
Practical Nonvolatile Multilevel-Cell
Phase Change Memory

Doe Hyun Yoon∗

IBM Thomas J. Watson Research Center
dyoon@us.ibm.com

Jichuan Chang
Hewlett-Packard Labs

jichuan.chang@hp.com
Robert S. Schreiber
Hewlett-Packard Labs

rob.schreiber@hp.com

Norman P. Jouppi
Hewlett-Packard Labs

norm.jouppi@hp.com

ABSTRACT
Multilevel-cell (MLC) phase change memory (PCM) may provide
both high capacity main memory and faster-than-Flash persistent
storage. But slow growth in cell resistance with time, resistance
drift, can cause transient errors in MLC-PCM. Drift errors increase
with time, and prior work suggests refresh before the cell loses data.
The need for refresh makes MLC-PCM volatile, taking away a key
advantage. Based on the observation that most drift errors occur
in a particular state in four-level-cell PCM, we propose to change
from four levels to three levels, eliminating the most vulnerable
state. This simple change lowers cell drift error rates by many or-
ders of magnitude: three-level-cell PCM can retain data without
power for more than ten years. With optimized encoding/decoding
and a wearout tolerance mechanism, we can narrow the capacity
gap between three-level and four-level cells. These techniques to-
gether enable low-cost, high-performance, genuinely nonvolatile
MLC-PCM.

Categories and Subject Descriptors
B.3.4 [MEMORY STRUCTURES]: Reliability, Testing, and Fault-
Tolerance—Error-checking

General Terms
Design, Reliability

Keywords
Memory, Phase Change, Multilevel Cell, Nonvolatility

1 Phase-Change Memory for Exascale Systems
The cost, power, density, and reliability of memory will be criti-
cally important for exascale systems. While DRAM is not out of
the question, sustaining exponential growth (a.k.a. Moore’s law)
in DRAM capacity is becoming more and more difficult, and re-
searchers have proposed alternatives, including phase change mem-

∗This work was done while the author was at Hewlett-Packard Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SC ’13 November 17 - 21, 2013, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 $15.00.
http://dx.doi.org/10.1145/2503210.2503221

ory (PCM), as a scalable substitute. PCM provides these advan-
tages: low (almost no) idle power, robustness against particle-induced
(soft) errors, nonvolatility, and multilevel-cell (MLC) capability for
high density. MLC-PCM has higher storage density than either
DRAM or single-level-cell (SLC)1 PCM, allowing MLC-PCM to
compete with Flash. Its nonvolatility makes it suitable for impor-
tant HPC (high-performance computing) uses such as checkpoint
files, in situ postprocessing, and other uses.

MLC-PCM, however, has some challenges. Prior work has fo-
cused on slow writes [25], wear leveling [26], and hard error correc-
tion [27, 28, 39, 24]. Here we address another important complicat-
ing characteristic. A PCM cell is a controllable resistor whose re-
sistance can be set at one of several levels, but the resistance slowly
changes over time. This is called resistance drift.

Drift errors and refresh: Resistance drift may cause errors. Once
a cell is programmed to a certain state, the cell resistance increases
over time. The resistance may drift into the next state region, and
then the sensing circuit will read a different value than the one that
was written. This phenomenon is analogous to charge leakage in a
DRAM cell. A cell retains its data only for a finite amount of time.
An intuitive solution is to read and rewrite each cell before it loses
its data—periodic refresh for MLC-PCM [2].

A cell with faster than average drift, or which is written at the
high end of its designated resistance state, and which is not re-
freshed often enough, will produce transient drift-induced errors.
(We use the term transient error in a memory cell to mean an error
that, while it may not recur repeatedly and reliably, is more likely
to be seen in the future having been seen in the cell once.)

The purpose of refresh is to restore cells to nominal resistance
values in order to prevent drift-induced errors. We use an error cor-
recting code (ECC) as part of the refresh mechanism [2]. The ECC
mechanism first corrects any drift-induced (and other) errors. Thus,
for every cell, at least once per refresh period, we read, correct if
needed, and re-write (even if no ECC-corrected error occurred).
The refresh resembles a DRAM scrubbing mechanism, but its main
purpose and effect is to restore nominal analog resistance values.
Adding the ECC helps to prolong the refresh period.

Nonvolatility: We define a memory or storage device to be non-
volatile if it retains its contents for a long time, measured in years,
without consuming power. Any memory that needs frequent refresh
is therefore volatile.

Arguably, no storage medium is categorically nonvolatile—all
need to be re-read and re-written at some frequency to ensure per-
manent retention of the data. They differ in the frequencies with
1A single-level cell has multiple, in fact two, levels, so the term single-level cell should
instead be two-level, or single-bit cell. But this misuse is now well established.

which refresh needs to be done. DRAM, for example, requires very
frequent refresh to avoid errors. Disk can retain data for years, but
not forever. Our practical definition of nonvolatility implies years
of data retention without power supply.

Is MLC-PCM nonvolatile?: According to published drift mod-
els, a typical four-level-cell (4LC) PCM needs refresh every tens of
minutes, even with some optimizations we discuss later. Unless we
reduce drift error rates by several orders of magnitude, 4LC-PCM
is therefore volatile. Applications that require nonvolatility (high-
bandwidth file systems [9], persistent data structures [8, 34, 33],
in-memory checkpointing [11], etc.) become problematic if not im-
possible in this scenario. Our key contribution is to restore non-
volatility at modest cost in capacity. We do this by backing off to a
three-level cell.

Making 4LC-PCM usable as volatile memory: A 4LC-PCM
with periodic refresh may potentially be used as volatile memory;
the 4LC cell has a twofold density advantage vis a vis DRAM and
SLC-PCM. Unfortunately, a recent study [38] showed that a naïve
4LC cell has resistance drift vulnerabilities; with a practical ECC
scheme used to refresh, the refresh interval is too short, leaving too
little bandwidth for application uses. This study therefore claimed
that the required frequent refresh renders 4LC-PCM impractical,
even as volatile memory.

Based on our study of error rates, we concur that published drift
models imply that naïve 4LC-PCM is impractical. But we show
how 4LC-PCM can be made useful. We improve it by a more care-
ful data encoding, a strong but realizable ECC, and a better choice
of the resistance levels to be used. This lengthens its required re-
fresh interval to a practical value (17 minutes).

Restoring nonvolatility: Further increase in retention time (to
more than a year) can qualify MLC-PCM as nonvolatile storage.

We observe that in a four-level cell, most drift errors occur in a
particular cell state (the second highest resistance level); hence, we
propose to change from four-level (two bits per cell) to three-level
(ternary cell), avoiding the vulnerable state (and most, if not all,
drift errors).

We propose three-level-cell (3LC) designs, which achieve sev-
eral orders of magnitude lower drift error rates than the best four-
level-cell designs. Using a simple ECC, refresh is needed only after
ten years, which makes 3LC-PCM nonvolatile by our definition.

This approach works because drift is, in a sense, self-limiting.
The rate of drift decreases monotonically with time. Thus, it is
practical to control drift errors simply by widening the safety mar-
gins between cell states.

The use of ternary cells naturally raises two question: how to
store binary information in the non-power-of-two-level cells and
how to compensate for the reduced information capacity.

