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Future computing platforms will increasingly demand more stringent

memory resiliency mechanisms due to shrinking memory cell size, reduced er-

ror margins, higher capacity, and higher reliability expectations. Traditional

mechanisms, which apply error checking and correcting (ECC) codes uniformly

across all memory locations, are inefficient – Uniform protection dedicates re-

sources to redundant information and demand higher cost for stronger pro-

tection, a fixed (worst-case based) error tolerance level, and a fixed access

granularity.

The design of modern computing platforms is a multi-objective op-

timization, balancing performance, reliability, and many other parameters

within a constrained power budget. If resiliency mechanisms consume too

many resources, we lose an opportunity to improve performance. Hence, it

is important and necessary to enable more efficient and flexible memory re-

siliency mechanisms.
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This dissertation develops techniques that enable efficient, adaptive,

and dynamically tunable memory resiliency mechanisms.

First, we develop two-tiered protection, apply it to the last-level cache,

and present Memory Mapped ECC (MME) and ECC FIFO. Two-tiered protec-

tion provides low-cost error detection or light-weight correction in the common

case read operations, while the uncommon case error correction overhead is

off-loaded to main memory namespace. MME and ECC FIFO use different

schemes for managing redundant information in main memory. Both achieve

15 − 25% reduction in area and 9 − 18% reduction in power consumption of

the last-level cache, while performance is degraded by only 0.7% on average.

Then, we apply two-tiered protection to main memory and augment the

virtual memory interface to dynamically adapt error tolerance levels according

to user, system, and environmental needs. This mechanism, Virtualized ECC

(V-ECC), improves system energy efficiency by 12% and degrades performance

only by 1−2% for chipkill-correct level protection. V-ECC also supports ECC

in a system with no dedicated storage for redundant information.

Lastly, we propose the adaptive granularity memory system (AGMS)

that allows different access granularities, while supporting ECC. By not wast-

ing off-chip bandwidth for transferring unnecessary data, AGMS achieves

higher throughput (by 44%) and power efficiency (by 46%) in a 4-core CMP

system. Furthermore, AGMS will provide further gains in future systems,

where off-chip bandwidth will be comparatively scarce.
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Chapter 1

Introduction

Future computing platforms will demand more stringent memory re-

siliency mechanisms. Among the reasons for this are that soft error propen-

sity is growing with the continuing decrease in memory cell size, that margins

are shrinking for improved power efficiency, and that commercial systems are

requiring continually higher RAS (reliability, availability, and serviceability)

levels. Although reliability concerns are growing, we must meet the increasing

needs without significantly impacting power and performance, since energy

efficiency will be a key feature for future computing systems.

This dissertation explores efficient and flexible resiliency mechanisms in

memory systems. The proposed mechanisms minimize the negative impacts of

memory resiliency. They are also flexible, so error tolerance levels and access

granularities adapt to user, system, and environmental needs.

1.1 Limitations of Current Approaches

Traditional memory protection applies error checking and correcting

(ECC) codes uniformly across all memory locations (uniform ECC). Figure 1.1

illustrates an example memory hierarchy with uniform ECC. Additional stor-
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Register File

Load/Store Queue

Core-to-L1 bus
L1 cache

L1-L2 MSHR

L1-to-L2 bus

Memory Controller 
Read/Write Queue

L2 cache

Main Memory Memory bus

Figure 1.1: The memory hierarchy with uniform ECC (gray segments and
arrows denote storage and interconnections dedicated to redundant informa-
tion).

age and interconnection wires are dedicated to storing and transferring re-

dundant information at every level; even intermediate buffers such as MSHRs

(miss status handling registers) and read/write queues at the memory con-

troller have uniform ECC codes. This mechanism is simple and transparent

to the programmer; an error is detected and corrected within each memory

level and is not exposed to the users unless it is uncorrectable. Uniform ECC,

however, has many limitations as discussed below.

Cost of Reliability. With uniform ECC, stronger protection is enabled

only with the allocation of more dedicated resources, increasing the cost of

reliability. The design of a modern computing platform must trade off among

performance, reliability, and many other parameters within a given power

2



budget. If resiliency mechanisms consume a large fraction of this given power

budget, we lose an opportunity to improve performance (through devoting

more resources to performance; e.g., accommodating more cores or concurrent

threads or larger caches). Hence, it is important and necessary to enable

stronger memory protection without significantly impacting the power and

performance of a chip.

Fixed Error Tolerance Level. Another limitation of uniform ECC is that

it suffers from a fixed error tolerance level; once a memory array is designed

with a certain ECC code, that code protects the whole memory array, and users

need to pay for the cost no matter what protection their applications demand.

More importantly, this error tolerance level, and hence the cost of reliability, is

determined at design time based on a “worst-case” scenario of error propensity.

For example, even brand new memory chips consume unnecessary power and

bandwidth by storing and transferring strong ECC codes which were designed

to protect devices towards the end of their life cycles (a worst case). This “over

protection” squanders power and bandwidth; hence, it is necessary to adapt

error tolerance levels based on wear-out status, environmental parameters, and

user demands in order to minimize the negative impacts of memory resiliency.

Recently, researchers have discussed tunable and adaptable resiliency

mechanisms through cross-layer optimization: Mixed-mode multicore reliabil-

ity [126] is a mechanism that enables different reliability modes based on user

demands and emphasizes the need to provide flexible reliability modes; and

cross-layer reliability [1] is collaborative research in academia and industry that

3



aims to develop scalable reliability solutions which allow adaptation in error

rates. A system with adaptive reliability will allow users to pay for that error

tolerance level which they need, and will allow systems to adapt to aging and

environmental conditions. As a result, adaptive reliability maximizes efficiency

by not wasting unnecessary power, while still guaranteeing the error tolerance

level required by the users and systems. Though the discussions so far have

focused on adaptive resiliency in computation, it is equally or more important

to design flexible reliability mechanisms in memory systems for system-level

adaptive reliability.

Fixed Access Granularity. The memory access granularity is the mini-

mum data chunk that is read and written as a unit. Using an ECC code for

the whole memory array implies that every read/write must be carried out

at a fixed access granularity. Traditional wisdom is to use a coarse access

granularity of 64B or larger, expecting spatial locality, such that ECC over-

head is amortized over a large data block. This, however, will not lead to an

optimal design any more since off-chip bandwidth is becoming the bottleneck

for system efficiency. Many applications, if not all, touch only a fraction of a

data block [32, 93]; hence, a fixed coarse access granularity wastes power and

bandwidth for transferring unnecessary data. Intuitively, designing a memory

system with a (fixed) fine access granularity can be a solution to this prob-

lem. This fine-grained-only system, however, becomes inefficient when spatial

locality is high. Also, supporting ECC in such a system is a challenge since

every fine-grained block requires an ECC code.

4



1.2 Contributions

This dissertation proposes efficient and flexible memory resiliency mech-

anisms and makes the following major contributions.

1. We present two-tiered protection, a generalization of previously proposed

decoupled error detection/correction schemes [64, 71, 99]. We present

detailed two-tiered mechanisms for last-level caches and main memory.

The two-tiered protection mechanism minimizes the common case error

detection/correction penalty and provides flexibility in choosing ECC

codes.

2. We propose a mechanism to decouple data and its associated ECC by

virtualizing redundant information. In two-tiered cache protection, we

off-load the T2EC storage overhead to the main memory namespace.

In main memory protection, this relaxes module design constraints in

chipkill-correct level protection so that more energy-efficient configura-

tions can be used, while providing chipkill-correct.

3. We develop main memory protection mechanisms with virtualized ECC,

even for systems without dedicated ECC storage. This allows the reliable

execution of mission-critical applications on low-cost or performance-

oriented platforms such as GPGPUs (general purpose graphics process-

ing units).

4. We present memory resiliency mechanisms that can adapt or tune error

tolerance levels. With virtualized ECC, the same hardware can provide

5



different ECC codes for different memory pages according to user, sys-

tem, and environmental needs. As a result, we maximize performance

for non-critical applications and execute mission-critical applications re-

liably, all on a single platform with virtualized ECC.

5. We present a system that adaptively chooses memory access granular-

ity with ECC support. We augment the virtual memory interface and

virtualize ECC codes for fine-grained accesses so that the system allows

both coarse-grained and fine-grained accesses with ECC. This utilizes

finite off-chip bandwidth in a more efficient way, improving throughput

and power efficiency.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows: Chapter 2

reviews background for memory resiliency mechanisms; Chapter 3 develops

a set of mechanisms used for the proposed efficient and flexible memory re-

siliency mechanisms; Chapter 4 proposes last-level cache protection mecha-

nisms, including Memory Mapped ECC (MME) and ECC FIFO; Chapter 5

presents flexible main memory protection mechanisms, including Virtualized

ECC; Chapter 6 presents the adaptive granularity memory system (AGMS);

and Chapter 7 concludes the dissertation and presents future research direc-

tions.
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Chapter 2

Background

This chapter provides background for memory resiliency mechanisms.

We start by briefly reviewing memory error propensity in Section 2.1. We

then describe device- and circuit-level techniques for addressing soft errors

in Section 2.2, information redundancy for error checking and correcting codes

in Section 2.3, and current memory resiliency mechanisms with uniform ECC

in Section 2.4.

2.1 Memory Error Propensity

Though many mechanisms can cause failures in memory systems, this

dissertation specifically targets soft errors in SRAM and DRAM and DRAM

chip failures, as they are major issues in current and future systems [100,

101]. We do not discuss hard failures that are screened by post-fabrication

testing and/or fixed by redundant rows and columns. We first review soft

errors due to particle strikes in Section 2.1.1, then discuss DRAM chip failures

in Section 2.1.2.
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2.1.1 Particle-Induced Soft Errors

A soft error is any change in the output or state of a circuit that is not

permanent and can be corrected by a simple re-write, re-compute, or circuit

reset operation [108]. The main cause of soft errors is charge generated by an

energetic-particle strike including alpha particles and high-energy neutrons.

Since soft errors due to alpha particles and high-energy neutrons were

first observed [46, 81, 142], researchers have measured soft error rate (SER) in

memory devices. SER measure uses a unit of failures in time (FIT); 1 FIT

is one failure per billion (109) hours. Based on the SER measurement over

design generations reported in [108] and other literature, we summarize soft

error propensity in SRAM and DRAM as below and exploit it in the proposed

memory resiliency mechanisms (Chapter 3–6).

• SER in SRAM cells is only slightly decreasing, and almost unchanged

over generations. It is roughly a constant, 10−3 FIT/bit.

• SER in SRAM devices is increasing rapidly mainly due to growing cache

capacity. Systems with a 24MB cache, for example, has SER ranging

20, 000 to 200, 000 FIT (around 0.2 to 2 errors / year).

• SER in DRAM cells is decreasing and is as low as 10−9 FIT/bit at 40 nm

technology. This is partly because DRAM cell capacitance is not scaling

as design rules shrink.
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• SER in large capacity main memory (up to 250GB in today’s servers)

is around 2, 000 to 20, 000 FIT (around 0.02 to 0.2 errors per year, 10×

lower than SRAM device SER).

• Multi-bit errors in the array are becoming significant; memory cells

can fall under the footprint of a single energetic-particle strike as semi-

conductor design rules shrink [79, 90, 103], and particle strikes in the

periphery circuit can cause errors in thousands of cells (a row or col-

umn).

2.1.2 DRAM Chip Failures

In addition to soft errors, main memory (commodity DRAM chips in

today’s computing platforms) has another failure mechanism – a memory chip

failure – that is becoming increasingly important. It has been believed that soft

errors are more frequent than hard errors, such as chip failures. A recent study,

however, shows that DRAM behavior in the field differs from this commonly

held assumption [101]. Through the measurements of memory errors in large-

scale servers over 2.5 years, the authors of the paper report DRAM error rates

of more than 25, 000–75, 000 FIT per Mbit. This is significantly higher than

the previously reported error rates of 200–5, 000 FIT per Mbit. This high error

rates is dominated by hard chip failures possibly due to packaging and global

circuit issues.

DRAM chip failures cannot be easily tolerated by commonly used bit-

error correcting codes described in Section 2.3.2 and require more stringent
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protection, called chipkill-correct [37]. 1 Chipkill-correct is a memory resiliency

mechanism that can tolerate a complete chip failure and can detect up to two-

chip failures. Section 2.3.3 and Section 2.4.2 explore ECC codes and memory

system organization for chipkill-correct in more detail.

In addition, soft errors in periphery logic may also require chipkill-

correct level protection [106]. We list a couple of such examples as follows:

• Soft errors on an address register in DRAM chips could result in reading

from or writing to a wrong address.

• If latches for reconfiguring the DRAM cell array using redundant rows

and columns are affected by particle strikes, a defective row or column

could be activated, appearing as hard failures. This defect remains until

the chip is power cycled.

• Though rare, particle strikes on the cell array can cause errors on thou-

sands of memory cells.

2.2 Device- and Circuit-Level Techniques for Soft Er-
rors

Though this dissertation focuses on architecture- and microarchitecture-

level mechanisms, there has also been extensive work on memory reliability

using process-, layout-, and circuit-level techniques.

1Though not specifically discussing chipkill-correct, the discussion of this strigent memory
protection mechanisms including coding techniques can be also found in [9, 24, 33, 34].
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Process-Level Techniques. Silicon On Insulator (SOI) technology can

mitigate soft errors. Researchers report that SRAM built in SOI technology

shows reduced SER partly because SOI has much smaller sensitive volume for

charge collection than bulk-silicon devices [18, 29, 102].

The 10B isotope in Borophosphosilicate Glass (BPSG), which is used

for inter-metal layers in device fabrication, has a large capture cross section for

thermal neutrons [20]. The 10B nucleus is unstable when exposed to thermal

neutrons; upon absorbing a thermal neutron, the 10B nucleus breaks apart, or

“fissions”, with an accompanying release of energy in the form of an excited 7Li

recoil nucleus, a gamma photon, and an alpha particle. Hence, BPSG in logic

and SRAM processes are largely replaced with chemical polishing techniques

to reduce SER [106].

The least intrusive process level method is deep N-well technology,

which uses a triple-well process in which NMOS devices are constructed in-

side P-wells, which are themselves inside deep N-wells [39]. The deep N-wells

provide isolation from alpha particles and neutron cosmic rays and reduce the

failure rate of SRAMs by a factor of approximately 1.5− 2.5.

Layout-Level Techniques. Modifying the SRAM cell layout can increase

Qcrit(critical charge that is required to flip a stored bit), reducing soft error

rates. This is done by adding poly-diffusion overlaps to the critical nodes [39],

improving SER by a factor of 20, but at a 40% area overhead and a penalty of

6−8% in latency. Another technique is to add a metal-insulator-metal (MIM)

node capacitor [58, 96], which can impact write cycles by around 20 ps/fF [58].
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Circuit-Level Techniques. Hardened SRAM cells that use a larger number

of transistors have been suggested to achieve a reduction in soft-error propen-

sity and a more robust operation even at low VCC values. For example, 8T

cells [31], 10T cells [27], and Schmidt Trigger (ST) based 10T cells [66] can

significantly improve reliability, but at the cost of increased access latency and

SRAM cell area (8T - 30%, 10T - 60%, and ST 10T - 100% [127]).

To tolerate multi-bit burst errors, physical bit interleaving [79, 92] is

commonly used in both SRAM and DRAM. By interleaving bits from adjacent

data blocks in the physical layout, a multi-bit error caused by a single upset

appears as single-bit errors in multiple data blocks rather than a single block

with a multi-bit error. Physical interleaving, however, is suitable only for

small-scale multi-bit errors. Scaling physical interleaving to higher potential

error counts (beyond 4-way interleaving) results in large performance, area,

and power overheads [63].

2.3 Information Redundancy

A common solution to tolerate memory errors is to apply error check-

ing and correcting (ECC) codes. ECC codes exploit information redundancy,

which uses extra bits of information to detect and potentially correct errors.

For instance, an 8-bit data block can represent an unsigned number that ranges

between 0 and 255. With information redundancy, we encode this number us-

ing a 9-bit codeword. The 9-bit codeword has 512 different cases: Only 256

cases are valid, and the other cases are invalid. As an occurrence of some er-
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rors turns a valid codeword to an invalid codeword, we can detect (and correct

in more powerful coding schemes) the error. Although there are a variety of

ECC codes, we describe only those widely used for memory protection.

Nomenclature. A bit-error correcting code, which is described in Sec-

tion 2.3.2, is composed of data bits and check bits, where check bits are redun-

dant bits added to data bits for the purpose of error detection or correction.

We use the notation (n, k) code, where n is codeword length in bits, and k

is data length in bits. For a symbol-error correcting code, which is described

in Section 2.3.3, we use data symbols and check symbols similar to the data bits

and check bits used for bit-error correcting codes. The notation for symbol-

error correcting codes is (N,K, b), where N is the number of total symbols, K

is the number of data symbols, and b is the symbol width in bits.

2.3.1 Parity

Parity is a simple error detecting code that adds 1 parity bit to a data

block. There are two types of parity codes: even parity and odd parity. The

parity bit indicates whether the number of ones in a codeword is even (in even

parity) or odd (in odd parity). Parity can detect any error, including an error

in the parity bit itself, so long as the error corrupts an odd number of bits in

the codeword. For its simplicity, parity is widely used for error detection in

low-latency memory structures such as L1 caches and register files.
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2.3.2 Bit-Error Correcting Codes

SEC-DED. Parity can detect, but cannot correct errors. The most common

error correcting codes include Hamming [50] 2 and Hsiao [53] codes, which

provide single bit-error correction and double bit-error detection (SEC-DED).

Hsiao codes are also known as odd-weight-column codes and provide improve-

ments over Hamming codes in terms of speed, cost, and reliability of decoding

logic [34]. An SEC-DED code requires 1 + dlog2(k + 1)e check bits for a k-bit

data block.

DEC-TED. When a higher reliability level is necessary, double bit-error

correcting and triple bit-error detecting (DEC-TED) codes are used. DEC-

TED codes, however, require a larger number of check bits than SEC-DED

codes and use more complex hardware for error detection and correction. The

storage overhead of a DEC-TED code is 1 + 2× (dlog2(k+ 1)e) bits for a k-bit

data block, and it is almost twice the overhead of SEC-DED codes.

