per cache line on average;
hence, the FG scheme (FG+ECC), with lower total traffic,
can slightly improve performance.

We also show that sub-ranking alone (CGsub-ranked+ECC)
significantly impacts performance because access latency in-
creases as it takes longer to transfer a coarse-grained cache
line into the cache over a narrower channel. This effect is
pronounced in our system configuration that has limited la-
tency hiding with only a single thread per core.

MIX-3 and bzip2 are the only experiments we ran in
which performance degraded with the AG scheme, but the
degradation is less than 4%. In bzip2, most memory ac-

0.0

1.0

2.0

3.0

4.0

5.0

libquantum x4 lbm x4 bzip x4 OCEAN x4 streamcluster 
x4

stream x4

S
y
s

te
m

 T
h

ro
u

g
h

p
u

t 

CG CG_subrank

FG+ECC AG+ECCAG+ECC

CG+ECC CGsub-rank+ECC

FG+ECC

libquantum

x4

lbm

x4

bzip2

x4

OCEAN

x4

streamcluster

x4

stream

x4

Figure 10: Applications with high spatial locality.

0.0

1.0

2.0

3.0

4.0

5.0

mcf x4 omnetpp 
x4

mst x4 em3d x4 canneal 
x4

SSCA2 
x4

linked list 
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

S
y
s

te
m

 T
h

ro
u

g
h

p
u

t 

CG

CG-subranked

FG

AG

CG

CGsub-rank

FG

AG

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(a) System throughput

0.0

0.5

1.0

1.5

2.0

2.5

mcf x4 omnetpp 
x4

mst x4 em3d x4 canneal 
x4

SSCA2 
x4

linked list 
x4

gups x4 MIX-1 MIX-2 MIX-3 MIX-4

T
h

ro
u

h
p

u
t /

 P
o

w
e
r

CG

CG-subranked

FG

AG

CG

CGsub-rank

FG

AG

4.1 4.2

mcf

x4

omnet

x4

mst

x4

em3d

x4

canneal

x4

SSCA2

x4

linked

x4

gups

x4
MIX-1 MIX-2 MIX-3 MIX-4

(b) Normalized system power efficiency

Figure 11: 4-core throughput and power efficiency (non-
ECC).

cesses fall within coarse-grained regions so AG+ECC prac-
tically do not affect execution (degrade throughput by less
than 4%). MIX-3 suffers a more apparent performance degra-
dation. This is most likely because of unfair DRAM schedul-
ing between the applications. The performance of mcf is
degraded, but that of mst is improved. In the meanwhile,
the performance of libquantum and bzip2 results almost re-
mained unchanged. This is because mst has a relatively high
DRAM page hit rate compared to mcf (40.5% vs. 19.1%).
Since the FR-FCFS scheduling policy used in our memory
controller tries to maximize memory throughput, mst’s re-
quests are favored over those of mcf, leading to unfair re-
source allocation between mcf and mst. We believe that
combining the adaptive granularity scheme with a better
scheduling mechanism that provides fairness, such as parallelism-
aware batch scheduling [35], can overcome this inefficiency
in MIX-3. Note that AGMS does improve the performance
of MIX-D in the 8-core simulation (see Section 5.3). MIX-D
has two instances of each application of MIX-3, and AG+ECC
improves performance when relative off-chip bandwidth is
more scarce.

Recall that AGMS allows every page to have its own gran-
ularity. Hence, we can nullify all performance degradation;
the OS can override the granularity hint if it suspects an
increase in unfairness. The OS can set fine-grained regions
in a more conservative way or even use only coarse-grained
accesses.

We report the system power efficiency in terms of through-
put per unit power (including cores, caches, and DRAM)
in Figure 9(b). With reduced DRAM power consumption,
AG+ECC improves the system power efficiency except in
MIX-3. AG+ECC improves efficiency by 46% on average
(24% excluding micro-benchmarks). The AG scheme de-
grades the throughput per power of MIX-3 by only less than
2%, which is due entirely to the 10% DRAM power penalty

10



Table 5: Application mix for 8-core simulations.

MIX-A mcf ×4 omnetpp ×4

MIX-B
SSCA2 ×2 mcf ×2
omnetpp ×2 mst ×2

MIX-C
SSCA2 mcf omnetpp mst

astar hmmer lbm bzip2

MIX-D
libquantum ×2 hmmer ×2
mst ×2 mcf ×2

we conservatively added to account for the register/demux.
In many current systems that are coarse-grained only, how-
ever, registered DIMMs are already used for higher capacity.
Compared to such systems, we do not expect any degrada-
tion in efficiency.