We propose to use an encoding mechanism (3-ON-2) that stores
three bits on two ternary cells, similar to the ones in [18, 29]. This
only achieves 1.5 bits per cell, which is 25% lower than in the four-
level designs. We propose a novel, low-storage-overhead wearout
tolerance mechanism for the 3-ON-2 design (mark-and-spare). In-
cluding the storage overhead of error correcting information (for
both wearout failures and drift errors), the proposed 3-ON-2 mech-
anism is only 7.4% less dense than a four-level-cell design. The
full 3-ON-2 scheme has other practical advantages:

• low read latency with simple ECC (8× faster ECC decoding
than the four-level-cell design),

• low-storage-overhead wearout tolerance with mark-and-spare
(only two spare cells per wear-out failure, compared to the
five cells per wearout failure of prior work),

0

0.5

1

1.5

2

2.5

2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

p
d

f
o

f
ce

ll
 r

es
is

ta
n

ce

log10 R

S1 S4 S2 S3

1 2 3

Figure 1: State mapping in a 4-level cell.

• high performance and low energy (33% higher performance
and 24% lower energy than the 4LC design), and

• long retention time (tens of years), to simplify data manage-
ment and enable new applications (e.g., in-memory check-
pointing, database, file system).

2 PCM and Resistance Drift Models
2.1 Phase change memory

PCM cells are chalcogenide materials (e.g., alloys of germanium,
antimony, or tellurium: Ge2Sb2Te5, GeSb, or Sb2Te3). A cell
has a continuum of states of which the extremes are amorphous and
fully crystalline. Resistance in the fully crystalline and amorphous
states differs by 3-4 orders of magnitude [6]. A two-level, one bit
cell would use only these extreme states.

A SET operation applies a low-amplitude, long current pulse,
which forces the cell into the crystalline state. A RESET operation
uses a high-amplitude, short current pulse, which forces the cell
into the amorphous state.

2.2 Multilevel-cell phase change memory

Like Flash, PCM derives some of its cost advantages from memory
cells that store more than one bit of information. A sequence of
precisely controlled SET and RESET operations adjusts the frac-
tion of crystalline material in a cell and can set the resistance to
an intermediate value. Though some recent material papers present
the evidence of 8- or 16-level cells [23], here we assume a four-
level cell as the baseline MLC (with expected usage in the near
future).

In MLC-PCM, the actual resistance of a written cell is a random
variable whose distribution is lognormal [19, 4]: the logarithm of
the resistance of the written cell is normally distributed, with mean
at or close to a nominal value (µR), and with some standard devi-
ation (σR). Figure 1 shows the resistance distribution in four-level
cell PCM. We denote the four cell states S1, S2, S3, and S4, from
lowest to highest resistance. In a naïve encoding, the nominal val-
ues of these states are evenly distributed in the log-resistance do-
main, and so are the threshold values (τ1 to τ3) at the inter-state
boundaries. A write is accepted if it falls within 2.75 × σR of the
nominal value; otherwise, the cell is re-written (iterative write-and-
verify [23]). Thus the density of the written cell’s log-resistance lies
under truncated Gaussians.

2.3 Resistance drift

Unfortunately, cell resistance is not constant over time; it drifts. Let
the cell be programmed at time t = 0, and let the cell resistance be
sensed as R0 after a very small amount of time, t0. Then R(t), the
cell resistance at time t (t > t0), is modeled as Equation 1 [17].

Table 1: MLC-PCM resistance and drift parameters [37].

state log10R α
µR σR µα σα

Lowest resistance S1 3

1/6

0.001

0.4 × µα
S2 4 0.02
S3 5 0.06

Highest resistance S4 6 0.1

R(t) = R0 ×
(
t

t0

)α
(1)

The exponent α determines the drift rate. Due to process vari-
ation, every cell experiences different drift rates. The drift rate α,
hence, is modeled as a random variable; the mean (µα) and stan-
dard deviation (σα) are very small at S1 (lowest resistance) and
increase with the cell resistance. Table 1 describes µR and σR of
the four cell states as well as µα and σα [37]. Since α < 1, the
rate of resistance drift, dR/dt, is monotonically decreasing; more-
over, the quantity of interest, which is logR grows as log t, so the
growth rate of log resistance drops dramatically.

2.4 Transient errors caused by resistance drift

We illustrate how resistance drift causes transient errors in Figure 2.
When a cell is programmed to the S2 state, for example, its resis-
tance lies initially within ±2.75σR of the nominal value (104Ω). It
then begins to drift upwards.

Resistance drift does not cause a logical error until the increased
resistance crosses a threshold into the next state. The time to drift
errors (the retention time), is determined by two factors: the initial
resistance R0 and the drift rate α. Due to variability of the initial
resistance, cells programmed to relatively low resistance (e.g., 1
in Figure 2) retain the stored value longer, cells programmed to
relatively high resistance (e.g., 2 and 3 in Figure 2) cause transient
errors more quickly. And cells with higher than average drift rate
(α) will also suffer errors more quickly.

As discussed, the drift rate α is very small in S1; the infinitesimal
drift essentially never changes an S1 state into an S2 state. The drift
rate is higher in S2 and even higher in S3. However, the highest-
resistance state (S4) does not suffer from drift errors. Increasing the
resistance in S4 cannot change the cell state: any resistance higher
than τ3 is treated as S4. Hence, drift errors occur only in interme-
diate states (S2 and S3), and when states are uniformly spaced in
log-resistance, S3 is most prone to drift errors.

We first estimate the naïve four-level-cell PCM (4LCn) cell er-
ror rate per refresh period as a function of the refresh interval. Be-
cause of the variability of initial resistance and drift rate, we take
N = 109 samples from these distributions, and find the fraction
of cells in which resistance drifts across a state threshold in the
given refresh interval. (Our methodology is similar to that of [38].)
Figure 3 shows cell error rates of states S2 and S3. As discussed,
cell error rates of S1 and S4 are practically zero. Note that S3 has
approximately an order of magnitude higher cell error rates than
S2.

3 Related Work
There is little prior work on drift-induced transient errors. We first
briefly review the work on mitigating resistance drift, then discuss
wearout tolerance techniques and other topics.

Prior work on resistance drift: Reference cell [16] and time-
aware sensing [37] are circuit-level techniques for mitigating drift

S2

log10R

2.75

3
2

2.75

3
1

S3

104  105 

R0: normal
distribution

R(t)=R0×(t/t0)

1

2

3

Drift error margin

Figure 2: Transient errors due to resistance drift.

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

2s 32s 17min 9hour 12day 1year 34year 1089year 34865year

Ce
ll

 E
rr

o
r

R
at

e
Time

S2
S3

Figure 3: Drift error rates in a conventional four-level cell.

errors. These complementary drift error reduction techniques show
limited improvement in error rate.

Linear, systematic, block ECC are widely used for correcting
errors in current memory devices. A BCH (Bose Chaudhuri Hoc-
quenghem) [5, 14] code is useful for correcting drift errors, with its
capability for detecting and correcting random bit errors. We use
the notation BCH-n for an n-bit-correcting BCH code.

Permutation coding [22] encodes data through permuting the cell
resistance levels in a sequence of cells that, before permutation,
have monotonically increasing resistance. Data are preserved if the
permutation does not change due to drift. While this coding tech-
nology is more drift-resilient than level-based encoding, the decod-
ing procedure is complex, involving analog sensing of resistance
values, sorting, finding the most likely basic pattern, permutation,
and a table lookup. The specific coding scheme stores 11 bits in 7
memory cells, achieving 1.57 bits per cell, and the cell error rate is
kept as low as 1E − 5 for more than 37 days.

Other coding techniques reduce the frequency of cells that are in
vulnerable states (S2 and S3). Helmet uses selective inversion and
rotation to reduce the number of S3 cells [40]. Symbol-based value
encoding also makes S3 less common [35]. These mechanisms
depend on data value locality; random signals and compressed or
encrypted data may defeat them.

Refresh for MLC-PCM was suggested in [2], where the term
used was scrubbing, rather than refresh.

