PRACTICAL NONVOLATILE MULTILEVEL-CELL PHASE CHANGE MEMORY

Doe Hyun Yoon

IBM T. J. Watson Research Center Jichuan Chang, Robert S. Schreiber, Norman P. Jouppi

Hewlett-Packard Labs

MEMORY CAPACITY CHALLENGE IN HPC

- DRAM as main memory
 - Scaling is slowing down
 - Hard to meet ever-increasing capacity demand
- Byte-addressable nonvolatile memory
 - Phase change memory (PCM), memristor, ...
 - Scales better than DRAM
 - Multilevel-cell (MLC) capability
 - Nonvolatility
 - Checkpoint, in-situ post processing
 - High-performance file system

NV MLC PCM for continued capacity scaling

MAJOR CHALLENGE: RESISTANCE DRIFT

- Conventional 4-Level-Cell (4LC) Designs
 - Naïve 4LC is useless
 - Optimized 4LC is only barely usable
 - Still need refresh -- it's volatile memory
- Observation: Most errors in 4LC occur in one cell state
- Proposal: 3-Level-Cell (3LC) PCM
 - Simple, genuinely nonvolatile (>10 years retention)
 - 3-ON-2 and mark-and-spare
 - Low-cost wearout tolerance for 3LC
 - 1.41 bits/cell (vs. 1.52 in 4LC)
 - Only 7% lower capacity than (volatile) 4LC

PCM AND RESISTANCE DRIFT

PHASE CHANGE MEMORY

- Best of DRAM and Flash
 - Higher capacity, better scaling (vs. DRAM)
 Faster, byte-addressable NVM (vs. Flash)
- MLC (Multilevel-Cell) capability
 - Store more than 1 bits per cell
 - Ex) 2 bits per cell
- Caveats:
 - Slow, low-bandwidth write
 - Finite write endurance
 - Resistance drift

Common problems in both SLC and MLC

RESISTANCE DRIFT

- PCM Cell resistance increases over time
 - -R(t), cell resistance at time t (t >0)
 - A cell is programmed at t=0
 - Sensed as R_0 at time t_0 (>0)
 - α : drift rate (0< α <1)

$$R(t) = R_0 \times \left(\frac{t}{t_0}\right)^{\alpha}$$

• Drift errors

– Negligible in SLC PCM
– Major reliability problem in MLC PCM

DRIFT ERRORS IN 4LC PCM

- 4 cell states: S1, S2, S3, S4
 - PDF is truncated Gaussian
 - $\pm 2.75 \sigma$ around mean values
 - Mean resistance values: μ_1 , μ_2 , μ_3 , μ_4
 - Threshold between states: τ_1 , τ_2 , τ_3

• Drift rate (α) increases with cell resistance

DRIFT ERROR RATES

- Monte-Carlo simulation
- Errors only in S2 and S3

Refresh

- Refresh before cells loose their data
 - Consume already limited PCM write BW
 - Too frequent refresh will make PCM unavailable to users
- What PCM refresh interval is acceptable?
 - At least 50% of write BW should be available to users
 - Refresh interval >17 minutes
- Caveat: PCM w/ refresh is no longer nonvolatile

CELL ERROR RATE

- What cell error rate is tolerable?
 - Goal: 10-year device MTBF
 - Fewer than 1 erroneous 64B block in a 16GB device for 10 years

- CER >1e-2

• Impossible to achieve the goal even with unrealistically strong ECC

- CER ~1e-3 @ 17min refresh

- Barely meets the goal with BCH-10
- More analysis in the paper

BASELINE 4LC PCM

NAÏVE DESIGN: 4LC^N

- Equal probability for all 4 states
- 17min refresh caps CER at ~1e-2

OPTIMAL STATE MAPPING

- Drift only increases cell resistance
- Optimize μ_2 , μ_3 , τ_1 , τ_2 , τ_3 to minimize CER – minimize CER(μ_2 , μ_3 , τ_1 , τ_2 , τ_3) minimum spacing
 - subject to μ_i +2.75 σ + δ < τ_i < μ_{i+1} -2.75 σ + δ