BCH. Both SEC-DED and DEC-TED codes are a special case of BCH (Bose-

Chaudhuri-Hocquenghem) codes [23, 52]. A t-bit correcting BCH code requires

t×dlog2(k+1)e check bits for a k-bit data block and can detect t+1 bit errors

with 1 additional bit. Due to the area and latency overheads of BCH codes,

which are approximately proportional to t [113], BCH codes with more than

2-bit correction are, in general, not used for memory protection.

2The Hamming code originally proposed in 1950 was a single bit-error correcting (SEC)
code, but Hamming code is often used with an additional parity bit that extends it to
SEC-DED.
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Table 2.1: Redundancy and latency overheads of bit-error correcting codes.
FO4 stands for Fan-Out of 4 delay.

SEC-DED DEC-TED 6EC-7ED
Data check latency (FO4) check latency (FO4) check latency (FO4)
bits bits encoder decoder bits encoder decoder bits encoder decoder
16 6 9 45.1 11 9 81.1 31 10.8 259.8
32 7 10.8 48.3 13 10.8 85.5 37 12.6 265.6
64 8 12.6 50.7 15 12.6 88.7 43 12.6 265.6
128 9 14.4 53.2 17 14.4 91.8 49 14.4 271.4
256 10 16.2 65.3 19 16.2 111.8 55 16.2 322.9
512 11 18 68.5 21 18 116.3 61 18 332.7

ECC Storage and Complexity Overheads. Table 2.1 compares the

redundancy and latency overheads of bit-error correcting codes. We compare

commonly used SEC-DED and DEC-TED codes with a many-bit correcting

code, 6EC-7ED. 6EC-7ED is 6 bit-error correction and 7 bit-error detection

(BCH with t=6). As shown in Table 2.1, the relative check bit overhead

decreases as data size increases.

To estimate BCH coding latencies, we use the BCH decoder model de-

veloped by Strukov [113]. 3 We separately report encoder latency and decoder

(including error detection and error correction) latency to show the asymmetry

in the complexity of encoding and decoding. An encoder implements a set of

XOR trees, and a decoder uses the same XOR trees for syndrome calculation

that detects errors. So, the complexity of detection-only logic is comparable

to that of an encoder. Note that the latency of ECC encoding (and error de-

3We estimate the latency of SEC-DED decoding using a generic BCH decoder model
with t = 1. An SEC-DED decoder, however, can be implemented in a more compact way,
since the complex steps after syndrome calculation can be simplified.
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Figure 2.1: A block diagram of a simplified BCH encoder/decoder.

tection) is relatively small (below 20 FO4) even with strong ECC codes such

as 6EC-7ED.

The whole decoder operation, however, is much more complex than

encoding or error detection; decoding is composed of three major steps [22]

including syndrome calculation, finding an error-location polynomial, and find-

ing error-location numbers, where the latter two operations involve relatively

complex operations.

Figure 2.1 illustrates a simplified block diagram of a BCH encoder/decoder;

this shows how encoding and error detecting share XOR trees also. At low

error rates (as discussed in Section 2.1), we can implement a decoder with

only error detection; the complex steps for error correction can be invoked

only when an error occurs.
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2.3.3 Symbol-Error Correcting Codes

Modern commodity DRAM chips are designed with a b-bit data path

(4-bit, 8-bit, or 16-bit devices). When memory chips are configured with b bits

per chip, the failures described in Section 2.1.2 generate b-bit error patterns

(b-bit symbol errors) [33].

Interleaved Bit-Error Correcting Codes. We can detect and correct

symbol errors by logically interleaving multiple instances of bit-error correcting

codes described in Section 2.3.2. For instance, 4-way interleaved (72, 64) SEC-

DED codes can provide one 4-bit symbol-error correction and two 4-bit symbol-

error detection. This, however, requires a 288-bit (4× 72 bits) wide channel,

which increases the minimum memory access granularity (to 256B in DDR3).

Note that we can also use interleaved bit-error correcting codes for bursty

errors in caches; interleaving SEC-DED codes has much lower complexity than

many-bit correcting BCH codes.

Symbol-Based ECC Codes. Compared to bit-error correcting codes,

symbol-based error correcting codes derived from Reed-Solomon (RS) codes [94]

are inherently more effective for off-chip memory protection. Although there

are many different symbol-error correcting codes, we specifically discuss error

codes for chipkill-correct [37].

ECC Codes for Chipkill-Correct. ECC codes for chipkill-correct require

single symbol-error correction and double symbol-error detection (SSC-DSD)

capability so that data is correctly read from and written to a memory module

17



even if a DRAM chip in it completely fails, and that up to two failing chips

are detected. We explain two types of SSC-DSD codes: a 3-check-symbol code

and a 4-check-symbol code.

A 3-check-symbol code provides SSC-DSD with maximum coding ef-

ficiency [33]. The codeword length of the 3-check-symbol code is, however,

limited to 2b + 2 symbols so it is a poor match for ×4 DRAM chips – three

4-bit check symbols (12 bits) protect 15 4-bit data symbols (60 bits), which is

a non power of two.

Instead, a 4-check-symbol code [34] is more practical for 4-bit symbols;

the 4th check symbol allows a longer codeword. We refer to this 4-check-symbol

code as a single nibble-error correcting and double nibble-error detecting (SNC-

DND) code [33]; it is composed of four 4-bit check symbols (16 bits) and 32

4-bit data symbols (128 bits), yielding 12.5% redundancy overhead. The SNC-

DND code is widely used in many commercial designs [15, 116] that implement

chipkill-correct.

Symbol-Based ECC Complexity. Error correction in symbol-based ECC

is composed of syndrome calculation and more steps to identify error-symbol

locations as well as error-symbol values. SSC-DSD codes, however, can sim-

plify the correction procedure after syndrome calculation, since we only need

to find a single error symbol [34]. Similar to bit-error correcting codes, we

can implement error-detecting logic on the critical path and only invoke the

complex error correction steps in the rare event that errors are actually de-

tected. Note that syndrome calculation, as well as an ECC encoding procedure,
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requires only XOR trees, not Galois Field (GF) multiplications [74]. Further-

more, symbol-error correcting codes are encoded and decoded at the memory

controller such that the additional latency for ECC encoding/decoding is rel-

atively small compared to the long DRAM access latency.

2.4 Uniform ECC Based Memory Protection

This section describes the uniform ECC based memory resiliency mech-

anisms used in current architectures. Since L1 and L2 caches and DRAM have

different requirements and access properties, different ECC codes are used for

L1 and L2 caches and DRAM. Section 2.4.1 describes resiliency mechanisms

in caches, and Section 2.4.2 discusses main memory protection mechanisms

including chipkill-correct.

2.4.1 Caches

In cache memory, different error codes are used based on cache levels

and write-policy (write-through or write-back).

Write-Through L1. If the first-level cache (L1) is write-through (WT) and

the LLC (Last Level Cache; for example, L2 cache) is inclusive, it is sufficient to

provide only error detection (using 1-bit parity per word) on the L1 data array

because the data is replicated in L2. Then, if an error is detected in L1, error

correction is done by invalidating the erroneous L1 cache line and re-fetching

the cache line from L2. Such an approach is used in the SUN UltraSPARC-

T2 [116] and IBM Power 4 [118] processors. The L2 cache is protected by
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ECC, and because L1 is write-through, the granularity of updating the ECC

in L2 must be as small as a single word. For instance, the UltraSPARC-T2

uses a 7-bit SEC-DED code for every 32 bits of data in L2, an ECC overhead

of 22%.

Write-Back L1. If the L1 cache is write-back (WB), both the L1 and L2

caches need error correcting codes. L1 caches typically use an SEC-DED code

per word. L2 accesses are, however, at the granularity of a full L1 cache line;

hence, the granularity of ECC can be much larger, reducing ECC overhead.

The Intel Itanium processor, for example, uses a 10-bit SEC-DED code that

protects 256 bits of data [130] with an ECC overhead of only 5%. Other

processors, however, use a smaller ECC granularity even with L1 write-back

caches to provide higher error correction capabilities. The AMD Athlon [55]

and Opteron [61] processors, as well as the DEC Alpha 21264 [41], interleave

eight 8-bit SEC-DED codes for every 64B cache line to tolerate more errors

per line at a cost of 12.5% additional overhead.

2.4.2 Main Memory

In this subsection, we first briefly review memory system organiza-

tion, from DRAM chips to memory modules, since they are closely related to

memory error protection, and then proceed to main memory error protection

including chipkill-correct.
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2.4.2.1 Modern Memory Systems

Modern computers hide the complexity involved in designing memory

systems from the programmer. Virtual memory abstracts nearly all memory

system details, including resource allocation and virtual to physical mapping,

and provides the illusion of a flat and uniform address space to software. Phys-

ical memory is, however, composed of memory channels, each with multiple

memory modules.

An individual DRAM chip has address/command input pins, bi-directional

data pins, as well as data storage. A single DRAM chip has a narrow exter-

nal data path, typically 4, 8, or 16 bits wide (referred to as ×4, ×8, or ×16,

respectively), and multiple chips operate together to form a wide data path,

called a rank. For example, a 64-bit wide rank is composed of 16 ×4 DRAMs,

8 ×8 DRAMs, or 4 ×16 DRAMs. A rank is the minimum logical device that a

memory controller can control individually; hence, all DRAM chips in a rank

are addressed simultaneously.

A memory module, or a DIMM (dual in-line memory module), is a phys-

ical device that has, typically, 1 to 8 ranks; a standard 64-bit wide DIMM is

also referred to as a Non-ECC DIMM. DIMMs (also ranks) in a memory chan-

nel share the physical address/command and data buses, but only one rank

is addressed at any given time to avoid bus conflicts. Depending on the type

of DRAM chips used, DIMMs are classified into ×4 DIMMs, ×8 DIMMs, and

×16 DIMMs. If the total capacity is the same, a DIMM with wider DRAMs

(×8 or ×16) has fewer DRAM chips and consumes less power [17]; hence, ×8
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or ×16 DIMMs are preferred. Systems that require high reliability/availability,

however, favor ×4 DIMMs, especially systems with chipkill-correct. This is,

in part, due to the constraints in symbol-error correcting codes as discussed

in Section 2.3.3.

2.4.2.2 Memory Error Protection

Main memory error protection uses DRAM modules that can store

redundant information and apply ECC to detect and correct errors. This

ECC DIMM requires a larger number of DRAM chips and I/O pins than a

Non-ECC DIMM.

SEC-DED for Main Memory. Typically, an ECC DIMM is used to

provide SEC-DED for each DRAM rank without impacting memory system

performance. SEC-DED codes [50, 53] use 8 bits of ECC to protect 64 bits

of data. To do so, an ECC DIMM with a 72-bit wide data path is used,

where the additional DRAM chips store the redundant information. An ECC

DIMM is constructed using 18 ×4 chips (×4 ECC DIMM) or 9 ×8 chips (×8

ECC DIMM), but there is no ×16 ECC DIMM. Note that an ECC DIMM

only provides additional storage for redundant information, but that actual

error detection/correction takes place at the memory controller, yielding the

decision of protection mechanisms to system designers.

Chipkill-Correct. As discussed in Section 2.1.2, it is important to tolerate

chip failures, especially in large-scale systems for high availability and reliabil-

ity. Hence, business critical servers and datacenters demand chipkill-correct
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Figure 2.2: Baseline chipkill correct DRAM configuration (gray DRAMs are
dedicated to ECC storage).

level reliability, where a DIMM is required to function even when an entire

chip in it fails. Chipkill-correct “spreads” a DRAM access across multiple

chips and uses a wide ECC code to allow strong error tolerance [15, 37, 116].

The error code for chipkill-correct is a SSC-DSD code; the SNC-DND code

explained in Section 2.3.3 is widely used.

The SNC-DND code results in a 144-bit wide data path (128 bits for

data and 16 bits for redundant information); this wide data path is imple-

mented using two ×4 ECC DIMMs in parallel as shown in Figure 2.2. This

organization is used by the Sun UltraSPARC-T1/T2 [116] and the AMD

Opteron [15].

The downside of chipkill-correct is that it either increases a memory ac-

cess granularity, requiring more energy and restricting possible DRAM config-
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urations, or increases the required level of redundancy, which, again, increases

cost [13]. For instance, the chipkill-correct memory system shown in Figure 2.2

works well with DDR2 using minimum burst of 4; the minimum access gran-

ularity is 64B (4 transfers of 128bits). It is, however, problematic with DDR3

or future memory systems; longer burst combined with a wide data path for

chipkill-correct leads to a larger access granularity [13].

The chipkill-correct level protection is, unfortunately, needed in systems

that are increasingly sensitive to energy and cost, such as large-scale servers

that demand high availability and protection guarantees. For example, large

installations have reported that system outages due to DRAM errors are 600

times higher if chipkill is not used [56]. Providing chipkill protection in current

DRAM packaging technology is expensive and requires the use of ×4 DRAM

configuration. These narrow chips consume roughly 30% more energy for a

given total DIMM capacity as more efficient ×8 configurations [17]. This extra

overhead is added to all the memory in these large capacity systems, which

may be multiple tera bytes if a memory extension appliance is used [73, 122].

Wider DRAMs (×8 and ×16) can use the 3-check-symbol code, since

the maximum codeword length, 2b + 2 symbols, increases with 8- or 16-bit

symbols. Supporting chipkill-correct with ×8 and ×16, however, is impracti-

cal. First of all, chipkill-correct using ×16 DRAMs is not possible unless we

design a custom ×16 ECC DIMM, which is expensive. Even for ×8 DRAMs,

it requires trading off storage overhead with DRAM access granularity, which

may lower performance. Maintaining the same access granularity for a ×8
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configuration increases the fraction of redundant data to at least 18.5% [13]

(128-bit data and 24-bit ECC), and it also requires a custom ×8 ECC DIMM

having 16 ×8 DRAMs for data and three ×8 DRAMs for ECC, that then

increases cost. Maintaining the same (or less) 12.5% ECC storage overhead,

on the other hand, doubles the DRAM burst size (256-bit data and 24-bit

ECC). Note that burst 4 in DDR2 increases the access granularity to 128B for

a 256-bit data path and that DDR3 with burst 8 makes it 256B.

Other Chip-Failure Tolerating Schemes. Some designs use a relaxed

protection level for tolerating chip failures. Such systems use a single symbol-

error correct (SSC) RS code and erasures (i.e., errors with known locations) [87,

88]. A chip failure is detected and corrected using an SSC code, after which

the memory controller remembers the location of the chip failure so that the

SSC code can correct the chip failure (an erasure) and can detect a second chip

failure. This scheme, however, cannot detect two simultaneous chip failures.

In this dissertation, we only consider aforementioned chipkill-correct that can

correct a chip failure and detect a two-chip failure.
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Chapter 3

Mechanisms for Efficient and Flexible

Reliability

In this chapter, we develop a set of mechanisms for the proposed mem-

ory resiliency described in Chapter 4–6. We first introduce two-tiered pro-

tection in Section 3.1, then describe flexible reliability through virtualizing

redundant information within the memory namespace in Section 3.2. The

proposed cache protection (Chapter 4) and memory protection (Chapter 5)

leverage two-tiered protection as well as ECC storage virtualization. Sec-

tion 3.3 explains how to manage fine-grained data in caches and DRAM; the

adaptive granularity memory system (Chapter 6) uses the fine-grained data

management techniques as well as ECC storage virtualization.

3.1 Two-Tiered Protection

As an alternative to uniform ECC, we develop two-tiered protection

in this section. Two-tiered protection is a generalization of previously sug-

gested decoupled detection/correction approaches [64, 71, 99]. We base two-

tiered protection on the following observations:
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• While memory errors cannot be ignored at any memory hierarchy level,

error events are still expected to be extremely rare as discussed in Sec-

tion 2.1 when compared to the processor cycle time. For instance, the

mean time to failure (MTTF) of a 32MB cache is around 155 days as-

suming 10−3 FIT/bit.

• Every read requires error detection to ensure that no error has occurred.

Error detection latency, therefore, is critical to application performance,

and error detection energy is important to overall system power.

• Every write is accompanied by computing information required for error

correction as well as for detection. The latency of this operation, how-

ever, is unimportant as long as required write throughput can be sup-

ported. Additionally, write operations are typically less common than

read operations.

• Given that error rate is low, the latency and the complexity of error

correction is not important. Even an error correction latency of 10 ms is

acceptable, since it would occur once every several weeks or months on

a given processor.

• As discussed in Section 2.3, the complexity of ECC-encoding or detecting-

only logic is relatively simple even with very strong ECC codes.

• Much of the data stored in caches and main memory is replicated through

the memory hierarchy (clean cache lines or clean data pages). Replicated
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data is inherently error tolerant, because correct values can be restored

from a copy. Thus, it is enough to detect errors in clean data, which can

be done with lower cost than error correction.

In the rest of this section, we review the previously suggested decou-

pled detection/correction approaches in Section 3.1.1, then develop two-tiered

protection in Section 3.1.2–3.1.4.

3.1.1 Decoupled Detection/Correction

The Punctured ECC Recovery Cache (PERC) [99] uses parity for er-

ror detection and single bit-error correcting (SEC) code for error correction.

PERC applies this parity-SEC code combination to L1 caches; a read oper-

ation accesses only data and parity to save energy and improve latency, and

a write operation updates data, parity, and an SEC code. The same parity-

SEC mechanism is also used to save static energy consumption [71] and reduce

cache area [64] (we will revisit these cache reliability studies later in Section 4).

3.1.2 Two-Tiered Protection

We generalize the simple parity-SEC combination used in the decou-

pled detection/correction approaches and develop two-tiered protection. Two-

tiered protection consists of a tier-1 error code (T1EC) and a tier-2 error code

(T2EC): The T1EC is an ECC code for the common case read operations and

provides error detection or light-weight error correction; and the T2EC is a
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Figure 3.1: Uniform ECC and two-tiered protection.

strong error-correcting code that is used for error correction on rare T1EC

DUE (detected, but uncorrectable error) events.