Our work is based on the analytical resistance drift model of [38].
The authors of that study recently proposed tri-level cell PCM [29]
to mitigate drift errors. This work is very close to ours in that it
uses three-level cells and stores three bits in two ternary cells. Our
work, however, discusses more than just using three-level cells for
drift error tolerance. We address wearout failures and propose a
low-cost wearout tolerance mechanism (mark-and-spare), leverag-
ing the unused state in 3-ON-2. We qualitatively compare our work
with tri-level cell PCM in Section 6.7.

Wearout failure tolerance: PCM errors are caused not only by
resistance drift but also by cell wearout. In fact, MLC-PCM has
lower endurance than SLC-PCM, and cell wearout is a serious prob-
lem. Most prior proposals on wearout have focused on SLC-PCM:
Error Correcting Pointers (ECP) [27], FREE-p [39], PAYG [24],
SAFER [28], etc. In this work, we extend ECP to support MLC-
PCM. FREE-p and PAYG are also applicable to MLC-PCM, but
applying SAFER to MLC-PCM is not straightforward.

ZombieMLC [3] proposes a wearout tolerance mechanism for
permutation-coded MLC PCM. It prepends anchor cells, whose
values are known, to a permutation-coded message and permutes
it again to map ‘0’ and ‘1’ on the stuck-at-0 and -1 cells, respec-
tively; hence, it tolerates wearout failures. While ZombieMLC is
an interesting technique, it incurs relatively complex decoding pro-
cedures (solving a linear equation using Galois field arithmetic, in
addition to already not-so-simple permutation decoding), and the
presented examples with four-level cells have very low information
density: 1.33 and 1 bits per cell (using four-level cells).

Non-power-of-two-level cells: Like our 3LC proposal, elastic RE-
SET [18] uses three-level cells, but for a different purpose (longer
lifetime). Elastic RESET uses a uniform state mapping and does
not achieve the same low error rate that we do.

The information encoding in our paper as well as elastic RE-
SET can be viewed as a special case of enumerative source encod-
ing [10]. Such an advanced coding theory can help design future
MLC memory with any non-power-of-two levels.

4 Target Refresh Interval and Cell Error Rate
Before studying drift error rates and proposing a new architecture,
we should first answer the following questions: What retention time
is acceptable in volatile memory? What cell error rate is tolerable?

4.1 What PCM memory refresh interval is acceptable?

To guarantee long-term data integrity, every block in an MLC-PCM
device must be refreshed before any block fails.

PCM write is slow (around 100 ns), and MLC-PCM write is even
slower (around 1 us). Assuming each refresh of a 64B block takes
1 us, refreshing a 16GB device takes around 268 s; at a refresh
interval of 17 minutes, the PCM device is available only 74% of
the time. Figure 4 shows PCM availability in a function of re-
fresh interval. This large penalty can be alleviated by refreshing
each memory bank independently. While a bank is being refreshed,
other banks are available to users. For instance, bank availability
can be as high as 97% in an 8-bank PCM device at the 17-minute
refresh interval.

The refresh rate, however, cannot be arbitrarily high. PCM write
operations draw considerable power, limiting PCM write through-
put and hence refresh rate. A recent 8Gb SLC-PCM prototype has
3.2 GB/s read bandwidth, but write bandwidth is only 40MB/s, af-
ter a dramatic 5× improvement [7]. MLC-PCM write may draw
more current than SLC-PCM write, and write throughput is likely
to be lower than SLC-PCM write throughput. Aggressively assum-
ing 40MB/s write throughput, refreshing a 16GB MLC-PCM takes
around 410 s; the refresh interval should be much longer than this
time.

Considering both bank availability and write throughput, we use
17 minutes (210 s) as an acceptable refresh interval: This interval is
over twice the time to complete one pass of refresh (410 s) so that
the processor can still write back dirty cache lines, and bank avail-
ability is reasonably high (97%) so that the processor can easily
read data.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 4 9 17 34 68 137

A
va

ila
b

ili
ty

Refresh period [minutes]

1 block at a time

8 banks

Bank availability

Device availability

Figure 4: PCM availability as a function of refresh interval.

4.2 What cell error rate is tolerable?

While the actual target cell error rates are available only to the pro-
cess engineers of memory vendors, we set a conservative goal in
this study: fewer than one erroneous block per MLC-PCM device
for more than ten years; i.e., device mean time between failures
(MTBF) is more than 10 years.

We refresh blocks periodically, correcting some cell errors with
an ECC in each such period. A block becomes erroneous at the time
of refresh if the block has a larger number of cell errors than the as-
sociated ECC can correct. Hence, the block error rate (BLER) is a
function of cell error rate (CER) and ECC, as shown in Figure 5.
These rates both represent the fraction of all blocks or cells erro-
neous at the end of the refresh period, and they are functions of
the refresh interval. (The dependence of CER on refresh interval
is given in Section 5.3.) Figure 5 shows the per-period BLER as a
function of the CER and ECC.

Once a block is written, the CER and BLER monotonically in-
crease until the block is re-written or refreshed. Over the ten year
period, the block’s BLER periodically reaches its maximum. The
cumulative BLER, giving the per block error probability after ten
years, is the cumulative probability of error over all the refresh pe-
riods in the ten year window. To meet the reliability goal, the per-
period BLER should be lower than a threshold, the target BLER,
that is inversely proportional to the number of refresh events, or
proportional to the refresh interval, as shown by the three dotted
lines in Figure 5.

An N-byte PCM device has N/M M-byte blocks, and BLER of
M/N is equal to one erroneous block per device. Since PCM is a
potential substitute for DRAM, we assume 64B blocks and 16GB
devices in this study, giving a target cumulative BLER of 3.73E −
9, which corresponds to the uppermost dotted line in the figure. The
two lower dotted lines give the target per block, per period BLER,
assuming refresh intervals of one year and of 17 minutes.

What does this figure imply? If we want true nonvolatility, we
need to remain below the upper dotted line in BLER per period. To
see what ECC is needed, we first find the CER with ten-year refresh
interval via our Monte Carlo technique based on the resistance drift
model and the probability density for resistance and drift parame-
ters. This gives the CER with ten-year refresh. We then find the
point at which that particular CER curve (in Figure 5) drops below
the dotted line. The BCH code required lies below that point. For
memory use, with 17 minute refresh, the target BLER per period is
the lowest dotted line. We would re-determine the CER per period
with 17 minute refresh, and again find the BCH code at which the
new CER curve drops below the 17-minute BLER line.

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02

1E+00

No ECC BCH-1 BCH-2 BCH-3 BCH-4 BCH-5 BCH-6 BCH-7 BCH-8 BCH-9 BCH-10

0% 2% 4% 6% 8% 10% 12% 14% 16% 18% 20%

B
lo

ck
 E

rr
o

r
R

at
e

1E-01

1E-02

1E-03

1E-04

1E-05

1E-06

1E-07

1E-08

1E-09

1E-10

ECC

Overhead

Cell error rate

=1 year  >10 years

 = 17 min

1E-7

1E-3

Figure 5: Block error rate as a function of cell error rate (2 bits per cell) and ECC. π is a refresh interval. Dotted horizontal lines represent
target BLERs when refresh intervals are >10 years, 1 year, and 17 minutes.

5 Drift Error Resilient MLC-PCM
Given high drift rates, managing drift-induced errors is key to en-
abling practical MLC-PCM. In some applications, hours to months
of retention time is good enough. However, PCM’s unique advan-
tage is nonvolatility with byte-addressable read/write; hence, en-
abling years of retention has numerous practical advantages in real
systems.

In order to mitigate drift errors, we first apply a set of optimiza-
tion techniques to the conventional four-level-cell (4LC) design.
We then propose a new three-level cell (3LC) design that substan-
tially reduces drift error rates.