Note that we use power efficiency rather than a metric
such as energy-delay product (EDP) because of our multi-
programmed simulation methodology. All applications con-
tinue to run until the slowest-running application completes,
and thus the amount of work varies from one configuration
to another. Keep in mind that this is only for measuring
power consumption, and the statistics for a specific core
freeze when a core executes a fixed number of instructions
so that the IPC comparison is based on the same number
of instructions across different configurations. We believe
our approach is the most appropriate for our analysis. Al-
ternative approaches, such as FIESTA [21], propose that
in each experiment the same number of instructions is ex-
ecuted. Thus, the amount of work does not vary across
experiments, allowing energy comparison.

We also present the throughput and the overall power effi-
ciency of non-ECC configurations in Figure 11. While over-
all tendency is the same as the results of ECC configura-
tions, AG shows even further gains: 61% in throughput and
67% in power efficiency on average (34% and 40% excluding
micro-benchmarks).

Note that we use the same profiler designed for AG+ECC,
showing that AGMS is not sensitive to the profiler designs;
using sub-optimal profiler in AG still provides significant
gains in most applications. Furthermore, based on the im-
provements in FG and FG+ECC, simple per-thread decision
(either all coarse-grained or all fine-grained) in the AGMS
will lead to better performance and efficiency than coarse-
grain-only baseline.

5.3 8-core Cycle-Based Results
This section presents results from 8-core system simula-

tions. Systems with more cores are likely to have more mem-
ory channels, but we evaluate an 8-core system with a single
channel. We chose this configuration because we expect sys-
tems in the future to generally have a lower memory band-
width versus overall core arithmetic throughput. We use 8
replicas of an application (suffix ×8) as well as application
mixes (Table 5).

The results of 8-core simulations (Figure 12) show simi-
lar trends to those of 4-core systems. The performance and
power gains, however, are higher in the more bandwidth-
constrained 8-core configurations. Performance is improved
by 85% (59% excluding micro-benchmarks) with AG+ECC.
Though we do not show, AG (without ECC) shows fur-
ther gains of 116% throughput improvement (87% excluding
micro-benchmarks). Reductions in DRAM power consump-
tion and traffic are similar to those in the 4-core experi-
ments. In future systems, where off-chip bandwidth will be
severely limited, it is likely that virtually all applications
will be bandwidth-bound; hence, we expect AGMS, which

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

mcf x8 omnetpp x8 mst x8 em3d x8 canneal x8 SSCA2 x8 linked list x8 gups x8 MIX-A MIX-B MIX-C MIX-D

S
y
s

te
m

 T
h

ro
u

g
h

p
u

t 

CG CGsubrank

FG+ECC AG+ECCAG+ECC

CG+ECC CGsub-rank+ECC

FG+ECC

mcf

x8

omnet

x8

mst

x8

em3d

x8

canneal

x8

SSCA2

x8

linked

x8

gups

x8
MIX-A MIX-B MIX-C MIX-D

Figure 12: 8-core system throughput.

utilizes off-chip bandwidth more efficiently, to be even more
beneficial.

6. CONCLUSIONS AND FUTUREWORK
We present a novel architecture that enables a tradeoff

between storage efficiency and fine-grained throughput and
power efficiency. The adaptive granularity memory system
(AGMS) utilizes finite off-chip bandwidth more efficiently:
Fine-grained memory access minimizes off-chip traffic and
reduces DRAM power consumption by not transferring un-
necessary data, while also increasing concurrency in memory
accesses and improving performance; coarse-grained mem-
ory access minimizes control and redundancy overheads and
can potentially reduce miss rate. In 4-core systems, AGMS,
even with higher ECC overhead, improves system through-
put and power efficiency by 44% and 46% respectively. It
also reduces memory power consumption and traffic by 14%
and 66%. AGMS, though we design it for ECC-enabled
memory systems, is also beneficial for non-ECC memory sys-
tems and provides further gains: Throughput improvement
is 61%; and power efficiency gain is 67%. When off-chip
bandwidth is more constrained, as in our 8-core configura-
tions, AGMS is even more beneficial and important: System
throughput increases are 85% with ECC and 116% without
ECC. Thus, we conclude that adapting access granularity
will be more effective in future systems, where off-chip band-
width is relatively scarce. Note that these promising results
were obtained with a very rough profiler for determining the
preferred granularity. We expect to improve on this work by
developing more sophisticated heuristics, utilizing more pro-
grammer knowledge, and studying dynamic adaptivity.