Figure 3.1 compares uniform ECC and two-tiered protection using sim-

plified memory array organizations of data and ECC codes. Uniform ECC

extends each data line with an ECC code that detects and corrects errors as

shown in Figure 3.1(a). In addition to area and leakage power increases, this

consumes more dynamic power to read and write redundant information as well

as data. A memory array with T1EC and T2EC is shown in Figure 3.1(b).

In two-tiered protection, the mechanisms for detecting errors (with correcting

light-weight errors also) and correcting errors are essentially split as explained.

Virtualized T2EC. The T2EC, however, is computed only on a write into

the memory array, because errors on clean data lines can be recovered from

a different level of the memory hierarchy. Just as importantly, the T2EC is

only read and decoded on a rare event that the T1EC detects an error that
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it cannot correct (recall that it is possible to architect the T1EC with light-

weight error correction). Therefore, the T2EC does not need dedicated storage

and can be stored within the memory namespace as shown in Figure 3.2. This

technique can be generalized as virtualizing redundant information, which we

discuss further in Section 3.2.

Storing T2EC within the memory namespace increases write latency

and traffic, since a data write is split into two operations: to write data and

T1EC and to write memory-mapped T2EC as data. In order to mitigate

latency and traffic increases, many existing microarchitectural solutions such

as caching or write coalescing can be combined with two-tiered protection. We

discuss the detailed mechanisms in Chapter 4–5.

3.1.3 Advantages of Two-Tiered Protection

Two-tiered protection has many advantages over uniform ECC. First,

the T1EC minimizes the common case penalty for memory resiliency. The
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T1EC, by its definition, is simpler than an ECC code at the same error toler-

ance level, reducing storage, latency, and energy overheads of read operations.

Second, storing the T2EC within the memory namespace eliminates all static

costs (additional area, interconnection wires, and leakage power) of the dedi-

cated T2EC.

Two-tiered protection also enables stronger protection at low cost. As

mentioned earlier, uniform ECC requires more dedicated resources in order

to meet the stronger protection demands of future systems. The additional

overheads are added to the already tight bandwidth and power budgets. The

two-tiered protection mechanism, however, makes it simple to accommodate

stronger ECC codes; the cost of T1EC with strong error-detecting (and light-

weight error-correcting) capability can be even lower than that of traditional

ECC codes, and the memory-mapped T2EC provides strong reliability guar-

antees, but at no dedicated storage for it. Note that the ECC-encoding or

detecting-only logic has relatively low complexity even with very strong ECC

codes as discussed in Section 2.3 and that the complex error-correcting oper-

ation using T2EC is invoked only upon a rare T1EC DUE event.

Another advantage with the two-tiered approach is the flexibility in

choosing and adapting the error tolerance level based on dynamic application,

user, and system needs. Section 3.2 further discusses the flexible reliability

with virtualized redundant information.
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3.1.4 Design Considerations for Two-Tiered Codes

We list the design considerations for the T1EC and T2EC as follows.

• The T1EC should be chosen to minimize dedicated storage overhead as

it is stored along with every data line.

• The T1EC should be computed with low latency and maximize error

detecting capability. Even though the strong T2EC can correct errors,

it should be first detected by the T1EC.

• The T2EC determines overall protection capabilities, but large T2ECs

increase traffic to update virtualized T2EC information, which degrades

the performance of some applications.

While we can design two-tiered codes based on the above design consid-

erations, caches and DRAM have different requirements and access properties;

hence, we defer the discussion of the actual two-tiered code examples in Chap-

ter 4 (for caches) and Chapter 5 (for DRAM).

3.2 Flexible Reliability through ECC Storage Virtual-
ization

The second mechanism we develop is virtualizing redundant informa-

tion within the memory namespace. We already discussed storing T2EC within

the memory namespace in Section 3.1 and further generalize this concept to

support even one-tier approaches in Section 3.2.1. Then, we describe how
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to enable flexible memory resiliency with ECC storage virtualization in Sec-

tion 3.2.2.

3.2.1 Memory Protection with ECC Storage Virtualization

In two-tiered protection, we store the T2EC within the memory names-

pace; hence, we dedicate resources only to the T1EC, reducing the hard-

ware overheads, while guaranteeing the strong protection with the virtualized

T2EC. We can further extend the idea of virtualizing redundant information

to support traditional one-tiered protection, that then completely eliminates

dedicated storage for ECC.

Memory Protection with No Dedicated ECC Storage. Figure 3.3

illustrates a memory array with virtualized one-tiered ECC. Error detection

and correction operations in this architecture are same to those in uniform

ECC, but the redundant information is stored within the memory namespace,

instead of storing ECC to dedicated storage. As a result, every memory op-
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eration (even a read) becomes a two-step operation: to access data and to

access ECC. This increases latency as well as traffic, but we can leverage mi-

croarchitectural techniques such as caching or write coalescing (more details

in Chapter 5). Note that we can send requests to fetch data and the associated

ECC in parallel to mitigate the latency increase.

Unlike two-tiered approach, this architecture also impacts read latency

that is more critical to application performance. So, the one-tiered approach

with virtualized ECC does not look attractive at the moment. We can, how-

ever, selectively apply this technique only to those applications that need high

reliability levels in a system without dedicated ECC storage. We discuss more

on this topic in Chapter 5.

3.2.2 Flexible Reliability with ECC Storage Virtualization

So far, we focused on how to avoid dedicated storage for redundant

information through virtualizing ECC (either two-tiered or one-tiered). ECC

storage virtualization has a more important advantage; it enables flexible re-

liability so that single hardware can concurrently support different protection

schemes based on dynamic application, user, and system demands. For exam-

ple, critical applications can run with maximum reliability guarantees using

stronger (virtualized) ECC, while the performance of non-critical applications

can be maximized by turning off ECC protection. Also, a system can adapt

error tolerance levels to device wear-out status or environmental parameters.
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Figure 3.4: Flexible reliability through virtualized redundant information.

Figure 3.4 illustrates how virtualizing redundant information enables

flexible reliability compared to traditional uniform ECC. Uniform ECC, as

shown in Figure 3.4(a), forces a fixed error tolerance level and a fixed access

granularity; hence, a system designer must choose an error tolerance level

based on worst-case error propensity and an access granularity for average

applications. Figure 3.4(b) shows a system with virtualized ECC. In this

system, single hardware can have different protection schemes: (i) to maximize

performance by not using ECC; (ii) to enable ECC for important data; (iii) to

use stronger ECC for mission-critical applications; and (iv) to apply ECC at a

finer access granularity for application with low spatial locality. In Chapter 5–

6, we leverage this technique, virtualizing redundant information, for flexible

reliability and provide the detailed mechanisms, tradeoffs, and evaluation.
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3.3 Fine-Grained Data Management in the Memory Hi-
erarchy

In Chapter 6, we describe the adaptive granularity memory system

that utilizes flexible reliability through virtualizing redundant information (de-

scribed in the previous section) and the ability to manage fine-grained data in

the memory hierarchy. Modern memory systems, however, are optimized for

coarse-grained accesses; they rely on spatial locality to reduce off-chip accesses

and miss rate and to lower control and storage overheads.

In this section, we describe mechanisms that enable fine-grained data

accesses in modern memory systems including DRAM and caches. Section 3.3.1

describes a sub-ranked DRAM system that enables fine-grained memory ac-

cesses, and Section 3.3.2 reviews a sector cache, an old design paradigm that

allows partially-valid cache lines.

3.3.1 Sub-ranked Memory Systems

Modern memory systems do not provide truly-uniform random access.

They are instead optimized for capacity first and for high bandwidth for se-

quential access second. In order to keep costs low, the DDRx interface relies

on high spatial locality and is requiring an ever increasing minimum access

granularity. Regardless of how much data is required by the processor, the

off-chip DRAM system returns a certain minimum amount, often referred to

as a DRAM burst. Therefore, in DDRx memory systems, the overall minimum

access granularity is a product of the DRAM chip minimum burst length and
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Figure 3.5: Timing diagrams and effective throughput of several DRAM gen-
erations.1

the data width of a channel. For example, a 64-bit wide DDR3 DRAM chan-

nel with a burst of 8 accesses, which is typical in contemporary DDR3 DRAM

modules, has a minimum access granularity of 64B. Therefore, even if the pro-

cessor needs only a single word, the entire 64B chunk around it has to be read

from DRAM and transferred to the memory controller.

Module and Interface Tradeoffs. Figure 3.5(a) shows simplified timing

diagrams of data bus usage for several DRAM generations: single data rate

SDRAM, DDR, DDR2, and DDR3. While the high density required from

DRAM practically limits its core clock frequency to 200MHz, effective I/O

data rates have increased up to 1600MHz for the latest DDR3. Note that

newer DRAM generations transfer larger chunk of data in the same time win-

1Note that there are no 200MHz SDRAM products, but we present it here for comparison.
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dow (5ns in this example), doubling the peak bandwidth in each generation.

This increase in bandwidth is achieved by employing n-bit prefetch and a burst

access: n is 2 in DDR, 4 in DDR2, and 8 in DDR3. As a result, the mini-

mum access granularity is increasing: 8B in SDRAM, 16B in DDR, 32B in

DDR2, and 64B in DDR3 with a typical 64-bit wide channel. Thus, as DRAM

technology advances, the relative cost of fine-grained accesses increases.

We carried out a simple experiment that compares the effective DRAM

throughput of sequential accesses and fine-grained random accesses using DRAM-

sim [123]. We used STREAM and GUPS of the HPC Challenge Benchmarks [2]

to represent sequential and random access patterns, respectively. As Fig-

ure 3.5(b) shows, near-peak bandwidth is easily achieved with sequential ac-

cesses (in STREAM), whereas fine-grained random accesses (in GUPS) have poor

performance that barely improves over DRAM generations. Note that we

provisioned enough banks and ranks (8 banks per rank and 8 ranks) so that

bank-level parallelism can hide the penalty of the frequent bank conflicts of

random accesses. Hence, the relatively low throughput of GUPS in DDR2 and

DDR3 is primarily due to their large minimum access granularity. Only a

fraction of the data transferred is actually used, lowering effective throughput.

A narrower data path can be used to decrease the minimum access

granularity because the granularity is a product of minimum burst length and

channel width. The burst length is dictated by the DRAM technology, but the

channel width is a system design parameter. We can find such implementations

in vector processors like the Cray Black Widow [11]: Its memory subsystem
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has many 32-bit wide DDR2 DRAM channels, providing 16B minimum access

granularity. We refer to this style of memory subsystem as many-narrow-

channels. Although the many-narrow-channels approach reduces minimum

access granularity, such a design is inherently very expensive. The many-

narrow-channels approach increases the control overhead, since each channel

requires its own address/command pins. Compared to conventional memory

systems with one address/command bus for every 64-bit data path, Black

Widow’s memory subsystem needs twice the number of address/command

pins. This is a critical problem, since future systems will be severely pin

limited.

An alternative approach to this supercomputing-based many-narrow-

channels design is to use DRAM sub-ranking. Recently, there have been

multiple proposals for memory systems that can control individual DRAM

devices within a rank: Rambus’s micro-threading [124] and threaded mem-

ory module [8, 125]; HP’s MC-DIMM (multi-core dual in-line memory mod-

ule) [13, 14]; Mini-rank memory system [140]; and Convey’s S/G DIMM (scat-

ter/gather dual in-line memory module) [25]. In this dissertation, we collec-

tively refer to these techniques as sub-ranked memory systems. Figure 3.6

compares a conventional coarse-grain-only memory system, a many-narrow-

channels approach, and a sub-ranked memory system similar to MC-DIMM.

In Figure 3.6, the many-narrow-channels and sub-ranked approaches provide

16B access granularity with DDR3, and gray boxes and arrows represent ECC

storage and transfers.
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Figure 3.6: Comparison of memory systems. ABUS represents ad-
dress/command bus, and DBUS X/Y represents data bus, where X bits are
for data and Y bits are for ECC.

Most sub-ranked memory proposals [13, 14, 125, 140] focus on energy

efficiency of coarse-grained accesses by mitigating the “overfetch” problem.

The ability of sub-ranked memory to support fine-grained accesses is briefly

mentioned in [25, 124], but the tradeoffs are neither discussed nor evaluated.

Compared to the many-narrow-channels approach, sub-ranked memory sys-

tems are less expensive in pin cost, since only one address/command bus is

required per wide data path. In Chapter 6, we design a memory system that

provides efficient fine-grained accesses and dynamic reliability tradeoffs unlike

prior work.
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Figure 3.7: Comparison of cache line organizations.

3.3.2 Sector Caches

Similar to modern DRAMs, recent cache designs are also tuned to

coarse-grained accesses; a cache line of 64B or larger. Large cache lines re-

duce not only tag and ECC storage but also cache misses by prefetching

spatially adjacent data. The adaptive granularity memory system we design

in Chapter 6, however, allows fine-grained main memory accesses; hence, it

is essential to support fine-grained data management in caches also. Like the

many-narrow-channels approach in DRAM, caches with small cache lines (e.g.,

8B) are unacceptable since this increases tag and ECC overheads significantly.

The sector cache is a design originally used in the IBM 360/85 sys-

tem [75] and initially aimed to reduce tag overhead by dividing each cache line

into multiple sectors and providing each sector with its own dirty and valid

bits. Figure 3.7 illustrates caches with a small line and a large line as well as the

sector cache. D and V represent a dirty bit and a valid bit, respectively. The
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sector cache can manage fine-grained data by allowing partially-valid cache

lines, while not increasing tag overhead significantly.
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Chapter 4

Efficient Cache Memory Protection

It is important to minimize the impact on area, power, and application

performance of strong resiliency mechanisms because of the continuing increase

in soft error propensity. The combination of growing last-level cache (LLC)

capacity, shrinking SRAM cell dimensions, decreasing critical charge (Qcrit),

and increasing fabrication variability that reduces error margins is leading to

a higher SER [79, 106, 110]. In particular, recent trends show that multi-bit

errors in the array are becoming significant: Many memory cells can fall under

the footprint of a single energetic particle strike [79, 90, 103] as semi-conductor

design rules shrink; and the likelihood of faulty bit rates grow rapidly as VCC

of a cache array is lowered to reduce power consumption [10, 35, 127].

Because of these trends, the need to account for high LLC SER and also

tolerate multi-bit errors in SRAM arrays is becoming acute [31]. Researchers

have already observed up to 16-bit errors in SRAM arrays and are predicting

potentially higher counts in the future [16, 79, 90]. The more powerful protec-

tion mechanisms required to correct large numbers of bit flips come at a cost

of storing more redundant information or modifying physical designs, as well

as increased energy requirements [63, 92].
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In this chapter, we aim to reduce the overheads of providing increased

protection against soft errors in large SRAM arrays and present two LLC pro-

tection mechanisms: Memory Mapped ECC (MME) [132] and ECC FIFO [131].

Both mechanisms apply two-tiered protection described in Chapter 3, but

exploit different schemes for managing T2EC information in main memory.

MME stores the T2EC as addressable data within the memory hierarchy it-

self, while ECC FIFO uses a FIFO structure in main memory.

We evaluate MME and ECC FIFO using full-system cycle-based simula-

tion of memory-intensive applications from the SPLASH2 [129], PARSEC [21],

and SPEC CPU 2006 [109] suites. We show that the proposed architectures

outperform prior techniques for reducing LLC protection overheads on nearly

every metric. We estimate 15−25% and 9−18% reductions in area and power

consumption of LLC, respectively, while performance is degraded by only 0.7%

on average and by no more than 2.8%.

In the remainder of this chapter, we first develop two-tiered protection

for LLC in Section 4.1, then explain the proposed LLC protection schemes:

Memory Mapped ECC in Section 4.2 and ECC FIFO in Section 4.3. Section 4.4

discusses LLC protection tradeoffs enabled by the two-tiered approach, Sec-

tion 4.5 evaluates MME and ECC FIFO, Section 4.6 describes related work,

and Section 4.7 summarizes this chapter.

44



.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

..
.

S sets

W ways

.

.

.
.
.
.

.

.

.

..
.

..
.

Data

B T1

Tag

T2

T2EC

On-chip DRAM

T1EC

LLC Read LLC Write

Last-Level Cache

Figure 4.1: Two-tiered protection for LLC with dedicated on-chip storage for
the T1EC, while the the T2EC is stored in off-chip memory.

4.1 Two-tiered Protection for LLC

In this section, we develop two-tiered protection mechanisms for LLC.

As discussed in Chapter 2, two-tiered protection consists of the T1EC and the

T2EC. We provide dedicated on-chip storage for the T1EC in every cache line

and use it exclusively for error detection or for light-weight error correction,

while we off-load the T2EC to main memory namespace to avoid dedicated

on-chip storage for the T2EC.

On-chip Storage Overhead. As shown in Figure 4.1, the on-chip ECC

storage overhead of two-tiered LLC protection is for T1EC only and is equal

to S ×W × T1 bytes, where S is the number of LLC sets, W is the LLC asso-

ciativity, and T1 is the number of bytes required for the T1EC corresponding

to an LLC line of B bytes (see Table 4.1 for notations). For example, an 8-way

interleaved parity T1EC that detects up to a 15-bit burst error requires just

1B of storage for a 64B cache line. This is a much smaller overhead than in the
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Table 4.1: Definitions and nominal parameters used for evaluation.
LLC parameters

number of sets S 2048 sets
associativity W 8 ways
line size B 64B
LLC size S×W×B 1MB
the way within a set in which address x is cached way(x)
the set within the LLC in which address x is cached set(x)

Two-Tiered Protection

T1EC size per cache line T1 see Section 4.4
T2EC size per cache line T2 see Section 4.4

MME

memory address in which the T2EC bits protecting
T2EC addr(x)

address x are stored
base pointer to the T2EC region T2EC base
multiple T2ECs that are mapped to a single LLC line T2EC line

ECC FIFO

Tag size t log2(S×W ) = 14 bits

the coalesce buffer size m b B
t+T2

c = 6

T2EC FIFO size k see Section 4.3.3

Others

DRAM bandwidth BW 5.336GB/s
eager write-back period Tewb 106 cycles
processor clock clock 3GHz

conventional approach of uniformly providing an 8-way interleaved SEC-DED

code requiring 8B for each cache line. Both the 8-way interleaved parity T1EC

and the conventional 8-way interleaved SEC-DED have similar burst-error de-

tection capability (up to 16-bit bursts for SEC-DED and 15-bit bursts for the

T1EC), although the SEC-DED code can detect a larger number of non-burst

bit errors. To provide a matching correction capability, the T2EC is an 8-

way interleaved SEC-DED that is stored in the off-chip DRAM. Section 4.4

describes more examples of two-tiered codes with error detection/correction

capabilities and area/power overheads.