5.1 A resilient four-level-cell design

As shown in Figure 3, only two states cause drift errors in the con-
ventional 4LC design. Optimization techniques that leverage asym-
metry in information statistics can reduce drift errors; we apply two
techniques to the conventional 4LC design (4LCn).

Smart cell encoding: We estimate cell error rate in 4LCn assum-
ing equal probability of occurrence, 25% in each state. Since the
error rates in S3 is an order of magnitude higher than that of S2 or
others, the cell error rate is roughly 25% of the cell error rate for
cells in S3.

Often, however, some cell states occur less frequently than the
others. A smart encoding system reduces the number of cells pro-
grammed to vulnerable states (S2 and S3). Both Helmet [40] and
symbol-based value encoding in [35] do this.

Clearly, the effectiveness of this technique depends on having
a nonuniform probability of state occurrences. In this study, we
assume a skewed probability of occurrence: 35% for S1 and S4,
and 15% for S2 and S3. This is the scheme (4LCs). We believe the
probability of occurrence in 4LCs is quite optimistic compared to
prior work [40, 35].

Optimal state mapping: The cell resistance distributions shown
in Figure 1 use a naïve, uniform distribution of nominal values and
thresholds in the log-resistance domain. Given that drift only in-
creases cell resistance and drift error rates are much higher in S3
than the other states, re-assigning each state’s nominal resistance
and thresholds can mitigate the problem.

For the optimization, we use the following notations: µn denotes
the nominal value of state Sn (n is 1, 2, 3, or 4); τn is a threshold
value between state Sn and Sn+1; σ is standard deviation for resis-
tance distribution; and δ is minimum margin between a threshold
and a (left or right) tail of resistance distribution (hence, left and
right tails of two distributions are spaced by at least 2 × δ apart).

0

0.5

1

1.5

2

2.5

2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

p
d

f
o

f
ce

ll
 r

es
is

ta
n

ce

log10 R

S1 S4 S2 S3

Simple
mapping

Optimal
mapping

1 2 3

Figure 6: Four-level cell: simple and optimal mapping.

0

0.5

1

1.5

2

2.5

2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6 6.25 6.5

p
d

f
o

f
ce

ll
 r

es
is

ta
n

ce

log10 R

S1 S2 S4

Wide margin

Simple
mapping

Optimal
mapping

1
2

Figure 7: The proposed three-level cell: simple and optimal map-
ping.

δ is a guard band for sense amplifier noise, possible long-term drift
that may decrease resistance very slowly, and other faults. We use
a very small δ (0.05σ) in this study. Note that real systems may
have additional constraints.

First, we fix µ1 and µ4 to 103Ω and 106Ω, respectively, since the
resistance of fully crystalline and amorphous states is determined
by process technology. We then optimize µ2, µ3, and τ1 to τ3 as
follows.

minimize CER(µ2, µ3, τ1, τ2, τ3),
subject to µi + 2.75σ + δ < τi < µi+1 − 2.75σ − δ,
for i = 1, 2, 3.

The objective function CER() estimates cell error rate at time
t = 215 s using Monte Carlo simulation (we use 106 cells for faster
evaluation). We use 215 s as an example time to evaluate drift er-
ror rates; since drift error rates monotonically increase over time,

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

2s 32s 17min 9hour 12day 1year 34year 1089year 34865year

Ce
ll

 E
rr

o
r

R
at

e

Refresh Interval

4LCn

4LCs

4LCo

3LCn

3LCo

Figure 8: Cell drift error rates: four-level cell and three-level cell.

the optimization result is not sensitive to the choice of this value.
The constraints in the optimization procedure are due to the relative
order among µn and τn.

Figure 6 compares the simple mapping and the resulting optimal
mapping. The nominal resistance values of S2 and S3 are shifted
left, and the threshold value between S3 and S4 is shifted right. As
a result, the drift error margin for S3 (the gap between the right
tail of S3 and the threshold for S4) is widened significantly. We
refer the 4LC design with both the optimal mapping and a smart
encoding to as 4LCo. Because the excess vulnerability of S3 has
largely been removed, the smart data encoding adds to resilience
only marginally.

Limitations: We show the achieved cell error rates from the de-
scribed optimizations in 4LC-PCM in Section 5.3. These tech-
niques (4LCs and 4LCo), however, are not a game changer; they
achieve a modest reduction in drift errors and allow some increase
in the refresh interval. With strong ECC, use of 4LCo as volatile
memory becomes possible.

In order to make MLC-PCM nonvolatile, we must reduce drift
error rates by several orders of magnitude. Because logR grows
only as log t, we can substantially prolong the time-to-error by
widening the gap between states.

5.2 Three-level cell design

We propose a three-level cell (3LC) design. Even with optimized
mapping, 4LC packs too many levels into the available log-resistance
range. Our proposal instead reduces the pressure by backing off to
three levels: a ternary cell. Figure 7 illustrates both a simple state
mapping (3LCn) and an optimal mapping (3LCo).

3LCn just removes S3 from the naïve 4LC mapping (Figure 1).
For 3LCo we used the optimization described in the previous sub-
section. Note that we denote the three states S1, S2, and S4 (not
S3, because this state is basically equal to the S4 in Figure 1).

This simple change dramatically reduces the drift-caused tran-
sient error rate. Without S3, S2 is the only state that causes drift
errors. In the proposed 3LC design, S2 has a wide safety margin,
as shown in Figure 7. A cell programmed to S2 takes a long time
to drift into the S4 region.

For simplicity, we do not use any smart encoding technique for
the 3LC designs—we assume that all three states are equally fre-
quent.

5.3 Drift error rates of 4LC and 3LC

We compare the per period cell error rates of 4LC and 3LC in Fig-
ure 8, using Monte Carlo simulation of 109 cells. For 3LC designs,
when the resistance of an S2 cell drifts and reaches 104.5Ω (the
original τ2 in 4LCn), we apply a different drift rate (using S3’s
drift rate parameters: µα = 0.06). This is to conservatively ac-
count for the effect of possible increase in drift rate as the resistance
increases.

Four-level cell: 4LCn is practically useless due to high error rates.
The cell error rate is 1E − 3 at a very frequent refresh interval of
30 s, but which is impractical—the device would be almost always
busy for refresh and unavailable to users. At the more practical re-
fresh interval of 17 minutes or longer, the cell error rates are too
high (> 1E−2). At this error rate, nearly every block will have un-
correctable errors even with impractically strong ECC (say, a 20-bit
correcting code). This result corroborates the pessimistic estimates
in [38];

Smart encoding (4LCs) lowers the error rate curve, but this tech-
nique alone is not sufficient. The curve may further lower depend-
ing on the value locality of input data, but equally, it may go up.
Our assumption of only 15% for S2 and S3 is already optimistic
compared to the reported statistics in prior work [40, 35].

The optimal mapping (4LCo) achieves approximately an order of
magnitude lower cell error rates than those of 4LCn. For the initial
four seconds, 4LCo experiences higher cell error rates than those
of 4LCn, mainly due to errors in the S1 state; with S2 squeezed
closer to S1, S1 has reduced drift error margin and may cause some
errors. But, after four seconds 4LCo achieves much lower cell error
rates than 4LCn. The cell error rate at 17-minute retention time is
around 1E − 3, reaching a barely feasible level for a real system:
a strong, but realizable, 10-bit correcting ECC (BCH-10) can keep
the BLER lower than the target (1.20E − 14), appropriate for a
17-minute refresh interval.

