

BOOM: Enabling Mobile Memory Based Low-Power Server DIMMs

Doe Hyun Yoon, Jichuan Chang, Naveen Muralimanohar, and Parthasarathy Ranganathan Intelligent Infrastructure Lab (IIL), Hewlett-Packard Labs

Server Memory

Capacity demand

In-memory database Memcached

Memory power

215W for 256GB

Even larger than CPU power

BOOM [Buffered Output On Module]

Buffered DIMM

Wide slow data bus Mobile memory

Much lower power Only 58W for 256GB

No compromise in performance & reliability

Mobile Memory for Servers

Mobile Memory Advantages

Designed for low power, comparable latency

Can we use mobile memory for servers?

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

6

(Server) Memory Requirements

High capacity

High performance – high BW

Low power

7

Low cost – Total Cost of Ownership (TCO)

High reliability/availability – chipkill-correct

These objectives are inter-twined among others Mobile memory can reduce server power, but may adversely affect other objectives

Chipkill-correct

System continuously functions even at a DRAM chip failure

Single DRAM chip failure correction and double DRAM chip failure detection

At least 2 ECC DRAM chips per logical rank

Reed Solomon code combined with erasure technique

Easier to implement chipkill with narrow (x4) DRAM chips

2 x4 ECC chips per 16 x4 data chips 12.5% overhead

2 x8 ECC chips per 8 x8 data chips 25% overhead

2 x16 ECC chips per 4 x16 data chips 50% overhead

Mobile Memory for Low-Power Server DIMMs

Capacity

2-8Gb LPDDR2 is already available

Buffered DIMMs can help

Cost

Increasing market volume drives cost low

Low operating power can improve TCO

Bandwidth

0.8GHz LPDDR2 vs. 1.6GHz DDR3

1.6GHz LPDDR3 vs. 3.2GHz DDR4

Reliability

Only x16 and x32 devices

Difficult to enable chipkill-correct

How to enable high BW and chipkill-correct with mobile memory?

BOOM Architecture

Baseline Load-Reduced DIMM (LR-DIMM)

On-module buffer completely isolates external bus from internal bus

Allow a larger number of DIMMs per channel at high channel frequency

External and internal buses have the same channel width and frequency High channel bandwidth → High DRAM frequency

Baseline Load-Reduced DIMM (LR-DIMM)

BOOM

Re-organize DIMM

Commodity DRAM

Changes:

- Routing within DIMM
- Buffer chip
- ECC handling at the memory controller

N times wide internal bus

1/N DRAM frequency – Low power Chipkill-correct for wide DRAM chips (e.g., x16)

The same external BW

N2 & N4 architectures – DRAM chips running at $\frac{1}{2}$ or $\frac{1}{4}$ of the bus frequency

Baseline LR-DIMM with DDR3-1600

8 DDR3-1600 memory channels

Capacity: 256GB Peak BW: 104GB/s

2 channel lock-step mode for chipkill-correct

BOOM N2 with DDR3-800

1/2 DRAM frequency – reduce background power Same BW, Same capacity

128-bit wide Internal bus

No lock-step mode, but support chipkill-correct 8 logical channels (64-bit wide)

BOOM N4 with LPDDR2-400

1/4 DRAM frequency LPDDR2 further reduces background power Still, Same BW, Same capacity

Internal 256-bit wide channel

No lock-step mode – 8 logical channels

Support chipkill-correct even for x16 LPDDR2 DRAM

Wide internal channel increases ACT/PRE power

ation contained herein is subject to change without notice.

BOOM N4 + Sub-Ranking

DRAM Power reduction with BOOM

Implications for Future Memory Systems

Conclusions

BOOM enables MOBILE MEMORY for servers

Wide slow internal bus Commodity DRAM chips

DRAM power reduction

75% saving on average, across memory intensive applications Much lower background power Energy-proportional memory system

No compromise in BW and reliability

Same external bandwidth, Same capacity Support chipkill-correct for wide DRAM chips

More details [ECC, access granularity, row-buffer size, etc] in the paper

BOOM: Enabling Mobile Memory Based Low-Power Server DIMMs

Doe Hyun Yoon, Jichuan Chang, Naveen Muralimanohar, and Parthasarathy Ranganathan Intelligent Infrastructure Lab (IIL), Hewlett-Packard Labs