46



.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.

..
.

S sets

W ways
Data

B T1

Tag

On-chip DRAM

T1EC

.

.

.

T2EC

SxW

T2

T2EC_base

LLC Read LLC Write

Last-Level Cache

Figure 4.2: Memory Mapped ECC architecture that stores the T2EC infor-
mation as addressable data within the memory hierarchy.

4.2 Memory Mapped ECC

Memory Mapped ECC (MME) is based on two-tiered protection and

stores T2EC information within the memory hierarchy as addressable data.

Thus, the memory-mapped T2EC information can be cached in the LLC and

eventually stored in low-cost off-chip DRAM. Figure 4.2 illustrates how MME

organizes T1ECs and T2ECs in the LLC and DRAM.

Storing the T2EC bits as cacheable data, rather than in dedicated

storage, offers several important advantages. First, by allowing the redundant

information to be stored in DRAM and cached on chip, we transparently and

dynamically adjust the on-chip T2EC storage to the number of dirty cache

lines using the existing cache management mechanism. We do not limit the

number of dirty lines in a cache set or the cache overall. Thus, we eliminate

all SRAM leakage and area overheads of dedicated T2EC storage, improving

on the savings suggested in the past [64, 71]. The second main advantage is
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the generality of our technique and the flexibility it provides in choosing the

T2EC (see Section 4.4).

We now describe how to integrate MME within the memory hierarchy

including interfaces with the main memory namespace and the LLC controller

in Section 4.2.1–4.2.2, followed by a discussion of error detection and correction

procedures in Section 4.2.3. We also discuss how to support write-through L1

caches in Section 4.2.4.

4.2.1 T2EC in Main Memory.

MME requires a region of the memory namespace (the T2EC region)

to be allocated for T2EC storage. Our current implementation is to map

this region to physical DRAM addresses and avoid address translation when

reading and writing T2EC. An on-chip register, (T2EC base), points to the

start of the T2EC array, which is only T2 × S ×W bytes in size, where T2 is

the number of bytes required for the T2EC corresponding to an LLC line of B

bytes (see Table 4.1 for notations). For example, using interleaved SEC-DED

codes, the T2EC array is just 128KB of physical DRAM for every 1MB of an

LLC with 64B lines. Each physical LLC line is associated with a T2EC in

physical memory, as follows (See Table 4.1 for notations):

T2EC addr(x) = T2EC base +(way(x)×S+set(x))× T2.

Using this mapping for the interleaved SEC-DED T2EC on 64B LLC lines,

eight T2EC entries are mapped into 64B and form a T2EC cache line.
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We define the T2EC region in DRAM to be cacheable in the LLC. This

has two significant advantages over writing T2EC information directly out to

DRAM. First, it reduces the DRAM bandwidth required to support MME by

exploiting locality in T2EC addresses and accessing T2EC data in the cache

when possible. We map LLC lines from consecutive sets to be adjacent in

T2EC DRAM storage to increase the likelihood that accesses to arrays in the

program will have their T2EC data placed in the same T2EC line. A T2EC

cache line is fetched to the LLC, modified in the LLC, then evicted to DRAM

like a normal cache line. In other words, the LLC is dynamically partitioned

to data and T2EC cache lines, and T2EC storage overheads are eventually

off-loaded to DRAM.

The second advantage of caching T2EC data is in matching the T2EC

access granularity to DRAM burst size. A typical T2EC will require a small

number of bytes for every LLC line, and writing at such a fine granularity to

modern DRAM systems is inefficient and wastes limited DRAM bandwidth.

By caching T2EC data, the LLC acts as a write-combining buffer for T2EC

bits, and all writes to DRAM are performed at the granularity of one or more

DRAM bursts.

4.2.2 LLC operations

LLC Read. We assume the cache level preceding the LLC (L1, if the LLC

is L2) is a write-back cache; hence, the LLC is always accessed at a coarse

granularity of a cache line. When a cache line is read from the LLC (fill
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Figure 4.3: LLC write and T2EC update in LLC with MME.

into preceding level or write-back into DRAM), the T1EC is used to detect

and potentially correct errors. The detailed error detection and correction

procedures are described in Section 4.2.3.

LLC Write. The procedure for writing a line into the LLC is summarized

in Figure 4.3(a). In all write cases, the T1EC is computed and stored in the

T1EC portion of the cache line. A T2EC, however, is only computed for dirty

lines that are written back into the LLC from a previous-level cache (e.g., L1).

This newly generated T2EC is mapped to a cacheable DRAM address. If this

T2EC address is already in the cache, it is updated with the newly computed

T2EC. If the T2EC address is a cache miss, a line is allocated for it in the

LLC and the T2EC is fetched from DRAM (see the next paragraph for more

details). Note that a T2EC is generated only for a dirty cache line and that

T2EC encoding / caching is concurrent with the LLC data write.
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valid state address data T2EC vector

Figure 4.4: Extended MSHR entry. The bit vector length is equal to the
number of T2EC entries mapped to a single LLC line.

T2EC Write. The MME architecture provides an optimization for the

allocation and population of T2EC lines in the LLC. Because a T2EC is just

an ECC for a dirty cache line, we can often simply allocate a T2EC line

in the LLC without first fetching it from DRAM. If all the cache lines that

are mapped to a single T2EC cache line are clean, the corresponding T2EC

information in DRAM is stale and unnecessary, and it is wasteful to read

it. The optimized procedure for allocating and populating a T2EC line is

illustrated in Figure 4.3(b). T2EC cache line fills occur only when there is at

least one dirty cache line among the cache lines mapped to the T2EC cache

line.

Filling a T2EC line from DRAM is similar to a regular data line fill,

and the read request is first placed in an MSHR (Miss Status Handling Reg-

ister). The MSHR is responsible for merging the newly computed T2EC with

the T2EC data corresponding to other cache lines that is being fetched from

DRAM. This merging capability is similar to that provided by the MSHRs

between two cache levels where the granularity of writes is smaller than the

cache line size (e.g., when L1 line size is 16B and L2 line size is 64B). To accom-

plish the T2EC merging, each MSHR entry is extended with a bit vector that

indicates what portion of the T2EC line has just been calculated and what

portion is being fetched from DRAM (Figure 4.4). This bit vector enables
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Figure 4.5: LLC read and error correction in LLC with MME.

additional pending T2EC writes to the same T2EC line to proceed, while the

line is being fetched.

4.2.3 Error Detection and Correction

Error Detection. When properly designed, the error detection using a

T1EC, which is the most common operation, is less complex and consumes

less energy per access than those of the conventional ECC. For instance, de-

tecting a single-bit error is much simpler using a parity based T1EC than

with a SEC-DED code. We do not exploit this advantage in our architecture

when evaluating MME in Section 4.5 and refer the reader to the PERC pa-

per [99], which uses decoupled error detection and error correction to improve

the performance and energy of a first-level cache.

Error Correction. When the T1EC detects an error, the correction mech-

anism will attempt to correct the error using the T1EC. If possible, the cor-
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rection will be done with low energy and latency. If the chosen T1EC is

not strong enough for correction, and the cache line is clean, error correction

simply involves re-fetching the line from DRAM with the corresponding en-

ergy and latency penalty. For dirty lines, the correction mechanism accesses

the T2EC data and decodes the redundant information. Thus, the maximum

penalty for correction is a single LLC line fill from DRAM and invoking T2EC

decoding. Given the rare occurrence of an error on a dirty line that cannot be

corrected by the T1EC, this overhead is entirely negligible. The error correc-

tion procedure using the T1EC and T2EC is described in Figure 4.5(a) and

Figure 4.5(b).

4.2.4 Supporting Write-Through L1

So far we assumed L1 (or the cache level preceding the LLC) is write-

back (WB), where a dirty eviction to L2 is always at a coarse granularity

of a cache line. Supporting write-through (WT) L1 that is used in many

commercial designs, however, requires no fundamental changes in the MME

architecture. Each store instruction in a processor with WT L1 caches writes

the data to an L1 cache line, then eventually updates a word in an L2 cache

line. In MME, each update of an L2 cache line updates T2EC information

also; hence, the fine-grained and more frequent L2 updates (in a system with

WT L1) can potentially lead to more frequent T2EC cache misses. Since we

do not read T2EC information unless an error occurs, the more frequent T2EC

misses can be easily tolerated with the MSHR described in Section 4.2.2.
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As a result, the MME architecture supporting WT L1 should be able to

support more concurrent T2EC misses, and this may impact performance and

power due to potentially higher MSHR/LLC utilization. Although we do not

evaluate MME with WT L1, the relatively low activity factor of the LLC and

the MME’s reduced LLC area can improve power/energy efficiency, since LLC

power consumption, as shown in Section 4.5, largely depends on the leakage

power.

4.3 ECC FIFO

The second LLC protection mechanism we propose is ECC FIFO. Sim-

ilar to MME, ECC FIFO also uses two-tiered protection, but the mechanism

of off-loading T2EC overheads is different; a FIFO in main memory off-loads

T2EC storage overheads.

In ECC FIFO, every time a T2EC is generated, the redundant infor-

mation is pushed into the T2EC FIFO along with a Tag that indicates the

corresponding dirty physical LLC line. Thus, when the T1EC detects an error

that it cannot correct, T2EC FIFO can be searched starting from the newest

entry until a matching tag is found and the T2EC information can be re-

trieved. The FIFO is simple to implement and allows us to easily identify

the T2EC corresponding to an error with very low management overhead and

with efficient transfer of T2EC data to DRAM.

Figure 4.6 illustrates ECC FIFO architecture; on-chip ECC overhead

is the same as that of MME, but T2EC FIFO and the coalesce buffer manage
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T2EC information. Unlike MME, ECC FIFO does not cache T2EC as data;

hence, ECC FIFO does not affect LLC caching behavior.

4.3.1 LLC operations and Error Detection/Correction

Since ECC FIFO has similar on-chip organization of uniform T1EC as

MME, LLC read/write operations in ECC FIFO are almost the same as those

operations in MME except T2EC information management as well as error

correction procedure using T2EC.

LLC Write and T2EC Write. In ECC FIFO, T2EC is encoded only

with dirty line eviction to the LLC as in MME. We assume that the cache

level preceding the LLC (e.g., L1, if the LLC is L2) is a write-back cache in

ECC FIFO. Supporting write-through L1 in ECC FIFO is impractical since

frequent fine-grained writes to L2 generate too much T2EC traffic. The en-

coded T2EC is packed with a Tag , which is a pointer to the corresponding
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physical data line in the LLC. A Tag is composed of the set number and the

way number of the cache line so that the T2EC can later be associated with

a detected error. The Tag requires log2(S ×W ) bits, e.g., 18 bits for a 16MB

LLC with 64B cache lines. The packed Tag/T2EC pair is pushed into a co-

alesce buffer and then written into the FIFO with DRAM-burst granularity.

The coalesce buffer is necessary to achieve high DRAM throughput, because a

single Tag/T2EC is only 10.5 bytes in the example above (8 bytes for an inter-

leaved SEC-DED T2EC and 2.5 bytes for the Tag), smaller than the minimum

burst size of modern DRAM controllers, which are architected for LLC-line

granularity (e.g., 64B). Using the parameters above, we can coalesce up to 6

Tag/T2EC pairs into a single DRAM write-back.

LLC Read, Error Detection, and Error Correction. Error detection

mechanism of ECC FIFO is the same as MME; the uniform T1EC detects

(and possibly correct light-weight errors). Once T1EC detects, but cannot

correct errors in a dirty LLC line, the first step required to correct such an

error using T2EC is to identify the FIFO entry that contains the T2EC data.

The FIFO is searched sequentially to find the Tag, which corresponds to the

LLC physical line in which the error was found. The search starts from the

newest FIFO entry, which can still be in the on-chip coalesce buffer, and

proceeds from the current FIFO tail towards the head. Once the most recent

matching pair is found, the T2EC (and the T1EC, if needed) attempts to

correct the errors. Thus, the worst case penalty of T2EC error correction is

the required time to read and compare all Tag/T2EC pairs from the FIFO.
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This takes roughly k×(B/m)/BW seconds, where k is the size of the FIFO

in number of pairs, m is the number of pairs in the coalesce buffer and BW

is the expected throughput of the DRAM channel in bytes/sec (see Table 4.1

for notations). For instance, the worst case correction latency is around 1.66

ms when k is one million entries, m is 6, B is 64 bytes, and BW is 6.4GB/s.

This overhead, however, is entirely negligible given the rare occurrence of an

error that requires T2EC for correction, which we estimate at one error every

155 days for a 32MB cache in today’s technology [106, 110]. Note that errors

on clean cache lines will be corrected by re-fetching data from DRAM as in

MME.

4.3.2 T2EC FIFO

We propose to use a large circular buffer in the main memory space as

the T2EC FIFO. The FIFO has two significant advantages over other T2EC

storage options: (i) a FIFO allows arbitrary coalescing with a trivial and small

on-chip buffer that can still maximize DRAM throughput; and (ii) a FIFO is

easy to manage in software and provides a clear way to identify the most

recent update to an LLC physical line’s T2EC data. Information on the FIFO

size and base address is stored within the LLC controller and can be set by

privileged hypervisor or OS instructions, or through the BIOS.

One caveat to using a circular buffer is that a T2EC push into the

FIFO overwrites the oldest entry. If the physical cache line that corresponds

to the overwritten T2EC FIFO entry has not been modified or evicted from
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the LLC, then its T2EC information is overwritten and lost. At that point,

the line becomes T2EC unprotected, and the system will not be able to recover

from an error within it.

4.3.3 T2EC Overwrite and Unprotected Lines

To analyze the effects of the T2EC FIFO size on T2EC protection

capability, we define Punprot as the probability that a T2EC cannot correct

the LLC line due to a T2EC overwrite in the circular buffer. Even though

the buffer is finite, the probability of unprotected lines is small for two main

reasons: (i) inherent memory access patterns in applications that limit the

lifetime of dirty lines in the LLC through reuse and capacity/conflict evictions;

and (ii) limiting dirty line lifetime by programming the LLC controller to

periodically clean dirty lines.

Reused and Evicted Dirty Lines. In many applications, the natural

access pattern leads to relatively short lifetime of dirty lines in the LLC. Cache

lines are often re-written by the application as new results are generated,

rendering earlier computed T2EC data stale and unnecessary. In other cases,

LLC lines are evicted to make room for new lines being fetched, and again any

existing corresponding T2EC data in the FIFO becomes obsolete. We denote

the fraction of T2EC entries that correspond to reused lines in the LLC as

Freuse and the fraction of entries corresponding to evicted lines as Fevict.

For example, lbm from the SPEC CPU 2006 suite [109] has streaming

memory access patterns; hence, the vast majority of dirty lines are written-
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Figure 4.7: Punprot, Freuse, and Fevict in the lbm application.

back into DRAM before a T2EC overwrite occurs. Simulation results (param-

eters as described in Section 4.5) show that Fevict goes up rapidly as the FIFO

size is increased from 15K to 30K entries; the probability of T2EC unprotected

reaches 0 when the FIFO is larger than 30K entries, which is 313KB of DRAM

space (Figure 4.7).

Periodically Cleaning Dirty Lines. Although some applications (such as

lbm) do not suffer from T2EC unprotected with a reasonable FIFO size, other

applications may cause overwrites leading to unprotected lines regardless of

the FIFO depth. We utilize the previously proposed eager write-back tech-

nique [69] to bound the lifetime of a dirty line in the LLC. We explain this in

detail and derive a model to analyze the T2EC unprotected probability with

eager write-back.

The original eager write-back technique, proposed in [69], opportunis-

tically writes dirty lines into DRAM when a dirty line is in the least-recently

used position and a DRAM issue slot is available. This reduces pressure on

DRAM when demand fetches are necessary and increases performance. We uti-

lize a more predictable approach, which retains the performance advantages, in
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which lines are periodically probed and written back if dirty. This is similar to

the policy used in cache reliability studies [64, 71] and decay caches [60]. Our

eager write-back implementation scans each cache line with a predetermined

period, Tewb cycles, and eagerly writes a dirty line older than the period.

Figure 4.8 shows an example time-line of a dirty line in the LLC, from

the time it is evicted into the LLC until the time it is cleaned by an eager

write-back. Each cache line is scanned once per Tewb cycles so that a dirty line

is eagerly written back to DRAM within a maximum of 2×Tewb cycles after the

line is evicted into the LLC. Based on this observation and the fact that the

periodic scanning is independent of the eviction times, we can define PD(t) as

the expected probability that a dirty cache line that was written into the LLC

at time t = 0 remains dirty at time t, as shown in Figure 4.9. Since eager write-

back does not clean dirty lines younger than Tewb cycles, PD(t) = 1 for the

first Tewb cycles, after which PD(t) decreases linearly until it reaches 0 at time
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t = 2×Tewb cycles. Figure 4.10 illustrates the two potential time-lines of a dirty

LLC line that is neither evicted nor reused with respect to being cleaned by

an eager write-back or overwritten in the T2EC FIFO. Figure 4.10(a) depicts

the case that a line is cleaned by an eager write-back before its T2EC data is

overwritten and is thus fully protected, whereas Figure 4.10(b) shows a window

of vulnerability opening, if the T2EC is overwritten before the line is written

back.