Proposed three-level cell: The 3LC designs achieve orders of
magnitude lower cell error rates than 4LC. Even a simple mapping
(3LCn) has negligible cell error rate until one year. Consider the
optimal mapping (3LCo). Its error-free period exceeds 16 years, so
for ten-year nonvolatility it needs no ECC at all (according to the
drift error models). It would need no ECC if used as volatile mem-
ory; nor would it need refresh unless one envisages an application
running for more than 16 years non-stop! For longer data reten-
tion, note that it achieves cell error rate of 1E − 8 even after 68

Figure 9: Read data path in the proposed PCM architecture. HEC
is hard error correction information, and TEC is transient error cor-
rection information.

Table 2: Example 3-ON-2 encoding

First cell state second cell state 3-bit data
S1 S1 000
S1 S2 001
S1 S4 010
S2 S1 011
S2 S2 100
S2 S4 101
S4 S1 110
S4 S2 111
S4 S4 INV

years, and at this rate, a simple, one-bit correcting ECC (BCH-1) is
enough.

In summary, the proposed (3LC) design is simple, yet powerful.
It effectively avoids drift errors. Unlike the 4LC designs that de-
mand strong ECC and frequent refresh, the 3LC designs allow sim-
ple or no ECC and can store data reliably for years without power.
The caveats for the 3LC designs are (i) storing binary information
in ternary cells is tricky, and (ii) storage density is reduced.

6 Three-Level-Cell Phase Change Memory
In this section, we develop an information encoding scheme for
the proposed 3LCo. We store three bits of information in a pair of
ternary cells. A pair of cells has nine states, so there is one state
in addition to the eight used to encode three bits. Using this re-
maining state, we design a low-storage-overhead mechanism for
the proposed 3LCo to tolerate wearout failures. We then qualita-
tively compare the proposed 3LCo to other designs.

6.1 High-level design

Figure 9 illustrates how to retrieve data in our proposal. We do not
show a write-back path since it is the reverse of data retrieval. The
data retrieval is composed of several steps: a PCM array read, tran-
sient error correction, hard error correction, and symbol decoding.

A PCM array stores information for hard error correction and
transient error correction (HEC and TEC in Figure 9) along with
data. A read operation (or row activation in current DRAM ter-
minology) fetches data and its associated HEC and TEC from the
PCM array.

A drift error can occur on any memory cell, including those that
store hard error correction information. Without protection from

(a) A wornout cell is detected

(b) A pair with a failure is marked as INV, and a spare is used instead

Figure 10: Mark-and-spare example with eight data cells and four
spare cells. A real system will have 342 data cells and 12 spare
cells for tolerating six wearout failures.

Figure 11: A cell pair with an INV flag and three-bit data.

drift errors, the hard error correction procedure may use incorrect
information and may corrupt healthy memory cells (instead of cor-
recting failed memory cells). Hence, we need to correct transient
errors before hard error correction.

We use different encoding schemes for transient error correction
and hard error correction (described later in detail). The final step
is symbol decoding to construct binary information before sending
the data to the requester (e.g., a memory controller).

For main memory, we assume a 64B data block as an access unit
(hence, data / ECC encoding uses this block size). We also expect
that the hard error correction mechanism should be able to tolerate
up to six wearout failures per block [27].

6.2 Information encoding

We store three bits in two ternary cells—3-ON-2. This mechanism
has information capacity of 1.5 bits per cell (close to the ideal ca-
pacity of ternary cells—1.58 bits per cell). A 64B data block is
stored in 342 cells.

An example 3-ON-2 encoding is shown in Table 2; nine differ-
ent states from two ternary cells encode three bits (in eight valid
states) and an invalid state (INV). We leverage the 9th (INV) state
for tolerating wearout failures.

Different encodings are possible for the eight valid states: e.g.,
3-bit Gray coding, or encoding schemes shown in [18]. The INV
state, however, should be the cell state [S4, S4] (highest resistance
in both cells), since we leverage this particular state for handling
wearout failures as discussed later in this section.

A caveat is that a drift error may turn a valid state into the INV
state. As we discuss later, we use the INV state to mark a cell pair
with failures, but an unexpected transition from a valid state to the

Figure 12: Mark-and-spare correction. Each stage replace a cell pair with failure(s) with a spare pair. At stage 1, the second to the last
MUXes choose the right input, ignoring Data 1. At stage 2, the fourth to the last MUXes choose the right input, ignoring Data 4. Two spare
pairs are used to replace faulty pairs, Data 1 and Data 4. Note that MUX select signals are autonomously generated from INV flags and
OR-gate chains.

INV state will break the proposed wearout tolerance mechanism.
To avoid this, we apply transient error correction before correcting
hard errors as shown in Figure 9. Transient error correction for 3-
ON-2 must be able to detect and correct drift errors that convert a
valid state to the INV state.

6.3 Transient error correction

If we extract three bits from two cells and construct ECC from these
bits, we cannot represent the INV state and consequently, ECC can-
not detect and correct an error that converts a valid state to the INV
state. Hence, we use a different encoding scheme for detecting and
correcting transient errors (due to resistance drift). For transient er-
ror correction, each cell is treated to have 2 bits – S1: 00, S2, 01,
and S4: 11. As in Gray coding, a drift error can cause only 1 bit
error in this encoding. Note that this encoding does not change cell
states encoded for 3-ON-2. But the way cell states are interpreted
by ECC logic is different.

For constructing an ECC codeword, the message length is 708
bits—2 bits per cell from 342 data cells (512 bits using 3-ON-2)
and 12 spare cells for hard error correction (more details in the next
subsection). The proposed 3LC has very low drift error rates, so
we use a single bit-error correcting code, BCH-1 (or equivalently,
a Hamming [13] or a Hsiao [15] code), that requires additional 10
check bits over a 64B block. We store the check bits in SLC mode
(1 bit per cell) to prevent drift errors on the check bits.

6.4 Hard error correction

MLC-PCM has a much shorter lifetime than SLC-PCM (105 cy-
cles vs. 108 cycles), and iterative write-after-verify will increase
variation among cells. Tolerating wearout failures in MLC-PCM is
therefore even more critical than in SLC-PCM.

Though a BCH code can correct both hard and transient errors,
a simpler error correction mechanism dedicated to wearout failures
is more desirable (e.g., ECP [27]); BCH decoding becomes very
complex as the number of bits corrected increases.

We propose a cost-effective wearout tolerance mechanism for the
3-ON-2 encoding, leveraging the INV state. Figure 10(a) shows an
example of eight data cells with four spare cells, using 3-ON-2.
When a wearout failure is detected (typically, through write-after-
verify), we mark the cell pair that includes the worn-out cell as INV,
after which a spare pair is used, as shown in Figure 10(b). Figure 11
shows a cell pair with two outputs: one is an INV flag, which is true
if the cell pair is the INV state, and the other is three-bit data, which
is valid only if the INV flag is false.

This mechanism, marking worn-out cells and using a spare (or
mark-and-spare, in short), has very low storage overhead: only two
spare cells for each wearout failure. Tolerating six wearout failures
requires 12 spare cells.

Marking of a pair of cells with failure(s) is possible since the
INV state uses S4 in both cells. PCM has two failure modes: stuck-
reset and stuck-set [6]. The former is a cell stuck at the highest
resistance state (S4), and the latter is a cell that cannot be RESET
to the highest resistance state. Fortunately, we can revive the stuck-
set cell by applying a reverse current [12], forcing a stuck-set cell
into S4. Even when a stuck-set cell cannot be forced into S4, the
1-bit correcting ECC can hide it. Note that we apply ECC-1 before
mark-and-spare (TEC and HEC in Figure 9). If there are more
non-revivable stuck-set cells than the ECC-1 can correct, we can
combine the current design with fine-grained block remapping [39]
to provide end-to-end protection.

Error correction using mark-and-spare: Figure 12 illustrates
how to correct wearout failures using mark-and-spare. To tolerate
n wearout failures, we need n correction stages. Each correction
stage comprises a set of multiplexors (MUXes) and throws an INV
cell pair (with failures) out.