We will also continue to improve AGMS by studying more
efficient memory controller designs when multiple access gran-
ularities are present, supporting other access granularities
such as 16B or 32B in a more generalized framework, and ex-
ploring stronger protection mechanisms, e.g. chipkill-correct.
Another direction is to apply the adaptive granularity scheme
to different architectures: GPUs, vector or stream architec-
tures, or general purpose processors with vector extensions.
These architectures have explicit gather/scatter operations,
requiring efficient fine-grained memory accesses. Hence, the
adaptive granularity memory system will present more ben-
efits in such architectures.

7. REFERENCES
[1] HPC challenge. http://icl.cs.utk.edu/hpcc/hpcc_results.cgi.

[2] HPCS scalable synthetic compact application (SSCA).
http://www.highproductivity.org/SSCABmks.htm.

[3] Linked list traversal micro-benchmark.
http://www-sal.cs.uiuc.edu/~zilles/llubenchmark.html.

[4] ZFS the last word in file systems. http:
//www.opensolaris.org/os/community/zfs/docs/zfs_last.pdf.

[5] Calculating memory system power for DDR3. Technical Report
TN-41-01, Micron Technology, 2007.

11



[6] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier,
E. Lundberg, M. Byte, and G. Schwoerer. The Cray Black
Widow: A highly scalable vector multiprocessor. In Proc. the
Int’l Conf. High Performance Computing, Networking,
Storage, and Analysis (SC), Nov. 2007.

[7] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S.
Schreiber. Future scaling of processor-memmory interfaces. In
Proc. the Int’l Conf. High Performance Computing,
Networking, Storage and Analysis (SC), Nov. 2009.

[8] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi.
Multicore DIMM: An energy efficient memory module with
independently controlled DRAMs. IEEE Computer
Architecture Letters, 8(1):5–8, Jan. - Jun. 2009.

[9] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural
implications. Technical Report TR-811-08, Princeton Univ.,
Jan. 2008.

[10] T. M. Brewer. Instruction set innovations for the Convey HC-1
computer. IEEE Micro, 30(2):70–79, 2010.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proc. the 27th Ann. Int’l Symp. Computer
Architecure (ISCA), Jun. 2000.

[12] M. C. Carlisle and A. Rogers. Software caching and
computation migration in Olden. Technical Report TR-483-95,
Princeton University, 1995.

[13] C. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accurate
and complexity-effective spatial pattern prediction. In Proc.
the 10th Int’l Symp. High-Performance Computer
Architecture (HPCA), Feb. 2004.

[14] C. L. Chen and M. Y. Hsiao. Error-correcting codes for
semiconductor memory applications: A state-of-the-art review.
IBM J. Research and Development, 28(2):124–134, Mar. 1984.

[15] R. Danilak. Transparent error correction code memory system
and method. US Patent, US 7,117,421, Oct. 2006.

[16] Earl Joseph II. GUPS (giga-updates per second) benchmark.
http://www.dgate.org/~brg/files/dis/gups/.

[17] S. Eyerman and L. Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[18] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with
multiple caching strategies tuned to different types of locality.
In Proc. the Int’l Conf. Supercomputing (ICS), Jul. 1995.

[19] M. J. Haertel, R. S. Polzin, A. Kocev, and M. B. Steinman.
ECC implementation in non-ECC components. US Patent
Pending, Serial No. 725,922, Sep. 2008.

[20] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0:
Faster and more flexible program analysis. In Proc. the
Workshop on Modeling, Benchmarking and Simulation
(MoBS), Jun. 2005.

[21] A. Hilton, N. Eswaran, and A. Roth. FIESTA: A
sample-balanced muilti-program workload methodology. In
Proc. the Workshop on Modeling, Benchmarking and
Simulation (MoBS), Jun. 2009.

[22] Intel Corp. Intel R©IA-64 and IA-32 Architecture Software
Developer’s Manual, Mar. 2010.

[23] M. K. Jeong, D. H. Yoon, and M. Erez. DrSim: A platform for
flexible DRAM system research.
http://lph.ece.utexas.edu/public/DrSim.

[24] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7:
IBM’s next-generation server processor. IEEE Micro,
30(2):7–15, 2010.

[25] S. Kumar and C. Wilkerson. Exploiting spatial locality in data
caches using spatial footprints. In Proc. the 25th Ann. Int’l
Symp. Computer Architecture (ISCA), Jun. 1998.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore
architectures. In Proc. the 42nd Ann. IEEE/ACM Int’l Symp
Microarchitecture (MICRO), Dec. 2009.