To summarize the discussion above, the factors determining whether

a line becomes T2EC unprotected are the period of time in which a T2EC

entry is required to protect the cache line (the T2EC entry’s valid-time) and

the time for the T2EC to be overwritten in the FIFO (its overwrite-time);

when a T2EC entry’s valid-time is longer than its overwrite-time, the cache

line becomes T2EC unprotected. The valid-time is the property of the LLC

and memory access pattern; the time it takes for the line to be cleaned by an

eager write-back determines the valid-time unless the line is reused or evicted
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before it is cleaned. The overwrite-time is a function of the FIFO depth and

the rate at which dirty lines are written into the LLC (property of memory

access pattern and parameters of the caches closer to the core). Because

the valid- and overwrite-times are application-specific and dynamic, we model

their impact on unprotected lines using a probability density function of the

overwrite-time, DT2EC(t). DT2EC(t) is the distribution of T2EC overwrite-time

that a T2EC entry that was computed at time t = 0 is overwritten at time

t > 0. Figure 4.11 shows examples of DT2EC(t) from omnetpp with different

FIFO sizes. A larger FIFO shifts DT2EC(t) towards longer overwrite times

so that eager write-back cleans nearly all the dirty lines before the T2EC is

overwritten.

We can now write the probability of an unprotected line as in Equa-

tion 4.1.

Punprot = (1− Freuse − Fevict)×
∫ ∞

0

PD(t)×DT2EC(t) dt (4.1)
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Figure 4.12: Probability of T2EC unprotected when Tewb is 1M cycles. A
FIFO larger than 40k entries is required only in three applications: dedup,
freqmine, and bzip2.

We used a detailed simulator, described in Section 4.5, to collect T2EC

overwrite-time information for a variety of benchmark applications and a range

of FIFO sizes. We then applied the model of Equation 4.1 and compared the

resulting expected fraction of unprotected LLC lines to that from the cycle-

accurate simulation. Although we do not present the detailed comparison

results in this dissertation, the model and the simulation agreed to within 1%.

Impact of FIFO size and Eager Write-Back Period. Figure 4.12 shows

the decrease in probability of T2EC unprotected as the size of the FIFO in-

creases for a range of applications when the eager write-back period is 1M

cycles. All but 3 of the applications (dedup freqmine, and bzip2) are fully

protected with a FIFO of 40K entries requiring only 417KB of DRAM stor-

age. The deepest FIFO required to avoid overwrites with Tewb = 1M cycles is

100K-entries for bzip2, requiring about 1MB of DRAM storage. Figure 4.13

shows the effects of varying Tewb on a few representative applications. All but
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Figure 4.13: Probability of T2EC unprotected varying Tewb.

4 of the applications evaluated behaved similarly to OCEAN of the SPLASH2

suite, requiring a FIFO smaller than 100K entries even with Tewb = 5M cy-

cles. RADIX, bzip2, freqmine, and dedup required deeper buffers, with dedup

requiring a 220K-entry (2.5MB) buffer with Tewb = 5M cycles.

Guaranteeing No T2EC Unprotected Lines. If the T2EC FIFO is

sufficiently large, then eager write-back will always clean a dirty line before

the corresponding T2EC is overwritten. With eager write-back, the maximum

T2EC valid-time is 2×Tewb cycles so we need to choose a FIFO deep enough to

make the minimum T2EC overwrite-time longer than the maximum valid-time.

The minimum T2EC overwrite-time is k/R, where R is the maximum FIFO

fill rate, and a FIFO greater than 2×Tewb×R prevents T2EC unprotected.

The maximum FIFO fill rate is essentially the maximum possible rate

of dirty line writes into the LLC. At worse, every store instruction can cause
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Figure 4.15: Punprot with varying L2 size.

a dirty line eviction into the LLC. Alternatively, the fill rate may be limited

by the total DRAM write bandwidth (to fill the FIFO) or the bandwidth of

the LLC controller. In our simulated system (see Table 4.4), the DRAM write

bandwidth sets the tightest bound. The FIFO size required is 2×Tewb×m/B×

BW/clock, where clock is the clock frequency of eager write-back operations.

This corresponds to a FIFO of 346, 070 entries requiring 3.6MB. While this is

a fairly large buffer, its size is very small compared to today’s main-memory

capacities and replaces valuable on-chip area.

Sensitivity to Cache Size. Intuitively, a larger L1 or a smaller L2 will

reduce the number of T2EC unprotected lines; a larger L1 reduces the rate of

dirty evictions into the LLC, and as a result, T2EC overwrite-time increases.

Similarly, a smaller L2 will cause cache lines to be replaced more often, due
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Table 4.2: Baseline and two-tiered ECC codes assuming 64B cache line (base-
line codes are regarded as T1EC without T2EC).

T1EC T2EC T1EC T1EC T2EC

code size code size
burst error burst error burst error
correction detection correction

baseline
S 8 way SEC-DED 8B N/A N/A 8 16 N/A
D 8 way DEC-TED 16B N/A N/A 16 24 N/A

two-tiered error protection
PS 8 way parity 1B 8 way SEC-DED 8B N/A 15 bits 8 bits
PN 16 way parity 2B 4 way SNC-DND 8B N/A 31 bits 4 nibbles
PB 32 way parity 4B 8 bit symbol RS 8B N/A 63 bits 4 bytes
SD 8 way SEC-DED 8B 8 way DEC-TED 8B 8bits 16 bits 16 bits

to capacity constraints, which then decreases T2EC valid-time. We ran sim-

ulations varying the L1 size between 32 − 128KB and the L2 size between

512 − 2048 KB. The behavior of T2EC unprotected is as expected and de-

scribed above. The overall impact of cache sizes is, however, relatively small,

and we omit the full results for brevity. The conclusion is that the FIFO depth

required to eliminate the possibility of T2EC unprotected lines is unchanged

in most applications; it changes by 5 − 10K entries only in four of the eight

applications we tested (SPEC CPU 2006 applications), including hmmer and

omnetpp. Figure 4.14 and Figure 4.15 present Punprot with different L1 and L2

sizes in hmmer and omnetpp applications.

4.4 Error Protection Tradeoffs

In this section, we evaluate improvements in protection capabilities and

discuss new tradeoffs enabled by the two-tiered approach. One of the main

advantages of our two-tiered protection is the flexibility it provides in choosing

the T1EC and T2EC.
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With the design considerations presented in Section 3.1.4, Table 4.2

describes the configurations and burst error detection/correction capabilities of

a number of one-tiered baseline ECC codes as well as two-tiered ECC codes for

MME and ECC FIFO. Other error detecting codes, such as cyclic redundancy

coding (CRC), can be combined and yield stronger random error detecting

capability. However, we choose interleaved parity and SEC-DED as the T1EC

considering both burst error detection capability and decoding latency. All of

the two-tiered codes have identical T2EC size (8B) per 64B cache line; hence,

the impact on performance in MME and ECC FIFO will be roughly the same

across the presented two-tiered coding schemes. This leaves the tradeoff to be

between the protection capability (T1EC detection and T2EC correction) and

on-chip area (T1EC size).

The PS configuration (parity T1EC and SEC-DED T2EC) allows us

to directly compare our architecture to the baseline one-tier 8-way interleaved

SEC-DED codes (S), which are commonly used in related and prior work.

The two-tiered PS provides the same bursty error correction capability (up to

8-bit bursts) as the one-tier SEC-DED (S) with reduced on-chip area. The

number of detectable errors is different, however. The interleaved parity can

detect bursts up to 15 bits long, whereas the conventional interleaved SEC-

DED codes can detect up to 16-bit bursts (8-way interleaved double-bit errors).

The codes also differ in their detection capability for non-burst multi-bit errors,

which we evaluate later in this section using error injection.
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Table 4.3: Area, leakage power, and array energy per read access.
baseline MAXn two-tiered protection
no ECC S D MAX1 MAX2 MAX4 PS PN PB SD

Leakage Power (W) 1.4 1.6 1.8 1.5 1.5 1.6 1.4 1.5 1.5 1.6
Energy per Read (nJ) 2.0 2.4 2.9 2.1 2.1 2.7 2.1 2.1 2.2 2.4
Area (mm2) 10.0 12.0 14.1 10.3 10.4 10.6 10.2 10.5 10.9 12.0
ECC area overhead (%) - 20.7 41.7 3.4 4.2 6.5 2.4 4.9 9.8 20.7

The PN (parity T1EC and nibble-based SNC-DND T2EC) and PB

(parity T1EC and byte-based RS T2EC) configurations can correct even longer

bursts. Correction capability is up to 4 nibbles (13–16 bits) and 4 bytes (25–32

bits), respectively, while the on-chip overhead is still very low; even the 32-way

parity T1EC of PB requires only 4 bytes, half the space of the baseline (S).

The SD configuration uses a DEC-TED code, which is separable into an

8-bit SEC-DED, with an additional 8 bits providing detection and correction

for one more bit error [91]. In our two-tier SD, the 8-bit SEC-DED portion

is the T1EC that corrects nearly all errors, up to 8-bit bursts, with very low

latency. The T2EC DEC-TED, which is constructed from the 8 bits stored on

chip in the T1EC and the 8 bits that are retrieved from the T2EC, is used only

in the very rare case of an error that was detected by the T1EC but cannot

be corrected by it. Note that the T1EC has only half the on-chip storage

overhead of the one-tier DEC-TED configuration (D).

Storage, Energy, and Latency Overheads. Table 4.3 compares area

overheads, leakage power, and array energy per access of the two-tiered pro-

tection, MAXn, and baseline schemes. MAXn is a generalization scheme of the

area-efficient cache architecture [64]. The MAXn architecture uses decoupled
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Figure 4.16: MAXn architecture.

error detection/correction approach. Each cache line (64B) has parity (1B)

for error detection, and a separate n-way set associative dirty line ECC cache

provides error correction using SEC codes. As a result, MAXn allows only

n dirty lines per set, and any violation to this constraint will force an oldest

dirty line to be evicted, increasing off-chip traffic. Figure 4.16 illustrates the

MAXn architecture.

We use CACTI 5 [119] to report the properties of a 1MB LLC and re-

lated ECC in a 45nm process. Our architectures only dedicate on-chip storage

to the T1EC and significantly reduces the area and leakage overheads of strong

ECC. For up to 8-bit burst error correction (S, MAXn, and PS), the two-tiered

error protection has much lower area overhead (2.4%) compared to the one-tier

SEC-DED baseline (20.4%) and MAXn (3.4%−6.5% for n = 1−4). With the

increased burst error protection of PN and PB, the area overhead is very small

(4.9% for PN, and 9.8% for PB). In addition, 16-bit burst error correction in
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Figure 4.17: Random error detection/correction capabilities of baseline and
two-tiered error codes.

the two-tiered (SD) has the same overhead of the baseline S, whereas it is only

supported with a 41.7% area overhead using a one-tier equivalent code (D).

Random Error Behavior. In order to further assess the error protection

capability of the two-tiered codes, we use random-error injection and measure

error protection and detection capabilities. For each error scenario presented

in Figure 4.17, we generate 1000 random cache lines and inject random bit flips

to each line, including varying the number of erroneous bits from 1 − 15 for

each protection scheme. Figure 4.17 depicts the probability of errors corrected

and detected in the presence of multi-bit random error.

Figure 4.17(a) shows the probability that the ECC codes detect and

correct the injected errors. We make two observations regarding the results:

(i) in general, two-tiered error protection matches the correction capabilities of

its one-tiered counterparts; and (ii) the symbol-based PN and PB error codes

perform relatively poorly with respect to random errors, even though they
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have superior burst-error correction capabilities (Table 4.2). Also, note that

PB cannot correct all double- and quad-bit errors, even though it uses byte-

oriented RS, because the parity-based T1EC cannot detect all even-numbered

random errors (Figure 4.17(b)).

Figure 4.17(c) depicts the rate of correctly detected errors, including

errors that are correctable. The behavior of the one-tier and two-tier ap-

proaches is quite different, because the stronger T2EC only comes into play if

T1EC detects an error. The parity-based T1EC schemes, perform poorly in

detecting two random errors, but the greater interleaving degree of PN and PB

have very good detection rates for a large number of errors. Both the one-tier

and two-tier SEC-DED and DEC-TED based codes perform well with a small

number of errors, but cannot handle a larger number of errors. One conclu-

sion we draw is that further study of error detection/correction techniques is

necessary if a large number of random errors become a possibility, which is the

case of low-VCC caches [10, 35, 127].

4.5 Evaluation

In this section, we evaluate the cost and performance impact of MME

and ECC FIFO. We use the Simics full system simulator [78] with the GEMS [80]

toolset. We use the OPAL out-of-order processor model of GEMS to simulate a

SPARC V9 4-wide superscalar core with a two-level write-back exclusive cache

hierarchy implemented in the Ruby module of GEMS. To accurately account

for the impact our technique has on memory bandwidth and performance, we
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Table 4.4: Simulated system parameters.
Processor SPARC V9 ISA
Core 4-wide superscalar (3GHz)

L1 Cache
split I/D caches, each 64KB
2-way set associative, 64B cache line
write-back, 1 cycle latency

L2 Cache

a unified 1MB cache, 8-way set associative
L1 exclusive, 64B cache lines
eager write-back (Tewb = 106 cycle)
L2 latency is 12 cycles including ECC encoding/decoding

DRAM
single channel DDR2 DRAM (5.336GB/s)
667MHz 64-bit data bus
open page, Read and Instruction Fetch First policy

integrate DRAMsim [123] into GEMS. We use applications from the SPEC

CPU 2006 [109], PARSEC [21], and SPLASH2 [129] benchmark suites that

stress the memory subsystem. We do not present results for applications that

are not memory intensive, as they are not sensitive to the T2EC traffic. Be-

cause accurate full-system simulation is very slow, we augment the simulation

results using PIN emulation [77] to study the behavior of applications with

large datasets. We believe that simulating a single core with the given pa-

rameters proves the utility of MME and ECC FIFO, and conclusions can be

drawn on the performance and overheads if implemented within a multi-core

processor.

Table 4.4 describes the baseline system configuration. As mentioned

in Section 4.3.3, we use eager write-back [69] to limit the lifetime of dirty

lines in the LLC and to improve the baseline performance; eager write-back

improves the baseline performance by 6–10% in most applications and 26%

in libquantum. Note that we applied a different eager write-back period for

fluidanimate (0.25M) to optimize the performance of the baseline scheme.
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4.5.1 Workloads

We use a mix of the SPLASH2 [129], PARSEC [21], and SPEC CPU

2006 [109] workloads. We concentrate on applications with large working sets

that stress the memory hierarchy and highlight the differences between our

architectures and prior work. For the detailed cycle-based simulations, we run

the applications from SPLASH2 and PARSEC to completion using a single

thread and small to medium problem sizes: tk15.O for CHOLESKY; 64K samples

for FFT; a 514× 514 grid for OCEAN; 1M samples for RADIX, and the simsmall

inputs for all PARSEC applications. For the SPEC CPU 2006 workloads, we

use the reference input dataset and a representative region of 200M instruc-

tions, as indicated by Simpoint [49]. We use much larger datasets and execute

all applications to completion for our PIN-based evaluation in Section 4.5.3.

4.5.2 Performance/Power Results and Analysis

In this subsection, we evaluate overall performance results and compare

the impact of MME and ECC FIFO to that of MAXn schemes [64]. We analyze

LLC power consumption in various coding schemes discussed in Section 4.4

and show the potential of saving LLC power consumption by off-loading the

T2EC to DRAM. We evaluate the impact of additional DRAM traffic needed

for off-loading the T2EC to DRAM, which only degrades performance if it

competes with demand fetches and analyze sensitivity to DRAM bandwidth

to assess the performance impact of MME and ECC FIFO on CMPs, where

DRAM bandwidth is more scarce.
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Figure 4.18: Normalized execution time.

4.5.2.1 Impact on Performance

Figure 4.18 compares the execution times of MAXn, MME, and ECC FIFO

normalized to the execution time of the baseline configuration. As shown, the

impact on application performance of both MME and ECC FIFO is minimal,

with an average performance penalty of less than 0.7% both in MME and

ECC FIFO and a maximum degradation of just 2.8% in MME and 2.3% in

ECC FIFO. These results are encouraging because of the benefits our schemes

provide in reducing on-chip area and leakage power by minimizing dedicated

on-chip ECC storage. The MAXn technique, on the other hand, requires a sig-

nificant tradeoff between performance loss and area gains. MAX1 averages over

5.7% performance loss with several applications experiencing 10− 23% degra-

dation, MAX2 degrades 2% on average, while libquantum is significantly de-

graded by 6%, and MAX4 performs slightly better than MME and ECC FIFO.

MAX4, however, requires much more area than MME and ECC FIFO as shown

in Table 4.3.
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Figure 4.19: OCEAN 258 × 258 performance of the baseline, MME, and ECC
FIFO with varying LLC size.

The anomalous behavior of OCEAN, fluidanimate, freqmine, and hmmer,

where the performance of MAX2 and MAX4 is slightly better than baseline,

is a result of increased eager write-backs for lines that are being forced clean

in order to guarantee protection. We also note that applications with small

working sets, such as WATER-NSQUARED (SPLASH2) and blackscholes (PAR-

SEC) experience no performance drop with MME and ECC FIFO as well as

MAXn, and we do not report their results.

Sensitivity Analysis. Note that the area / error protection tradeoff in

MME is the same as that of ECC FIFO because both schemes use two-tiered

protection and off-load T2EC to DRAM. MME, however, can impact perfor-

mance significantly when the working set of an application closely matches

the LLC size. Figure 4.19 compares the execution times of OCEAN with a

258 × 258 grid of baseline, MME, and ECC FIFO configurations as the LLC

size is varied. As the LLC size grows from 512KB to 1MB, the baseline perfor-
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Figure 4.20: MME and ECC FIFO’s sensitivity to L2 size.

mance is improved by 26%. ECC FIFO’s performance is consistently less than

1% across all LLC sizes. MME, however, degrades performance significantly

(10%) with a 1MB LLC since the effective LLC size is reduced by sharing

the LLC between data and T2EC information. We also evaluate MME and

ECC FIFO’s sensitivity to L2 size in Figure 4.20. The relative performance

degradations in 512KB and 2MB L2 caches are 1 − 2% on average. MME’s

penalty is, however, sensitive to L2 size in applications such as FFT, hmmer,

libquantum, and lbm, where performance penalty is still less than 5% except

hmmer with 2MB. Compared to MME, ECC FIFO is insensitive to L2 size

since the T2EC management bypasses the LLC.