- for i=1,2,3

OPTIMAL STATE MAPPING: 4LC^o

- CER ~1e-3 @ 17-min refresh
- With BCH-10, it meets the goal

PROPOSAL: 3LC PCM

PROPOSAL: 3LC PCM

- Observation:
 - Most errors occur in one state (S3)
- DO NOT USE IT
 Wide Margin for S2
- Simple and optimal mapping (3LCⁿ & 3LC^o)

3LC DESIGNS (3LC^N AND 3LC^O)

- Reliable for >10 years w/o ECC & refresh
- Genuinely nonvolatile

3LC PCM DESIGN ISSUES

- How to store information?
 Binary information in ternary cells
- What about wearout failures?
- How to compensate for the reduced cell density?
 – 3LC's ideal capacity is 1.58 bits/cell (log₂3)
 – vs. 2 bits/cell in 4LC

HOW TO STORE BINARY INFO IN TERNARY CELLS?

- 3-ON-2
 - Store three bits in two ternary cells
 - 64B (512-bit) data block in 342 cells
- 9 states in 2 ternary cells
- 8 states for 3-bit data
- INVALID state
 - (S4, S4)
 - Use this for tolerating wearout failures

First cell	Second cell	3-bit data
S1	S1	000
S1	S2	001
S1	S4	010
S2	S1	011
S2	S2	100
S2	S4	101
S4	S1	110
S4	S2	111
S4	S4	INVALID

TOLERATING WEAROUT FAILURES IN 3LC

- PCM has only finite write endurance – ~10⁸ writes per cell
- Mark-and-spare
 - A low-cost wearout failure tolerance for 3LC
 - Use 3LC's INVALID state for marking a cell pair with a failure
 - No need to store failed-cell location
 - 2 spare cells per failure
- c.f. ECP [Schechter+ ISCA'10]
 - Need a pointer and a spare cell for a failure
 - 5 cells per failure with 512-bit data block and 4LC

MARK-AND-SPARE EXAMPLE

- Use INVALID (S4, S4) to mark a cell pair w/ failure
 - A stuck-at cell stuck can be revived by applying reverse current [Goux+ IEEE TED'09]
- Need a spare pair for tolerating a failure

HOW TO CORRECT WEAROUT FAILURES?

CAPACITY: 3LC vs. 4LC

- 64B (512-bit) block
- 3LC needs fewer bits than 4LC for error correction
 - 6 wearout failures: Mark-and-spare (2cells/failure) vs. ECP (5cells/failure)
 - Drift errors: BCH-1 vs. BCH-10
- 3LC: 1.41 bits/cell, 4LC: 1.52 bits/cell
- Besides, 3LC is nonvolatile

CAPACITY VS. # WEAROUT FAILURES

- MLC has worse endurance than that of SLC
- May need to tolerate more than 6 wearout failures

COMPARISON TO TRI-LEVEL-CELL PCM

- Recent work on MLC drift errors [ISCA'13]
 - Same observation
 - Most errors occur in the S3 state
 - Same solution
 - Use 3 levels instead of 4 levels
- TLC paper does not address
 - Wearout failures
 - Optimal resistance/threshold mapping
 - Baseline 4LC is overly pessimistic not usable at all
- Unique feature in TLC paper
 - Bandwidth-Enhanced writes

MLC PCM FOR CONTINUED CAPACITY SCALING

- Major challenge: resistance drift
- Conventional 4LC PCM is not practical – Strong ECC and frequent refresh:
 - Performance/power penalty
 - Loose nonvolatility
- Proposal: 3LC PCM
 - Simple, genuinely nonvolatile
 - 3-ON-2 & Mark-and-spare
 - Low-cost wearout tolerance mechanism for 3LC
 - Only 7% lower capacity than (volatile) 4LC
- Generalized non-power-of-two level cells
 5LC, 6LC, ...