[27] S. Lin and D. J. Costello Jr. Error Control Coding:
Fundamentals and Applications. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983.

[28] J. S. Liptay. Structural aspects of the system/360 model 85,
part II: The cache. IBM Systems Journal, 7:15–21, 1968.

[29] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A cycle-level
simulator for highly detailed microarchitecture exploration. In
Proc. the Int’l Symp. Performance Analysis of Software and
Systems (ISPASS), Apr. 2009.

[30] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. PIN:
Building customized program analysis tools with dynamic
instrumentation. In Proc. the ACM Conf. Programming
Language Design and Implementation (PLDI), Jun. 2005.

[31] J. D. McCalpin. STREAM: Sustainable memory bandwidth in
high performance computers.
http://www.cs.virginia.edu/stream/.

[32] Micron Corp. Micron 1 Gb ×4, ×8, ×16, DDR3 SDRAM:
MT41J256M4, MT41J128M8, and MT41J64M16, 2006.

[33] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi.
CACTI 6.0. Technical report, HP Labs., Apr. 2009.

[34] R. C. Murphy and P. M. Kogge. On the memory access
patterns of supercoputer applications: Benchmark selection
and its implications. IEEE Transactions on Computers,
56(7):937–945, Jul. 2007.

[35] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of shared
DRAM systems. In Proc. the 35h Ann. Int’l Symp. Computer
Architecture (ISCA), Jun. 2008.

[36] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line
distillation: Increasing cache capacity by filtering unused
words in cache lines. In Proc. the 13th Int’l Symp. High
Performance Computer Architecture (HPCA), Feb. 2007.

[37] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D.
Owens. Memory access scheduling. In Proc. the 27th Ann.
Int’l Symp. Computer Architecture (ISCA), Jun. 2000.

[38] J. B. Rothman and A. J. Smith. The pool of subsectors cache
design. In Proc. the 13th Int’l Conf. Supercomputing (ICS),
Jun. 1999.

[39] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in
the wild: A large-scale field study. In Proc. the 11th Int’l
Joint Conf. Measurement and Modeling of Computer
Systems (SIGMETRICS), Jun. 2009.

[40] A. Seznec. Decoupled sectored caches: Conciliating low tag
implementation cost. In Proc. the 21st Ann. Int’l Symp.
Computer Architecture (ISCA), Apr. 1994.

[41] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial memory streaming. In Proc. the 33rd
Ann. Int’l Symp. Computer Architecture (ISCA), Jun. 2006.

[42] Standard Performance Evaluation Corporation. SPEC CPU
2006. http://www.spec.org/cpu2006/, 2006.

[43] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji.
Adapting cache line size to application behavior. In Proc. the
Int’l Conf. Supercomputing (ICS), Jun. 1999.

[44] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMsim: A memory-system simulator.
SIGARCH Computer Architecture News (CAN), 33:100–107,
Sep. 2005.

[45] F. A. Ware and C. Hampel. Micro-threaded row and column
operations in a DRAM core. In Proc. the first Workshop on
Unique Chips and Systems (UCAS), Mar. 2005.

[46] F. A. Ware and C. Hampel. Improving power and data
efficiency with threaded memory modules. In Proc. the Int’l
Conf. Computer Design (ICCD), 2006.

[47] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and
methodological considerations. In Proc. the 22nd Ann. Int’l
Symp. Computer Architecture (ISCA), Jun. 1995.

[48] D. H. Yoon and M. Erez. Virtualized and flexible ECC for
main memory. In Proc. the 15th Int’l. Conf. Architectural
Support for Programming Language and Operating Systems
(ASPLOS), Mar. 2010.

[49] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke,
J. Carter, W. Hsieh, and S. McKee. The Impulse memory
controller. IEEE Transactions on Computers, Special Issue
on Advances in High Performance Memory Systems,
50(11):1117–1132, Nov. 2001.

[50] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page
interleaving scheme to reduce row-buffer conflicts and exploit
data locality. In Proc. the 33rd IEEE/ACM Int’l Symp.
Microarchitecture (MICRO), Dec. 2000.

[51] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and
Z. Zhu. Mini-rank: Adaptive DRAM architecture for improving
memory power efficiency. In Proc. the 41st IEEE/ACM Int’l
Symp. Microarchitecture (MICRO), Nov. 2008.

[52] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM:
Building high-bandwidth memory systems using low-speed
DRAM devices. In Proc. the 36th Ann. Int’l Symp. Computer
Architecture (ISCA), Jun. 2009.

12