In addition, we evaluated MME and ECC FIFO varying many system

parameters: different eager write-back periods, an in-order core, and different

L1 sizes. MME and ECC FIFO’s performance degradation is consistently

low (less than 2%) across all different configurations, showing that MME and

ECC FIFO are not sensitive to system parameters.
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Figure 4.21: LLC miss rate overhead in MME normalized to the miss rate of
the baseline

4.5.2.2 Impact of MME on LLC behavior

In this subsection, we analyze the impact of MME on the behavior of

the LLC. Note that ECC FIFO bypasses the LLC to access T2EC information,

and thus does not change the caching behavior and only impacts the operation

of DRAM system.

Figure 4.21 shows that the sharing of LLC resources between T2EC

information and data does not significantly impact the LLC data miss rate,

which on average increases by only 2% and no more than 11% (bzip2).

Figure 4.22 illustrates the dynamic adjustment of T2EC lines to the

number of LLC dirty lines in the FFT and OCEAN applications. In FFT, we

can see the spatial locality of placing multiple T2EC words in a single cache

line. Even as the number of dirty lines changes, there is no need to allocate

additional cache lines for T2EC information. OCEAN demonstrates how MME

transparently adjusts to the rapid changes in the number of dirty lines in the

LLC.
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(a) FFT (b) OCEAN

Figure 4.22: Fraction of dirty and T2EC cache lines over time.
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Figure 4.23: Average fraction of T2EC cache lines in the LLC.

Figure 4.23 shows that the average fraction of the LLC that is occupied

by T2EC lines is roughly 10%. It is possible that we can reduce the total

number of T2EC lines by changing the cache policy for T2EC lines, such as

inserting T2EC lines in the least recently used (LRU) position. We do not

pursue such techniques in this dissertation because the performance overheads

of MME are already low.
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Figure 4.24: T2EC miss rate.

Figure 4.24 presents T2EC miss rate; the fraction of accesses to T2EC

data not found in the LLC. T2EC fetch is the rate of T2EC fetches from

DRAM and T2EC allocate is the fraction of fetches avoided when all addresses

that map to the T2EC lines are clean (see Figure 4.3(b)). Note that nearly all

T2EC fetches from DRAM are avoided on average. The low actual T2EC miss

rate (T2EC fetch), less than 0.5% on average, indicates that T2EC caching

effectively captures the locality of T2EC accesses.

4.5.2.3 Impact on LLC power

Figure 4.25 compares LLC power consumption of the baseline (S and

D) and various coding schemes (PS, PN, PB, and SD) of MME and ECC FIFO

estimated using CACTI 5 [119] for the cache parameters in Table 4.4 in 45nm

process technology. In MME, PS saves 8.6% of LLC power consumption com-

pared to S, while SD, PN, and PB consume 10.5%, 15.2%, and 17.5% less

power than D, respectively. ECC FIFO achieves similar gains: PS saves 9.2%

over S, SD, PN, and PB consume 11.1%, 15.8%, and 18.1% less than D, respec-
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Figure 4.25: LLC power consumption estimated using CACTI 5 for a 8-way
1MB LLC with 64B cache line.

tively. MME’s power consumption is slightly higher than that of ECC FIFO

since MME accesses the LLC to manage T2EC while ECC FIFO writes T2EC

directly to the FIFO in memory via the coalesce buffer, leading more traffic

increases as described in Section 4.5.2.4. Note that PS and SD provide similar

error protection as S and D, respectively, and PN and PB can protect against

even longer error bursts, even compared to D.

4.5.2.4 Impact on DRAM Traffic

Figure 4.26 shows the total DRAM traffic broken down into compo-

nents of data reads and writes of LLC lines (DRAM Rd and DRAM Wr),

eager write-backs of cache liens (eager write-back), MAXn writes for clean-

ing lines (Cleaning), and T2EC traffic of MME and ECC FIFO (T2EC Rd
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and T2EC Wr). Although MAXn does not increase overall memory traffic

by much in most cases, the type of traffic and its timing differ significantly

from the baseline. Unlike eager write-back traffic, which is scheduled during

idle DRAM period [69], MAXn’s cleaning writes compete with demand fetches

and degrade performance as shown in Figure 4.18. Compared to the baseline,

MME increases memory traffic by 2% and ECC FIFO increases by 9% on av-

erage. MME’s low impact on memory traffic is because it takes advantage of

locality in T2EC access by caching T2EC information. The relatively large

traffic increase in ECC FIFO is, however, not critical to performance in that

T2EC write-back is one-way traffic and can be scheduled during idle DRAM

period.

4.5.2.5 Impact on DRAM Power

Although MME and ECC FIFO only marginally increase DRAM traf-

fic, the increase in DRAM power consumption may cancel out MME and

ECC FIFO’s LLC power savings. To measure the actual DRAM power con-

sumption in MME and ECC FIFO, we use a power model developed by Mi-

cron Corporation [6] that is embedded within DRAMsim. Figure 4.27 presents

DRAM power consumption of baseline, MME, and ECC FIFO. On average,

MME only increases DRAM power consumption by 40 mW (2.8%); this is

much lower than MME’s LLC power saving (147 mW in PS compared to S).

In ECC FIFO, the increase in DRAM power (143 mW) is comparable to LLC

power saving (152 mW in PS compared to S). ECC FIFO’s LLC power savings,

81



0

10

20

30

40

50

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

CHOLESKY FFT OCEAN RADIX canneal dedup fluidanimate freqmine

SPLASH2 PARSEC

R
e

q
u

e
s
t 
p

e
r
 t
h

o
u

s
a
n

d
 i
n

s
tr

u
c
ti
o

n
s

T2EC Rd/Wr
Cleaning
eager write-back
DRAM Wr
DRAM Rd

(a) SPLASH2 and PARSEC

0

10

20

30

40

50

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

B
a
s
e

M
A

X
1

M
A

X
2

M
A

X
4

M
M

E

E
C

C
 F

IF
O

bzip2 mcf hmmer libquantum omnetpp milc lbm sphinx3

SPEC 2006

(b) SPEC CPU 2006

Figure 4.26: DRAM traffic comparison.

however, are much larger than DRAM power increase in other configurations:

331 mW in PN, 293 mW in PB, and 206 mW in SD compared to D. In addition,

recent systems have even larger LLC size (e.g., 24MB); MME and ECC FIFO

can potentially achieve much more power savings.

4.5.2.6 Multi-Core Considerations

We have so far discussed and evaluated MME and ECC FIFO in the

context of a single core and now briefly discuss multi-core and multi-processor
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Figure 4.27: DRAM power consumption in Baseline, MME, and ECC FIFO.

implications. Both MME and ECC FIFO are easily integrated with any cache

coherence mechanisms because the T2EC region of MME and T2EC FIFO in

ECC FIFO are fixed and inherently private; the mapping is between phys-

ical cache lines and physical memory. A potential problem with MME and

ECC FIFO is that the increased traffic due to T2EC accesses can hurt perfor-

mance given the relatively lower memory bandwidth per core of a multi-core

processor. We evaluate MME and ECC FIFO in a system with low DRAM

bandwidth of only 2.667GB/s, which is half the bandwidth of the baseline sys-

tem. As Figure 4.28 shows, the relative performance of MME and ECC FIFO is

not sensitive to memory bandwidth. Compared to MME, ECC FIFO is slightly

more degraded with the lower memory bandwidth; it is due to ECC FIFO’s

increase in traffic, whereas MME takes advantage of locality in T2EC accesses

by caching it.
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Figure 4.28: Normalized execution time (2.667 GB/s DRAM BW).

4.5.2.7 Larger LLC with MME and ECC FIFO

Our evaluation of MME and ECC FIFO assume the same LLC capac-

ity across all configurations, showing LLC area and power savings. We can,

however, design a larger LLC using the saved area in MME and ECC FIFO.

Though it is not a fair comparison (neither same area nor same power bud-

get), we evaluate MME and ECC FIFO with a 9-way set associative 1.1MB

LLC. This LLC, 10% increase in data capacity, requires comparable on-chip

area, though not exactly same, to the baseline with uniform ECC. Most ap-

plications are not sensitive to this 10% increase in LLC size; hence, MME and

ECC FIFO with the larger LLC perform only slightly better than those with

1MB LLC, but the performance of mcf is improved by more than 2%, even

compared to the baseline with 1MB LLC. We believe that the saved on-chip

area in MME and ECC FIFO, especially in a system with a large LLC, can

give more opportunity to improve overall system energy efficiency.
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4.5.3 PIN-based Emulation

Full-system cycle-based simulations can provide accurate performance

prediction and measurements, but are very slow, limiting the number and

lengths of experiments. Hence, we simulated small to medium problem sets

with the SPLASH2 and PARSEC benchmarks, and only representative re-

gions of SPEC applications. To understand how larger datasets affect MME

and ECC FIFO, we use PIN [77] to qualitatively evaluate LLC behavior for

applications with larger datasets: tk29.O for CHOLESKY; 4M samples for FFT;

a 1026×1026 grid for OCEAN; 8M samples for RADIX; the simlarge inputs for

all the PARSEC applications; and the complete SPEC CPU 2006 application

runs. We implement eager write-back, MAXn, MME, and ECC FIFO schemes

in a two-level cache hierarchy PIN tool. Note that our PIN-based emulation

is only used to collect statistics on LLC behavior and does not utilize a timing

model, an instruction cache, stall and re-try due to finite resources such as

MSHRs, or a DRAM model.

The results are presented in Figure 4.29 and follow similar trends to

those seen with cycle-based simulation (Figure 4.26). The most significant

difference is that the traffic overhead of MME is smaller when larger datasets

are used, and we expect to have an even smaller performance degradation

than the 0.7% average experienced with small datasets (Section 4.5.2.1). We

repeated the experiments, while changing the LLC size between 1 − 16MB,

and the results and trends are similar to those reported in Figure 4.29.
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Figure 4.29: PIN-based emulation.

4.6 Related Work

Prior work on reducing on-chip ECC overhead generally breaks the

assumption of uniform protection of all cache lines and either sacrifices pro-

tection capabilities, when compared to uniform ECC protection, or utilizes

different mechanisms to protect clean and dirty cache lines.

Parity caching [65] compromises error protection to reduce area and

energy costs of ECC by only protecting most recently used cache lines in every
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cache set. Selective data protection [70] implements two cache arrays: one

array uses uniform ECC and stores critical data; and the other one, without

ECC, is for non-critical data. Another scheme in this first category is In-

Cache Replication (ICR) [138]. ICR increases error protection for a subset of

all cache lines, which are accessed frequently, by storing their replicas in place

of cache lines that are predicted to be “dead” and no longer required. Not all

cache lines are replicated leading to a potentially higher uncorrectable error

rate than with the baseline uniform ECC.

An approach to save energy and latency rather than area was proposed

in Punctured ECC Recovery Cache (PERC) [99]. The PERC architecture

decouples error detection from error correction and utilizes a low-latency and

low-cost parity for reading, while traditional ECC is computed and stored on

every write. A similar idea was taken further in [71], where the SEC ECC

portion of clean cache lines is power-gated to reduce leakage power, leaving

only parity active.

The area efficient scheme [64] is a method to decrease area in addition

to energy by trading-off performance. The idea is to allow only one dirty cache

line per set in a 4-way set associative cache. If a larger number of lines in a

set require ECC (more than one dirty line), a write-back is forced to make

space for the new ECC. In our experiments that accurately model the DRAM

system (Section 4.5), we found that this additional memory write traffic can

significantly degrade performance. The performance impact can be reduced

at an area and energy cost if more ECC-capable lines are provided in each
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set. We refer to this generalization scheme where n lines per set have ECC as

MAXn.

Other work proposes a fully-associative replication cache (R-Cache)

that utilizes replication to provide error protection [137]. The R-Cache, how-

ever, increases energy consumption and can be used only with small L1 caches

due to its fully associative structure.

Multi-bit tolerating 2D error coding [63] extends 2-dimensional parity

checking [28, 62] and can tolerate multi-bit errors in a scalable way. Interleav-

ing horizontal and vertical parity codes together provides higher error protec-

tion with only a modest increase in ECC storage. 2D coding, however, forces

every write being read-modify-write.

In recently proposed low-VCC caches, tolerating multi-bit errors is much

more important. Word disabling and bit fix [127] trade off cache capacity for

reliabilty in low-VCC operation. These techniques result in 50% and 25%

capacity reductions, respectively. Multi-bit Segmented ECC (MS-ECC) [35]

uses Orthogonal Latin Square Codes (OLSC) [54] that can tolerate both faulty

bits in low-VCC and soft errors, sacrificing 50% of cache capacity. Other re-

search [10] studies performance predictibility of low-VCC cache designs using

subblock disabling.

Finally, eager write-back is proposed as a way to improve DRAM band-

width utilization [69]. It eagerly writes dirty cache lines back to DRAM so

that dirty evictions do not contend with demand fetches. Many cache relia-
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bility studies (e.g., [64, 71]), including ours, use eager write-back as a way to

reduce the average number of dirty cache lines in the LLC.

4.7 Summary

This chapter presents novel architectures, Memory Mapped ECC and

ECC FIFO, that provide strong error protection for a last-level cache with

minimal hardware and performance overheads. Both architectures leverage

two-tiered error protection that minimizes the need to dedicate SRAM re-

sources to maintain ECC information by off-loading the overhead of strong

ECC codes to memory namespace, achieving both low cost and high reliabil-

ity in an LLC.

MME places T2EC information within the memory hierarchy and re-

using existing cache storage and control, while ECC FIFO uses a simple FIFO

structure that does not affect LLC caching behavior. With the minimized

dedicated on-chip ECC storage, both the leakage power and energy per access

are reduced leading 9− 18% LLC power reduction in addition to 15− 25% of

area saving, while performance is degraded only by 0.7% in both MME and

ECC FIFO on average and no more than 2.8% (MME) and 2.3% (ECC FIFO).

We have also shown that the probability of T2EC unprotected due to FIFO

overwrite in ECC FIFO can be managed to be very small with a reasonably

sized FIFO.
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Chapter 5

Flexible Main Memory Protection

Applications in all computing segments require ever-larger main mem-

ory capacities, which increases the cost of memory systems. This is particularly

true for commercial servers, supercomputers, and other shared environments.

One aspect that drives the cost up is the need to tolerate errors and faults in

DRAM with minimal impact on performance, efficiency, and availability. Re-

cent trends show an increased relative likelihood of entire DRAM chips mal-

functioning [38, 101], which necessitates more stringent protection than just

tolerating single-bit errors, as discussed in Chapter 2. To make matters worse,

this stringent protection is needed in systems that are increasingly sensitive

to energy and cost, such as large-scale servers.

In this chapter, we explore cooperative operating-system and hardware

techniques that maintain or improve current error tolerance levels, while re-

ducing cost and energy. We propose Virtualized ECC (V-ECC) [133, 134] that

virtualizes the storage of redundant information, using mechanisms that are

similar to virtual memory management [105]. We explore mappings in which

some or all of the redundant information shares the same physical address

space as the data it protects. This approach gives us great flexibility in ac-
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cessing and manipulating ECC information and enables a single system design

to be tuned and adapted to a particular usage scenario, or even a particular

application or data array.

To demonstrate the potential of the V-ECC approach, we describe

schemes ranging from low-cost protection, which uses Non-ECC DIMMs, up

to double chipkill-correct techniques for high-availability systems. We also

show how ECC virtualization enables us to maintain protection capability even

when varying the DRAM configuration between ×4, ×8, and ×16 chips. We

evaluate each configuration in detail and discuss its impact on performance

and improvements in power consumption and energy-delay product (EDP).

Performance is degraded because effective data bandwidth is lower when the

same pins are shared to transfer both data and redundant information. Our

evaluation uses applications from the SPEC CPU 2006 [109] and PARSEC

suites [21] that have high memory access demands, as well as targeted micro-

benchmarks. V-ECC with ECC DIMMs improves system EDP by 12%, and

the performance is hardly impacted, dropping by only 1 − 2%. V-ECC with

Non-ECC DIMMs, on the other hand, degrades performance by 3 − 9% on

average and no more than 10 − 24%, while improving system EDP by up to

12% when using ×8 and ×16 DRAMs.

The remainder of this chapter is organized as follows: Section 5.1 devel-

ops the V-ECC architecture, Section 5.2 presents evaluation results, Section 5.3

describes related work, and Section 5.4 summarizes this chapter.
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5.1 V-ECC Architecture

The main innovation of V-ECC is that it allows great flexibility in

choosing the protection method and level, even dynamically. The idea is to

enable the tuning of the protection scheme based on the needs of a specific

system configuration, changes in environmental conditions, or potentially dif-

ferent requirements of different applications or data. V-ECC offers an oppor-

tunity to tailor memory protection levels and avoid the need to uniformly pay

the overhead for worst-case scenarios [126]. We start by giving a high-level

overview and then go into the details of the various components, including

the interaction with the cache hierarchy (Section 5.1.1), examples of possible

protection techniques (Section 5.1.2), and the OS virtual memory interface

(Section 5.1.3).

There are two basic mechanisms underlying V-ECC: an augmented vir-

tual memory (VM) interface that allows a separate virtual-to-physical mapping

for data and for its associated redundant ECC information; and a generaliza-

tion of DRAM ECC into a two-tiered protection mechanism that is explained

in Section 3.1; a tier-one error code (T1EC) is used to detect errors on ev-

ery access and a tier-two error code (T2EC) is only needed when an error is

actually detected [99, 131, 132]. Figure 5.1 compares traditional VM, with its

fixed relation between data and ECC, and the decoupled two-tier approach of

V-ECC. Traditional VM (Figure 5.1(a)) translates a virtual address from the

application namespace to a physical address in DRAM. A DRAM access then
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Figure 5.1: High-level view of memory accesses in a conventional virtual
memory with uniform ECC, and V-ECC with a two-tiered flexible protection
scheme.

retrieves or writes both the data and the ECC information, which is stored

aligned with the data in the dedicated ECC DRAM chips.