In the example shown in Figure 12, there are eight data pairs
(data 0 through data 7) and two spare pairs (spare 0 and spare 1).
Two INV pairs (darkened ones, data 1 and data 4) include wornout
cells (black cells).

Table 3: Qualitative comparison.

Storage 64B Wearout failure Drift error ECC Refresh Densitymechanism Data correction correction enc/dec period

4LCo 2 bits 256 cells ECP-6 BCH-10 18 / 569 17 minutes 1.52 bits
per cell (5 cells per failure) [FO4] per cell

Permutation 11 bits 329 cells ECP-6 in SLC permutation N/A > 37 days 1.29 bits
per 7 cells (10 cells per failure) coding and BCH-1 per cell

3-ON-2 3 bits 342 cells Mark-and-spare BCH-1 18 / 68 > 68 years 1.41 bits
per 2 cells (2 cells per failure) [FO4] per cell

(a) O(n) design, similar to ripple carry adders (b) O(log(n)) design, similar to Sklansky adders

Figure 13: OR gate chain.

At the stage 1, data 1 is thrown out, data 2 is shifted to data
1 position, data 3 to data 2, and so on. MUX select signals are
generated by the OR-gate chain and INV flags; the select signals
for the second to the last MUXes are set to 1. Similarly, stage 2
throws data 4 out. This procedure is similar to the bit-fix technique
presented in a recent cache reliability study [36], but the mark-and-
spare correction logic autonomously generates MUX select signals
from INV flags.

Though this correction mechanism is simple, a long OR gate
chain in each stage may take a long time to evaluate. The OR-
gate chain length can be 177 gates for 64B blocks as shown in Fig-
ure 13(a): ak is an input to the OR-gate chain, which is an INV
flag from a cell pair or a MUX in the previous stage; and Sn is an
output of the OR-gate chain, which is fed into a MUX to select the
proper input. We can apply optimization strategies used in building
fast, prefix adders since Sk is a prefix of Sn if k < n; e.g., S2 = a0
+ a1 + a2, and S3 = a0 + a1 + a2 + a3, but S3 can be re-written as
S2 + a3. Optimizing a long OR-gate chain using a prefix circuit is
also described in [27].

Figure 13(b) shows a fast implementation of a 16-bit long OR-
gate chain using a structure similar to Sklansky adder [30], reduc-
ing the delay of the OR-gate chain from O(n) to O(logn). Other
design styles (e.g., Kogge-Stone adder [20]) is also possible.

6.5 Storage capacity

In summary, the 3-ON-2 design uses 342 cells for 512 data bits, 12
spare cells for tolerating six wearout failures, and 10 cells for sin-
gle bit-error correcting ECC. The storage density is 1.406 bits/cell,
close to the data-only capacity of 1.5 bits/cell or the ideal capacity
1.58 bits/cell, thanks to the low-storage-overhead mark-and-spare
and simple ECC enabled by years of retention time in 3LC.

6.6 Qualitative comparison

We compare the proposed 3-ON-2 encoding to the conventional
4LCo design and a coding-based drift error tolerance technique
(permutation coding [22]). We first briefly review encoding and
error correction in prior work.

Four-level cell: The 4LCo design (ideally) stores 2 bits per cell –
only 256 cells are required for storing a 64B block. However, the

Figure 14: ECP for MLC.

4LCo design still needs transient and hard error correction, so the
effective capacity is less than ideal.

Due to high cell error rates (around 1E−3 at a 17-minute refresh
period), at least 10-bit correcting BCH code is needed to keep the
BLER down to practical levels. A 64B data block needs 10 check
bits per transient error; so total 100 check bits are used, stored in
50 cells.

To tolerate wearout failures, we use an error correcting pointer
(ECP) technique [27], a widely accepted wearout failure correction
mechanism. The original ECP design is for SLC-PCM. We adapt
ECP to 4LC-PCM as shown in Figure 14. An 8-bit pointer (for
256-cell data) is stored in four cells, and an additional cell is for
spare; therefore an ECP entry of five cells is required for correcting
a cell failure. To tolerate six wearout failures, a total of 31 cells
(5 × 6 for six ECP entries and one additional cell for full flag) are
needed.

We use Gray coding for the information stored in 4LC-PCM
so that a drift error manifests as a one-bit error. Similar to the
3LCo design, we apply transient error correction before correcting
hard errors. To incorporate a smart encoding (as discussed in Sec-
tion 5.1) that opportunistically reduces the number of S2/S3 states,
the final symbol decoding is applied after the hard error correction
step.

Permutation coding: The original patent description [22] omits
how to handle wearout failures. The permutation coding only achieves
cell error rates of 1E−5 after 37 days. So, we add ECP-6 (stored in
SLC mode since it is unclear how to handle wearout failures in the

Table 4: Comparison with tri-level cell PCM [29].

Data Wearout failure correction Drift error correction Density
4LC in [29] 512 bits / 256 cells N/A BCH-32: 320 bits /160cells 1.23 bits /cell

4LCo in our work 512 bits / 256 cells ECP-6: 31 cells BCH-10: 100 bits /50 cells 1.52 bits /cell
3LC in [29] 8 bits / 6 cells N/A N/A 1.33 bits /cell

3LCo in our work 512 bits / 342 cells mark-and-spare: 12 cells BCH-1: 10 bits /10 cells 1.41 bit s/cell

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20

b
it

s/
ce

ll

hard errors tolerated

4LC

3-ON-2

Permutation

Figure 15: Capacity vs hard error.

context of permutation coding) and an additional 1-bit correcting
BCH code.

Comparison: Table 3 compares 3-ON-2, 4LC, and permutation.
The capacity of the proposed 3-ON-2 (considering both wearout
failure and drift error correction) is only 7.4% lower compared
to the 4LC design. This difference is much lower than the initial
bit density difference would imply (2 bits/cell for 4LC vs. 1.58
bits/cell for 3LC).

Considering only data storage, permutation coding has higher
capacity than the 3-ON-2 (11/7 vs. 3/2). Including hard and tran-
sient error correction overhead, however, the 3-ON-2 outperforms
permutation coding.

So far, we assumed six wearout failures per 64B blocks. This
requirement was assumed in the context of SLC-PCM [27], but in
general, MLC-PCM has lower reliability and may need stronger
wearout failure tolerance. Figure 15 shows the storage capacities
of the three designs, as we increase hard error correction capability.
3-ON-2’s mark-and-spare has low storage overhead per wearout
failure; hence, its capacity overhead grows much slower than those
of the other schemes as we increase hard error correction capability.

We also compare ECC encoding and decoding latencies in FO4
delay using a logic model described in [32]. Both BCH-1 and
BCH-10 have comparable encoding latency, where the number of
message bits is the dominant factor. In terms of timing-critical de-
coding speed (including error correction), however, BCH-1 is more
than 8x faster than BCH-10.

6.7 Comparison with Tri-Level Cell PCM
As discussed earlier, Seong et al.’s recent work, tri-level cell PCM [29],
is very close to our work. Both studies make the same observation
that most drift errors occur in the second largest resistance level in
4LC and propose to use 3LC to avoid the error-prone state (S3 in
our notation). Table 4 compares 4LC and 3LC designs in our work
and tri-level cell PCM.