Figure 5.1(b) gives an example of a flexible mapping enabled by V-ECC,

in which a portion of the redundant information, the T1EC, is aligned with

the data, but the T2EC part is mapped to a different physical address that

shares the same namespace and storage devices as the data. The OS and hard-

ware memory management unit (MMU), maintain the pair of mappings and

ensure that data and ECC are always matched and up to date (Section 5.1.3).

Thus, less total data is accessed on a read in V-ECC than in the conventional

approach, because T2EC is only touched on the very rare event of an error.

Data writes, however, may have higher overhead in V-ECC, because

the ECC data needs to be updated; hence, requiring a second DRAM access,

and the reduced system cost comes at a potential performance overhead. To
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mitigate this detrimental effect, we propose to utilize the processor cache to

reduce the amount of ECC traffic and discuss this in detail in the following

subsection. Another advantage of the decoupled mapping and two-tiered ap-

proach is that different memory pages can have different protection types. For

example, clean pages do not require any T2EC storage, and thus the over-

all degree of redundancy in the memory system can be adjusted dynamically,

increasing the effective memory capacity.

5.1.1 Cache-DRAM Interface

The cache filters requests from the core to the DRAM system and can

also help in improving the performance of V-ECC. Because we store redun-

dant information in the same physical namespace as data, we can cache ECC

information on the chip and improve ECC access bandwidth using the same

principles that make caches advantageous for data.

Unlike application data, however, ECC is only accessed by the memory

controller when it needs to address off-chip DRAM and is not shared among

multiple processor cores. Thus, the redundant information is stored in the

cache level to which the memory controller has direct access – the last-level

cache (LLC) bank to which it is attached. Because of this arrangement, ECC

information does not participate in any coherence protocol and is kept up to

date by the memory controller.

V-ECC does not require significant changes from the existing cache

interface, with the additional hardware being the ECC address translation
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Figure 5.2: Operations of DRAM and LLC for accessing a two-tiered V-ECC
configuration.

unit (described in Section 5.1.3) and the ability to maintain and write back

partially valid cache lines. The latter property is necessary because the cache

has up to date ECC information only for data that is generated on-chip (in two-

tiered V-ECC). We describe this property in greater detail below and address

the different operations needed for two-tiered protection and for implementing

ECC with Non-ECC DIMMs.

5.1.1.1 Two-Tiered V-ECC

Figure 5.2 shows our two-tiered V-ECC on top of a generic memory

system configuration with a last-level cache connected to two ranks of DRAM

with dedicated ECC chips. We use ECC chips to store a T1EC code, which can

detect all errors of interest, but cannot correct them without the additional
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information of the T2EC. The T2EC is mapped to the data DRAM chips such

that data and its associated T2EC are in two different DRAM ranks.

Circled numbers in the text below refer to operations shown in Fig-

ure 5.2. Handling a fill into the LLC on a cache miss follows the same

operations as in a conventional system; a data burst and its aligned T1EC

are fetched from main memory, and error detection is carried out ( 1©). The

difference from a conventional system is that any detected errors cannot be

immediately corrected.

Evicting a dirty line and writing it back to DRAM ( 2©), however, re-

quires additional operations when compared to a conventional hierarchy. The

memory controller must update the T2EC information associated with the

evicted line, which starts with translating the data address to the location of

the ECC address (EA) ( 3© and 4©). If the translated EA is already in the

LLC, it is simply updated in place. 1 Otherwise, we allocate an LLC line

to hold the T2EC. We do not need to fetch any information from memory,

because T2EC is only read when an error is detected. Any writes, render the

prior information obsolete; thus, we compute the new T2EC and write into the

LLC along with a mask that indicates what portion of the LLC line contains

valid T2EC information.

1This requires a partial write to a LLC line. If the LLC is a sector cache [75], updating a
part of an LLC line is inherently supported. Otherwise, we can either perform read-modify-
write operations or modify the LLC to support partial writes.
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As we explain later, our coding schemes use T2ECs that are 16 − 128

bits long, and thus require very few additional valid bits. Depending on the

exact ECC used to protect the LLC itself, it may even be possible to re-purpose

the LLC ECC bits to store the valid mask. We can ignore errors in a T2EC

line in the LLC because there is no need to add a third level of redundancy and

protect T2EC information from errors. The errors on the valid mask can be

tolerated by the ECC for tag and meta-data (valid, dirty, and other bits). This

mask is used when a T2EC LLC line is evicted back to DRAM ( 5©) as invalid

portions of the line must not overwrite T2EC data in DRAM. To do so, we

extend each MSHR entry with a valid bit vector, which the DRAM controller

uses for communicating the write mask to the DRAM chips [111, 112].

When an error is detected by T1EC, which can only happen upon a

read, the correction is carried out using the corresponding T2EC. If the T2EC

is not in the cache, correction requires an additional DRAM access to fetch

the redundant information. The additional latency, however, does not impact

performance because errors in a particular memory channel are very rare. We

can also employ, rather complex, software error correction handlers.

Very frequent errors indicate a hard-fault and can be mitigated by data

migration, as suggested by Slayman [107].

5.1.1.2 V-ECC Interface with Non-ECC DIMMs

Even if physical memory does not provide ECC storage, we can use

V-ECC to protect memory against errors. In the Non-ECC DIMM configura-
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Figure 5.3: Operations of DRAM and LLC for accessing V-ECC in a Non-ECC
DIMM configuration.

tion, we cannot store an aligned T1EC and, instead, place all the redundant

information in the virtualized T2EC (we still refer to this as T2EC to keep

the notation consistent).

The cache and memory behavior for this scheme is shown in Figure 5.3

which the circled numbers below refer to. When data is read from main mem-

ory ( 1©), we use the ECC address translation unit to find its EA ( 2© and

3©). A T2EC LLC miss will fetch the T2EC from main memory ( 4©), because

without ECC DIMMs, the information is required to detect errors and not just

for correction. Unlike the two-tiered scenario, we fetch an entire cache-line’s

worth of T2EC data on a miss to amortize the DRAM access, and expect spa-

tial locality to reduce the cost of following memory accesses. We only return

data to the cache controller after the ECC information is fetched and the data
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is verified.2 On a dirty write-back ( 5©), the PA is translated to an EA ( 6© and

7©), and a T2EC is fetched from main memory if the EA is not already cached

( 8©), again, expecting spatial locality to amortize this access cost.

5.1.2 V-ECC Protection Schemes

We now discuss possible DRAM configurations for V-ECC, assuming

a memory system that is representative of servers that require chipkill-correct

level protection. The baseline memory system is composed of a 128-bit wide

DDR2 DRAM channel with an additional 16 bits of dedicated ECC as de-

scribed in Chapter 2. We use DDR2 in this study because of a readily

available power model [123]. Our techniques work as well, or better, with

DDR3 [112] because it uses longer bursts and limits use of traditional chipkill

techniques [13].

In the rest of this subsection we describe memory protection mecha-

nisms that are enabled by V-ECC, which maintain the storage overhead and

access granularity of chipkill and can even increase protection guarantees.

5.1.2.1 V-ECC with ECC DIMMs

While traditional chipkill-correct uses a 4-check-symbol code as ex-

plained in Chapter 2, V-ECC, with two tiered protection and T2EC storage

virtualization, enables a more efficient 3-check-symbol code [34]. In two-tiered

2Speculative data forwarding is possible, but did not significantly improve performance
in our experiments as shown in Section 5.2.2.3.
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error protection, the first two check symbols of the 3-check-symbol code con-

struct a T1EC that can detect up to 2 symbol errors, while the T2EC is the

third check symbol of the 3-check-symbol code. If the T1EC detects a single

symbol error, it is corrected using all 3 check symbols of both tiers. Our scheme

uses 8-bit symbols for ×4 and ×8 DRAM configurations and 16-bit symbols

with ×16 chips (alternatively, we can use a 2-way interleaved 8-bit symbol

ECC to reduce the complexity of GF(216) arithmetic). In the ×4 system, we

use two consecutive transfers of 128 bits so that we have an 8-bit symbol from

each DRAM chip for the 8-bit symbol based ECC code. This effective 256-bit

access does not actually change the DRAM access granularity, which is still

64B as in the baseline DDR2-based chipkill system.

The other key point is to use V-ECC to reduce the system cost, or

to increase error tolerance to two malfunctioning chips, rather than just one.

We describe these mechanisms for ×4 and ×8 configurations below, and dis-

cuss ×16 cases in the next subsection. The configurations are summarized

in Table 5.1, which also presents the details of the baseline chipkill technique

and mechanisms that rely on modified DIMMs and higher-overhead codes to

improve access granularity and power [13].

ECC ×4 uses ×4 chips, but utilizes the two-tiered approach to improve

energy efficiency. We store two 8-bit check symbols in 2 ECC DRAM chips

(in an ECC DIMM) that serve as a T1EC that can detect chip errors (up to

3Non-ECC configurations of V-ECC cannot detect 2 chip failures.
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Table 5.1: DRAM configurations for chipkill-correct of the baseline system,
MC-DIMMs that are non-standard DIMMs introduced in [13] to improve
DRAM power consumption, and V-ECC.3

DRAM
# Data # ECC

Rank
T2EC access

T2EC per
type

DRAMs DRAMs
organization on read on write cache line

per rank per rank

Baseline Chipkill Correct
Baseline x4 ×4 32 4 2 ECC DIMMs N N N/A

MC-DIMM [13] with 128bit channel and 4 rank subsets
MC-DIMM x4 ×4 32 12 2 MC-DIMMs N N N/A
MC-DIMM x8 ×8 16 12 2 MC-DIMMs N N N/A
MC-DIMM x16 ×16 8 12 2 MC-DIMMs N N N/A

V-ECC

ECC ×4 ×4 32 2
1 ECC DIMM and

N Y 2B
1 Non-ECC DIMM

ECC ×8 ×8 16 2 2 ECC DIMMs N Y 4B
Non-ECC ×4 ×4 32 N/A 2 Non-ECC DIMMs Y Y 4B
Non-ECC ×8 ×8 16 N/A 2 Non-ECC DIMMs Y Y 8B
Non-ECC ×16 ×16 8 N/A 2 Non-ECC DIMMs Y Y 16B

2 chip failures). The third check symbol is the T2EC, which is stored in the

data chips.4 Thus, ECC ×4 only requires 2 ECC chips instead of the 4 chips

of the conventional approach, saving 8 pins and associated costs of storage,

power, and bandwidth.

ECC×8 is an efficient scheme for chipkill protection using ECC DIMMs

with ×8 chips. We use the two ECC chips in a rank for the 2-symbol T1EC

and store the third check symbol in data memory as the T2EC. Thus we

access 16 ×8 data chips and two additional ECC chips on every read, for the

same 64-byte access granularity and redundancy overhead of the conventional

chipkill approach. Without virtualizing T2EC, an additional DRAM chip to

hold the third symbol would be touched on every access, increasing power and

4We omit the full details of the error correction coding scheme, such as the parity check
matrix and syndrome description
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pin requirements and redundancy to a fixed 18.5% [13], as well as requiring

non-standard DIMMs.

The above two-tier chipkill schemes can further be extended by adding a

second check symbol to T2EC; if T1EC detects two chip errors (two erroneous

symbols) the combined 4 check symbols from both tiers can be used to tolerate

two bad chips. The details of this approach are summarized in the double-

chipkill column of Table 5.2). While two simultaneous bad chips are unlikely

today, future energy-saving techniques may require such a protection level

because of the following two trends: Transient errors that manifest as dead

chips are growing in likelihood [38]; and energy-efficient server systems that

increasingly operate with narrower noise margins due to reduced cooling and

voltage levels.

5.1.2.2 V-ECC with Non-ECC DIMMs

Another advantage of V-ECC is the ability to add ECC protection to

systems that use Non-ECC DIMMs. We suggest schemes that are based on

a 2-check-symbol Reed Solomon (RS) code [94], which can detect and correct

one symbol error – in our case, a code that can tolerate any number of bit

errors as long as they are confined to a single chip.

The details for this type of scheme using ×4, ×8, and ×16 DRAM chips

are also summarized in Table 5.1. All three Non-ECC DIMM configurations

have the same protection capability, but the access properties differ. The

wider symbols needed for ×16 DRAMs imply that fewer T2EC words fit into
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Table 5.2: V-ECC configurations for flexible protection achieved by varying
T2EC size.5

T2EC size
No chipkill chipkill double-chipkill
Protection detect correct correct

ECC ×4 N/A 0B 2B 4B
ECC ×8 N/A 0B 4B 8B
Non-ECC ×4 0B 2B 4B 8B
Non-ECC ×8 0B 4B 8B 16B
Non-ECC ×16 0B 8B 16B 32B

an LLC line. Recall that unlike the two-tiered techniques with ECC DIMMs,

both LLC write-backs and demand fetches require the DRAM controller to

access both the data in DRAM and the T2EC information to perform error

checking and correcting. The T2EC is cached and may not require a second

DRAM access, but the different symbol widths used result in different caching

behavior (see Section 5.2.2.1).

5.1.2.3 Flexible Protection Mechanisms

An exciting feature of V-ECC is that it enables flexibility in choosing

and adapting the error protection used based on dynamic application, user,

and system needs. A single hardware with virtualized T2EC can support

different levels of error tolerance by varying the T2EC size (Table 5.2). Sup-

porting flexible protection tuning requires that the memory controller be able

to compute and decode different codes, as well as a way to identify which ECC

technique to use for any given DRAM access. An elegant method to achieve

5Chipkill-detect and chipkill-correct can detect up to 2 chip failures in ECC configura-
tions, but they can detect only 1 chip failure in Non-ECC configurations.
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Figure 5.4: Adaptive protection example.

the latter is to augment the OS virtual memory page table and hardware TLB

to include protection information for each page.

Figure 5.4 illustrates an example of per-page adaptive protection with

V-ECC. A physical frame “x” is not associated with an ECC page; hence, we

can only detect errors in this page using the T1EC. Physical frames “y” and

“z”, on the other hand, are associated with ECC pages, and errors detected

by the T1EC can be corrected by using the T2EC. Furthermore, the physical

frame z is associated with stronger T2EC. This costs more storage and band-

width, but provides higher error tolerance level, double chipkill-correct. For

instance, we can only detect double chip-failures in physical frames y, but can

correct such failures in physical frame z.
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We do not explore the benefits of protection tuning in this dissertation,

but list two potential scenarios that we will explore in future work. The first

is an opportunity to reduce system power by protecting more critical data

with stronger codes and potentially leaving some data unprotected. Another

potential use is to adapt the protection level to changes in environmental

conditions, such as higher temperature or a higher energetic particle flux (while

in an airplane, or if the system is located at high altitude). V-ECC offers

opportunities for new tradeoffs, such as the double-chipkill technique described

above or reduced power consumption by turning ECC off.

5.1.3 Managing T2EC Storage in DRAM

In this subsection, we discuss how the OS manages T2EC storage in

DRAM and how ECC address translation is performed to retrieve the T2EC

associated with a particular address. We present a solution that is based on

current virtual memory approaches, but other alternatives are possible.

5.1.3.1 T2EC Allocation

Managing DRAM storage is the responsibility of the OS, and we extend

the OS memory manager to account for T2EC information as well. Any time

the OS allocates a new physical page, the OS also allocates a T2EC section

that is large enough to accommodate redundant information for the entire data

page. The size of this T2EC data depends on the protection configuration

chosen for the newly allocated page. Note that only dirty pages require T2EC
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storage in two-tiered protection, because clean pages can be recovered from

secondary storage if T1EC detects an error. Many modern OSs already only

allocate a physical page when the virtual page is first written (copy-on-write

allocation policy), and hence, will inherently only allocate T2EC for dirty

pages.

The T2EC allocation algorithm can follow the same approach as the

data memory allocator of the OS, such as using a slab or buddy allocator [105],

but at a finer granularity than data pages because the T2EC storage overhead

is a fraction of the data size. Within a T2EC section, EAs are mapped to

their associated data PAs such that two paired addresses are always on differ-

ent ranks. This level of mapping is handled by the memory controller when it

accesses T2EC data (see Section 5.1.3.2). Accounting T2EC increases the over-

head of allocating a physical page, but prior work has shown that augmenting a

copy-on-write allocator has negligible impact on application performance [12].

The OS is also responsible for freeing T2EC space when it is no longer

needed for data protection. This happens when a data page is freed by the

application or when a page is swapped out to secondary storage. For the

two-tiered schemes, T2EC can also be freed when a data page is preemp-

tively cleaned and written back to secondary storage even if it is still stored

in DRAM, because it is then inherently redundant in the system.

One caveat of storing T2EC information in data memory is that it

competes with data and decreases the effective memory capacity (albeit, while

reducing overall cost). This may impact application performance if the sharing
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Figure 5.5: PA to EA translation using a three-level hierarchical ECC table
mapping, similar to virtual memory address translation.

of space increases page replacement when the working set of applications is

large. A possible approach to mitigating this problem is to spill T2EC memory

sections to secondary storage to dynamically adjust the memory overhead of

ECC. Again, parallels to conventional virtual memory management can be

drawn, where data pages can be proactively cleaned and moved to secondary

storage. In this dissertation, however, we always maintain active T2EC data

in DRAM.

5.1.3.2 ECC Address translation

When the memory controller needs to access T2EC information, it

translates the data physical address (PA) into its associated T2EC ECC ad-

dress (EA). The translation requires information from the OS about the T2EC

mapping, and we follow the same techniques as virtual to physical address

translation. We maintain a PA to EA translation table in the OS in addition
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Figure 5.6: ECC address translation unit with a two-level EA translation
cache.

to the VA to PA page table. Figure 5.5 shows an example of a hierarchical

PA to EA translation table that uses the same translation scheme as an x86

virtual page table, where each translation entry points to the starting physical

address of the T2EC region associated with the data page.