4LC Designs: The authors of the tri-level cell PCM paper claimed
that resistance drift makes 4LC-PCM impractical. In order to tol-
erate high drift error rates in the 4LC design, they use an unrea-
sonably lengthy ECC (320-bit BCH-32), resulting low cell density
(1.23 bits/cell). While we agree that 4LC-PCM is not usable for
long-terms storage, we show that this broad conclusion is overly

pessimistic: The optimized 4LC design (4LCo) with a strong, but
realizable ECC (BCH-10) at a reasonable refresh period (17 min-
utes) can achieve our reliability goal (MTBF 10 years). Although
refresh can still impact power and performance (evaluated in the
next section), we show that 4LC is usable for volatile memory and
provides the highest density (1.52 bits/cell).

3LC Designs: The 3LC designs in both studies are conceptually
the same, but different in cell state and boundary mapping: the
design in the tri-level cell paper with the straightforward mapping is
equivalent to 3LCn in our notation; and our design uses the optimal
cell mapping (3LCo), yielding even lower drift error rates.

Tri-level cell PCM also uses 3-ON-2 (<3,2> in their notation).
For 8-bit access granularity, they store eight bits in six cells: two
sets of 3-ON-2 (four cells) and two one-bit cells. A PCM device,
however, internally uses 512-bit (or larger) buffers similar to row-
buffers in DRAM. So we store the whole 512-bit data in 342 cells,
maximizing 3LC capacity. Note that BCH-1 in our design is a
safety net; drift error rates in 3LCo are low enough to retain data
reliably for more than 10 years without ECC. One of our unique
contributions is the mark-and-spare wearout tolerance mechanism
enabled by non-power-of-two levels per cell. The authors of the
tri-level cell PCM paper did not consider wearout failures in their
designs, but they focused on relaxed writes to S2 in order to im-
prove write latency and bandwidth (Bandwidth-Enhanced 3LC).

7 Impacts of Refresh
We have shown that the proposed 3LC-PCM has long data retention
time and is genuinely nonvolatile, but the conventional 4LC-PCM,
even with many optimizations, fails to meet the nonvolatility re-
quirement (years of retention time without power). Still, we can
use the 4LC-PCM with periodic refresh as volatile main memory,
providing a slight capacity advantage (but only around 7%).

Refresh, however, may impact performance and energy. PCM
has relatively low write bandwidth; normal writes and refresh need
to share this finite write bandwidth. Reads can stall while refresh is
going on the target PCM bank.

We use a cycle-based simulator [1] to evaluate performance, en-
ergy, and power impacts of the 3LC and 4LC designs. We use ap-
plications from SPEC CPU 2006 [31] and STREAM microbench-
mark [21]. We include memory intensive applications (STREAM,
mcf, libquantum, bzip2, and lbm), penalized by the performance
and energy overheads of refresh, as well as compute intensive one
(namd), where the effect of refresh is not critical. Table 5 describes
key simulation parameters used in the evaluation. Since a detailed
MLC-PCM device model is not available as of today, we adapt
the simulator with a simple latency-based PCM model. We as-
sume a 3D-stacked device with a bottom logic die that implements
BCH encoding/decoding, wearout tolerance, and symbol encod-
ing/decoding. Write throughput is set to 40MB/s, translating to a
maximum of four writes (including refresh) for four-write-window
of 6.4 us (similar to four-activation-window in DDRx DRAM).

We compare four designs: 4LC-REF, 4LC-REF-OPT, 4LC-NO-
REF, and 3LC. The two 4LCo implementations (4LC-REF and 4LC-
REF-OPT) have periodic per-bank refresh with the 17-minute re-

0.00
0.25
0.50
0.75
1.00
1.25
1.50

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

4
LC

-R
E

F

4
LC

-R
E

F-
O

P
T

4
LC

-N
O

-R
E

F

3
LC

STREAM bzip2 mcf namd libquantum lbm

RD WR REF Execution time Power
Energy
breakdown

Figure 16: Normalized execution time, energy, and power (the lower, the better).

Table 5: Simulation parameters.

Processor an out-of-order core
running at 3.2GHz

L1 cache 16kB instruction and data caches
64B line size

L2 cache 512kB unified cache, 64B line size

MLC-PCM

16GB, 8 banks, 64B blocks
read: 200 ns
write: 1us
write throughput: 40MB/s

fresh interval and adds 36.25 ns BCH-10 overhead in addition to
the 200 ns read latency. A refresh operation makes the correspond-
ing bank unavailable for 1 us, but it does not in 4LC-REF-OPT. In-
stead, 4LC-REF-OPT emulates an ideal intelligent refresh scheme
that can avoid all refresh-related contention. To further remove the
refresh overhead on limited write bandwidth in both 4LC-REF and
4LC-REF-OPT, we model an impractical no-refresh scheme 4LC-
NO-REF. The 3LC is 3LCo with 3-ON-2 encoding and mark-and-
spare. We consider all practical overheads for the 3LC model: it
does not use refresh, but adds 5 ns to the PCM read latency.

Figure 16 compares the performance, energy, and power of 4LC
and 3LC designs, normalized to those of 4LC-REF. Both 4LC-NO-
REF and 3LC show much lower energy and execution time than
those of 4LC-REF and 4LC-REF-OPT, because refresh operations
use a considerable fraction of limited write throughput, limiting
performance and consuming energy. The only exception is bench-
mark namd, which is compute-intensive and insensitive to memory
latency and bandwidth. 3LC’s performance improvements also im-
ply higher activity factors hence higher power, but the increase in
power is related to the memory sub-system and much lower com-
pared to the speedup. The significant performance and energy ben-
efits demonstrate that the 3LC design is not only adequate for non-
volatile storage but also efficient for volatile main memory usage.

8 Discussion
Resistance drift poses a significant challenge for the practical adop-
tion of MLC-PCM. Drift-induced error rates are too high and de-
mand frequent refresh to reliably retain cell values. The need for re-
fresh makes two-bit-per-cell MLC-PCM volatile, losing one of the
most unique PCM advantages. We performed a model-driven anal-
ysis on resistance drift and proposed a new three-level-cell (3LC)
PCM that lowers drift error rates by several orders of magnitude.
Our technique restores nonvolatility of MLC-PCM, making it prac-
tically usable in both main memory and nonvolatile storage.

We developed an encoding technique (3-ON-2) that stores bi-
nary information in ternary memory cells. We also devised a low-

storage-overhead wearout tolerance technique (mark-and-spare) for
3-ON-2. Considering both transient and wearout correction infor-
mation, the proposed 3LC design has only 7.4% less capacity than
the conventional four-level-cell PCM, yet achieving many practical
advantages: nonvolatility, low-latency reads, etc.

Although we used specific PCM parameters in this study, our
techniques, including three-level cells and mark-and-spare wearout
tolerance, are applicable to any PCM that suffers from resistance
drift. Future advances in materials and devices may mitigate the re-
sistance drift problem; 4LC-PCM can retain data reliably for hours
to days. Yet it requires refresh – it cannot be used as nonvolatile
storage. Our simple solution makes MLC-PCM truly nonvolatile.

We have shown that widening the safety margins is the key to
drift error control. Absent a change in the material that widens
the dynamic range, we can best improve storage density by reduc-
ing the variability of the log-resistance of written cells. We can
generalize the proposed technique to support other non-power-of-
two-level cells for the higher density MLC-PCM—e.g., five-level
or six-level cells. We can combine the described optimal state map-
ping, information encoding, and error correction techniques with
the generalized non-power-of-two-level cells to practically enable
high density MLC-PCM with further density improvements.

9 Acknowledgment
This research was partially supported by the Department of Energy
under Award Number DE - SC0005026.
See http://www.hpl.hp.com/DoE-Disclaimer.html for
additional information.

References
[1] McSim. http://cal.snu.ac.kr/mediawiki/

index.php/McSim.
[2] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Bal-

asubramonian, and V. Srinivasan. Efficient scrub mecha-
nisms for error-prone emerging memories. In Proc. the
18th Int’l Symp. High-Performance Computer Architecture
(HPCA), Feb. 2012.

[3] R. Azevedo, J. D. Davis, K. Strauss, P. Gopalan, M. Manasse,
and S. Yekhanin. Zombie memory: Extending memory life-
time by reviving dead blocks. In Proc. the 40th Int’l Symp.
Computer Architecture (ISCA), Jun. 2013.

[4] M. Boniardi et al. Statistical and scaling behavior of structural
relaxation effects in phase-change memory (PCM) devices. In
Proc. the IEEE Int’l Reliability Physics Symp. (IRPS), Apr.
2009.

[5] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error cor-
recting binary group codes. Information and Control, 3:68–
79, 1960.

[6] G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto,
K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Las-
tras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy.
Phase change memory technology. J. Vacuum Science and
Tech. B., 28(2):223–262, 2010.

[7] Y. Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s pro-
gram bandwidth. In Proc. the IEEE Int’l Solid-State Circuits
Conf. (ISSCC), Feb. 2012.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, and S. Swanson. NV-Heaps: Making persistent ob-
jects fast and s afe with next-generation, non-volatile memo-
ries. In Proc. the 16th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
Mar. 2011.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,
D. Burger, and D. Coetzee. Better I/O through byte-
addressable, persistent memory. In Proc. the ACM 22nd
Symp. Operating Sys. Principles (SOSP), Oct. 2009.

[10] T. M. Cover. Enumerative source encoding. IEEE Transac-
tions on Information Theory, 19:73 – 77, Jan. 1973.

[11] X. Dong, N. Muralimanohar, N. P. Jouppi, R. Kaufmann, and
Y. Xie. Leveraging 3D PCRAM technologies to reduce check-
point overhead for future exascale systems. In Proc. the Int’l
Conf. High Performance Computing, Networking, Storage,
and Analysis (SC), Nov. 2009.

[12] L. Goux et al. Degradation of the reset switching during en-
durance testing of a phase change line cell. IEEE Trans. Elec-
tron Devices, 56(2):354–358, 2009.

[13] R. W. Hamming. Error correcting and error detecting codes.
Bell System Technical J., 29:147–160, Apr. 1950.

[14] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres
(Paris), 2:147–156, 1959.

[15] M. Y. Hsiao. A class of optimal minimum odd-weight-column
SEC-DED codes. IBM J. Res. and Dev., 14:395–301, 1970.

[16] Y. Hwang, C. Um, J. Lee, C. Wei, H. Oh, G. Jeong, H. Jeong,
C. Kim, and C. Chung. MLC PRAM with SLC write-speed
and robust read scheme. In Proc. the Symp. VLSI Technology
(VLSIT), Jun. 2010.

[17] D. Ielmini, D. Sarma, S. Lavizzari, and A. L. Lacaita. Reli-
ability impact of chacogenide-structure relaxation in phase-
change memory (PCM) cells - part I: Experimental study.
IEEE Trans. Electron Devices, 56(5):1070–1077, May 2009.

[18] L. Jiang, Y. Zhang, and J. Yang. ER: Elastic RESET for low
power and long endurance MLC based phase change memory.
In Proc. the ACM/IEEE Int’l Symp. Low Power Electronics
and Design, Aug. 2012.

[19] S. Kang et al. A 0.1-um 1.8-V 256Mb phase-change random
access memory (PRAM) with 66-MHz synchronous burst-
read operation. JSSC, 42(1):210–218, 2007.

[20] P. Kogge and H. Stone. A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE
Trans. Computers, C-22(8):786–793, Aug. 1973.

[21] J. D. McCalpin. STREAM: Sustainable memory band-
width in high performance computers. http://www.cs.
virginia.edu/stream/.

[22] T. Mittelholzer, N. Papandreou, and C. Pozidis. Data encod-
ing in solid-state storage devices. U.S. Patent, Application
2011/0296274.

[23] T. Nirschl et al. Write strategies for 2 and 4-bit multi-level
phase-change memory. In IEDM Tech. Digest, Dec. 2007.

[24] M. K. Qureshi. Pay-As-You-Go: Low overhead hard-error
correction for phase change memories. In Proc. the 44th

IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec.
2011.

[25] M. K. Qureshi, M. Franceschini, and L. A. Lastras-Montano.
Improving read performance of phase change memories via
write cancellation and write pausing. In Proc. the Int’l Symp.
High-Performance Computer Architecture (HPCA), January
2010.

[26] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abail. Enhancing lifetime and security
of PCM-based main memory with start-gap wear leveling. In
Proc. the Int’l Symp. Microarchitecture (MICRO), Dec. 2009.

[27] S. Schechter, G. H. Loh, K. Strauss, and D. Burger. Use ECP,
not ECC, for hard failures in resistive memories. In Proc. the
Int’l Symp. Computer Architecture (ISCA), June 2010.

[28] N. H. Seong, D. H. Woo, V. Srinivasan, and J. A. R. H.-H. S.
Lee. SAFER: Stuck-at-fault error recovery for memories. In
Proc. the Int’l Symp. Microarchitecture (MICRO), Dec. 2010.

[29] N. H. Seong, S. Yeo, and H.-H. S. Lee. Tri-level-cell phase
change memory: Toward an efficient and reliable memory
system. In Proc. the 40th Int’l Symp. Computer Architecture
(ISCA), Jun. 2013.

[30] J. Sklansky. Conditional-sum addition logic. IRE Trans. Elec-
tronic Computer, EC-9:226–231, Jun. 1960.

[31] Standard Performance Evaluation Corporation. SPEC CPU
2006. http://www.spec.org/cpu2006/, 2006.

[32] D. Strukov. The area and latency tradeoffs of binary bit-
parallel BCH decoders for prospective nanoelectronic memo-
ries. In Proc. Asilomar Conf. Signals Systems and Computers,
Oct. 2006.

[33] S. Venkataraman, N. Tolia, P. Ranganathan, and R. Campbell.
Consistent and durable data structures for non-volatile byte-
addressable memory. In Proc. the 9th USENIX Conf. File and
Storage Technologies (FAST), Feb. 2011.

[34] H. Volos, A. J. Tack, and M. Swift. Mnemosyne: Lightweight
persistent memory. In Proc. the 16th Int’l Conf. Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Mar. 2011.

[35] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie. Energy-
efficient multi-level cell phase-change memory system with
data encoding. In Proc. the 29th Int’l Conf. Computer Design
(ICCD), Oct. 2011.

[36] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti,
M. Khellah, and S.-L. Lu. Trading off cache capacity for reli-
ability to enable low voltage operation. In Proc. the 35th Ann.
Int’l Symp. Computer Architecture (ISCA), Jun. 2008.

[37] W. Xu and T. Zhang. Using time-aware memory sensing
to address resistance drift issue in multi-level phase change
memory. In Proc. the Int’l Symp. Quality Electronic Design
(ISQED), Mar. 2010.

[38] S. Yeo, N. H. Seong, and H.-H. S. Lee. Can multi-level cell
pcm be reliable and usable? analyzing the impact of resis-
tance drift. In the 10th Ann. Workshop on Duplicating, De-
constructing and Debunking (WDDD), Jun. 2012.

[39] D. H. Yoon, N. Muralimanohar, J. Chang, P. Ranganathan,
N. Jouppi, and M. Erez. FREE-p: protecting non-volatile
memory against both hard and soft errors. In Proc. the Int’l
Symp. High-Performance Computer Architecture (HPCA),
Feb. 2011.

[40] W. Zhang and T. Li. Helmet: A resistance drift resilient archi-
tecture for multi-level cell phase change memory system. In
Proc. the IEEE 41st Int’l Conf. Dependable Sys. & Networks
(DSN), Jun. 2011.