It is also possible to use other translation structures such as those

suggested in prior work on maintaining memory metadata [128]. Note that

the OS only manages a single translation table because the translation is from

physical addresses. The hardware then computes an offset within the T2EC

region based on the T2EC size and rank interleaving.

To reduce the overhead of translations, we also employ a hierarchical

TLB-like acceleration structure in the ECC address translation unit, as shown

in Figure 5.6. The L1 EA cache is maintained with the processor’s TLB such
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that the EA translation entries are filled and evicted in conjunction with the

TLB. This guarantees that PA to EA translation on a read miss will always hit

in the L1 EA cache, because a VA to PA translation was performed to access

DRAM. Updating the EA cache increases the overhead of a TLB fill, because

a second page walk is required to fetch the EA translation information. This

overhead is small because of the low EA cache miss rate, which we report in

Section 5.2. Note that EA translation is only required when there is a miss in,

or write-back from, the LLC and is much less frequent than a virtual address

translation.

To reduce the overhead even further, a second level EA cache can be

used to store victim translation of L1 EA cache evictions. A write-back, in gen-

eral, does not have as much locality as read operations, but the L2 EA cache

can make the EA translation overhead trivial; write-back addresses had been

translated (VA to PA translation) so the EA translation entries for writes are

likely to be kept in either the L1 EA cache or a reasonably large L2 EA cache.

We evaluate the effectiveness of the TLB-like EA cache in Section 5.2.2.2.

The EA translation unit also contains MSHRs to allow concurrent overlap-

ping translations to occur. Both levels of translation cache need to support

invalidations from the OS when T2EC data is freed or re-mapped.

5.2 Evaluation

We evaluate V-ECC using a combination of detailed cycle-based simu-

lation to determine performance and power impact and the PIN binary instru-
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Table 5.3: Simulated system parameters.
Processor SPARC V9 ISA
Core 4-wide superscalar (2GHz)
L1 Cache split I/D caches

each 32KB
2-way set associative
64B cache lines
write-back
1 cycle latency

L2 Cache a unified 1MB cache
8-way set associative
L1 exclusive
64B cache lines
12 cycle latency

DRAM single-channel 4-rank DDR2 DRAM
800MHz 128-bit data bus (12.8GB/s)
16bit SSC-DSD ECC for ×4 chipkill correct
open page, Read and Instruction Fetch First
XOR based rank/bank interleaving [139] is used

mentation tool [77] to collect statistics on T2EC OS management and caching

behavior for applications with large datasets. For the cycle-based simulation,

we use the Simics full system simulator [78] with the GEMS [80] toolset: the

OPAL out-of-order processor model to simulate a SPARC V9 4-wide super-

scalar core and the Ruby two-level exclusive write-back cache hierarchy model.

We integrate DRAMsim [123] with GEMS to accurately account for the impact

of V-ECC on memory bandwidth, performance, and power. Table 5.3 describes

the baseline system configuration, which uses uniform ECC for chipkill-correct

with ×4 DRAMs (as explained in Chapter 2).

We estimate DRAM power consumption using a power model developed

by Micron Corporation [6] that is embedded within DRAMsim. For processor

power analysis, we use WATTCH [26] to model out-of-order processor energy

consumption. We use updated energy parameters to 45 nm technology based

on technology scaling rules. We also estimate processor power consumption
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Table 5.4: Application characteristics.

Application IPC MPKI
LLC Power consumption [W]
miss rate [%] Processor LLC DRAM Total

SPEC CPU

bzip2 1.9 1.1 25 15.4 1.3 8.3 25.0

2006

hmmer 2.0 0.9 14 14.5 1.3 7.9 23.9
mcf 0.4 18.5 32 3.5 1.3 11.3 16.1
libquantum 1.0 4.9 71 6.5 1.3 7.1 15.0
omnetpp 1.0 3.5 18 7.4 1.3 8.9 17.6
milc 1.0 3.2 68 8.6 1.3 8.3 18.1
lbm 0.6 8.0 56 5.8 1.3 10.0 17.0
sphinx3 0.7 4.4 47 7.4 1.3 8.2 16.9

PARSEC

canneal 0.4 13.2 72 3.8 1.3 11.1 16.3
dedup 1.6 0.5 4 11.0 1.3 7.5 19.9
fluidanimate 0.7 4.0 60 6.9 1.3 8.3 16.5
freqmine 1.8 1.3 24 12.5 1.3 8.0 21.8

Micro- STREAM 0.3 35.0 99 2.8 1.3 10.1 14.2
benchmarks GUPS 0.2 92.8 52 1.4 1.3 19.5 22.2

using IPC-based linear scaling of the maximum power consumption of a 45nm

Intel Xeon [68], as suggested in [13]. The estimates of the two power models

closely matched one another. Finally, we estimate cache power consumption

using CACTI 5 [119].

5.2.1 Workloads

We use a mix of several SPEC CPU 2006 [109] and PARSEC [21] appli-

cations, as well as the STREAM [82] and GUPS [42] micro-benchmarks. We

select only applications that stress the memory system and that are potentially

significantly impacted by V-ECC.

The STREAM micro-benchmark processes a 2M-element vector and per-

forms copy, scale, add, and triad operations on each element in sequence.

STREAM has very low temporal locality, but high spatial locality and is mem-

ory bound with little computation for every memory access. GUPS reads and
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performs a single addition to update distinct pseudo-random locations in a

64MB array of 64-bit numbers. We use 5120k updates when performing cycle-

based simulations and 16M updates when using PIN emulation. GUPS is even

more memory intensive than STREAM, and, in addition, has essentially no spa-

tial locality, intensely stressing the memory system.

For the SPEC CPU 2006 applications, we use the reference input dataset

and run cycle accurate simulations for 200M representative instructions, as in-

dicated by Simpoint [49], and run the applications to completion using PIN.

We use the simsmall dataset for the cycle-based simulations of PARSEC and

simlarge with PIN. We run all the PARSEC applications to completion using

a single thread. Table 5.4 summarizes the IPC, cache miss ratio, and power

consumption of the applications on the baseline system.

5.2.2 Results and Analysis

We present our analysis of V-ECC in four parts: the T2EC informa-

tion storage and translation management (Section 5.2.2.1–5.2.2.2), the overall

performance and energy impact for single chipkill ECC (Section 5.2.2.3); the

flexible reliability schemes (Section 5.2.2.4); and implications on multicore

processors that have a lower effective memory bandwidth for each core (Sec-

tion 5.2.2.5).
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Figure 5.7: Impact on the LLC: T2EC miss rate and occupancy in the LLC
as well as impact on application data miss rate.

5.2.2.1 V-ECC Storage Management

Maintaining T2EC information as data implies sharing storage resources

between application data and its ECC redundancy, impacting data caching be-

havior. Figure 5.7 shows the impact on caching of T2EC data, including the

average occupancy of T2EC in the LLC, the T2EC miss rate (T2EC accesses

that required a DRAM access), and the impact on data MPKI (misses per

thousand instructions). In general, T2EC miss rate and occupancy are di-

rectly proportional to the size of each T2EC (see Table 5.2). The greater the

number of T2ECs in an LLC line, the lower the impact on data cache miss

rate and memory traffic.

There is a significant difference in behavior between the configurations

that use ECC DIMMs (ECC ×4 and ECC ×8) and those that do not (Non-

ECC ×4, Non-ECC ×8, and Non-ECC ×16). With ECC DIMMs, T2EC

is only accessed on write-backs to DRAM and the redundant information in

the LLC is only maintained for dirty data. Without ECC DIMMs, T2EC
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Figure 5.8: Impact of V-ECC on DRAM traffic.

information is accessed on any DRAM read or write and T2EC LLC lines

are not partially valid. The impact can be seen in the higher LLC occupancy

required for T2EC with Non-ECC DIMMs, as well as in in the lower miss rate.

The miss rate is lower because more T2EC accesses are necessary to support

detection.

While T2EC data can occupy upwards of 50% of the LLC, its impact

on data caching behavior is not as severe. For most applications, MPKI is not

significantly affected. A few applications (bzip2, mcf, omnetpp, and canneal),

suffer an increase of up to 20% when ×16 DRAMs are used. The increase

in MPKI results in increased DRAM traffic, which also grows due to T2EC

accesses. The increase can be significant as shown in Figure 5.8, but as we

discuss in Section 5.2.2.3 and Section 5.2.2.5, impact on performance is not

severe and overall power consumption and energy-delay product are improved.

In addition, T2EC occupancy and miss rate/traffic increases are modest in

many configurations.
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5.2.2.2 V-ECC Translation Management

In this subsection, we use PIN [77] to estimate the overheads of address

translation and copy-on-write for T2EC physical memory allocation with large

datasets. We model a two-level ECC address translation cache as in Figure 5.6

with a fully associative 16 entry L1 cache (same size as the UltraSPARC-III

TLB [115]) and a 4K entry, 8-way set associative L2 translation cache. We

measured the EA translation cache miss rate relative to the number of dirty

LLC evictions (recall that a T2EC access on a memory read always hits in the

EA cache because it is coupled to the data TLB).

As shown in Table 5.5, most applications we evaluated have EA cache

miss rates that are lower than 1%. The exceptions to this low miss rate are

fluidanimate (5%), mcf (7%), omnetpp (50%), canneal (52%), and GUPS

(67%). More important than the actual miss rate is the frequency of misses

relative to program execution, or the EA translation cache misses per thousand

instructions (EA cache MPKI in Table 5.5), which are only significant in three

applications: omnetpp (3.7), canneal (3.0), and GUPS (12.6).

With the exception of the GUPS micro-benchmark, we expect that a

hardware page walk to fill translations will be able to support the rate of

translations necessary, and writing back ECC information does not impact

performance as long as write throughput is maintained; EA MSHRs in Fig-

ure 5.6 will allow non-blocking ECC address translation. For applications such

as GUPS, we propose to use coarser-grained allocation of T2EC ranges in mem-

ory, similarly to super- or huge-pages used to improve TLB performance of
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Table 5.5: EA translation cache behavior (KI: thousand instructions).

Application
EA cache Write-backs EA cache
miss rate [%] per KI MPKI

bzip2 0.06 1.9 0.001
hmmer 0.005 2.2 0.0001
mcf 6.5 9.6 0.62
libquantum 0.05 9.9 0.005
omnetpp 50.0 7.4 3.7
milc 0.7 7.0 0.05
lbm 0.0003 21.4 0.0006
sphinx3 0.00007 1.2 0.00000008
canneal 52.0 5.9 3.0
dedup 0.9 0.4 0.004
fluidanimate 5.2 0.5 0.02
freqmine 0.04 0.1 0.000005
STREAM 0.0 20.6 0
GUPS 67 18.8 12.6

virtual memory [117]. We will evaluate this approach in future work, and for

the performance analysis in the following subsections we roughly estimate for

translation overhead by doubling the data TLB miss penalty.

We also measured the frequency of copy-on-write (COW) exceptions

in our application benchmarks. On average, the COW rate is only 0.0001 for

every 1000 instructions, and not more than 0.05 for every 1000 instructions.

Because the frequency is so low, we did not perform a detailed performance

evaluation of the additional overhead for allocating T2EC storage and main-

taining the translation tables. Even an additional 10, 000 cycles for every

COW event would not significantly impact application run time. Note that

COW exceptions rarely access slow secondary storage, as most translation and

allocation data structures are resident in DRAM.
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Figure 5.9: Performance and system EDP for baseline and V-ECC chipkill
correct.

5.2.2.3 Chipkill Performance and Energy

Figure 5.9 presents the execution time and system energy-delay prod-

uct (EDP) of the V-ECC configurations described in Table 5.1, normalized

to those of the baseline ×4 chipkill-correct. For system EDP, we measured

system power consumption as the sum of processor core power, LLC power,

and DRAM power.

V-ECC with ECC DIMMs. V-ECC with ECC DIMMs has a very small

impact on performance. With the exception of canneal, which has 2% and 3%

lower performance with ECC ×4 and ECC ×8 respectively, all applications

have a lower than 0.5% performance difference. This very low performance

penalty is a result of the effective T2EC caching and the fact that the addi-

tional DRAM traffic is for writing out T2EC information and not on the com-

putation critical path. Even the very write-intensive GUPS micro-benchmark

that has no T2EC locality and very low arithmetic intensity only suffers a
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∼ 10% reduction in performance. ECC ×4, unfortunately, also has little im-

pact on EDP and only improves it by ∼ 1%. ECC ×8, however, shows a very

significant improvement in energy efficiency. DRAM power is reduced by an

average of almost 30% and EDP is improved by an average of 12%. EDP

improvement is very consistent using ×8 DRAMs, with only two outliers: mcf

and STREAM have a 20% and 18% improvement respectively. Both benchmarks

place significantly higher pressure on the memory system (see Table 5.4), and

thus benefit more from increased memory power efficiency. GUPS demands

even higher memory performance. While the EDP of GUPS is improved by

10% in ECC ×8 with more energy efficient ×8 DRAMs, it is degraded by 23%

in ECC ×4, mainly due to the increase in DRAM power consumption (7%).

Note that supporting chipkill with ×8 DRAMs in conventional systems is not

possible unless custom-designed DIMMs with higher redundancy or increased

access granularity are used.

V-ECC with Non-ECC DIMMs. V-ECC can also bring DRAM error

tolerance to systems that use Non-ECC DIMMs. The extra DRAM accesses

required for every read (and not just for writes) results in a larger impact on

performance. Even with this extra traffic, however, application performance

is degraded by 3%, 6%, and 9% using ×4, ×8, and ×16 chips, respectively,

on average. The ×4 configuration does not reduce power consumption by

much and the performance overhead leads to a 3% degradation in EDP. Wider

DRAM configurations, however, improve EDP by 5% (×8) and 12% (×16)

when compared to a standard chipkill configuration. In fact, only canneal
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Figure 5.10: Speculative data forwarding.

and GUPS have a relatively worse EDP with Non-ECC ×8 and Non-ECC ×16.

These two applications are memory bound and have random access patterns

that do not make effective use of T2EC caching. The other two bandwidth-

bound applications, mcf and STREAM, are not impacted as much. STREAM,

especially, shows the effectiveness of caching T2EC data as it has very high

spatial locality.

Speculative Data Forwarding. In V-ECC with Non-ECC DIMMs, we

assumed that the memory controller returns data to the cache controller only

when the virtualized T2EC is fetched and data is verified (lazy data forward-

ing). To mitigate the penalty with the virtualized T2EC, speculative data

forwarding is possible. We compare the lazy scheme and speculative data

forwarding in Figure 5.10. Speculative data forwarding provides better perfor-

mance than lazy data forwarding (2.3% less performance overhead on average)

This gain, however, comes at a cost of design complexity: speculative execu-
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Figure 5.11: V-ECC performance with varying LLC size.

tion using unverified values and roll-back mechanisms to recover the system

state when errors are detected.

Sensitivity to LLC size. Since V-ECC uses cache lines for storing the

virtualized T2EC, V-ECC affects LLC caching behavior as MME described

in Chapter 4. We evaluate V-ECC performance with varying LLC size from

256kB to 2MB and present how V-ECC is sensitive to LLC size in Figure 5.11.

The performance impact in V-ECC with ECC DIMMs is stable across the

simulated LLC sizes. In most applications (except canneal and fluidanimate

in Non-ECC ×16), V-ECC with Non-ECC DIMMs is not sensitive to LLC size;

performance penalty gradually decreases with larger LLC.

However, it is possible that V-ECC can drop performance significantly

at a certain LLC size (as MME shown in Chapter 4). When an application

has working set close to LLC size, the reduced effective LLC capacity due to

caching of the virtualized T2EC in V-ECC can increase LLC miss rate signifi-

cantly. An example is OCEAN (in SPLASH2 [129]) with a grid size of 258×258.
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Figure 5.12: V-ECC performance impact on OCEAN.

Figure 5.12 presents performance penalty in OCEAN (258×258), while varying

LLC size from 256kB to 2MB. Since OCEAN’s working set is close to 1MB,

V-ECC degrades performance significantly only at 1MB LLC. The penalty,

however, is very low in V-ECC with ECC DIMMs. Only V-ECC with Non-

ECC DIMMs show more than 4% drop in performance.

Impact on Performance with Error Correction. So far, we evaluated

V-ECC in error-free condition. In V-ECC with Non-ECC DIMMs, the memory

controller always fetches data and its associated ECC; hence, error correction

penalty is only additional cycles for invoking error correction steps, which is

relatively small compared to the long DRAM latency.

In V-ECC with ECC DIMMs, however, the T2EC is not fetched for

reads. Hence, error correction incurs fetching the virtualized T2EC from

memory. From the memory error propensity we describe in Chapter 2, SER in

DRAM is relatively low for processor execution so we can ignore the occasional

T2EC read penalty for error correction.
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As discussed in Section 5.1.1, frequent errors indicate a chip failure, and

we can use techniques such as dynamic data migration [107] for mitigating the

penalty with hard failures. On the other hand, the memory controller can

identify a faulty rank (after observing frequent errors) and fetch both data

and its associated T2EC simultaneously when accessing the faulty rank. In

this case, the performance of ECC ×4 and ECC ×8 will be similar to those of

Non-ECC ×4 and Non-ECC ×8, respectively.

5.2.2.4 Flexible Protection

As described in Section 5.1.2.3 the V-ECC architecture enables flexibil-

ity in choosing the error protection level based on dynamic application, user,

and system needs. To assess a new tradeoff that V-ECC enables, we evaluate

the effect of different T2EC sizes, which are summarized in Table 5.2.

Figure 5.13 presents the execution time and system EDP, normalized

to those of the baseline system, in ECC ×8, Non-ECC ×8, and Non-ECC

×16 varying T2EC error protection. As expected, increasing the protection

level increases EDP and execution time. The impact of adding the capability

to tolerate a second dead chip, however, has a fairly small overhead overall

when using ECC DIMMs (Figure 5.13(a)). Double chipkill-correct increases

execution time by 0.3% at most over single chipkill correct, and system EDP

is still 10− 20% better than with conventional ×4 chipkill.

If ECC DIMMs are not available, the overhead of improved protection

is more significant; Figure 5.13(b) and Figure 5.13(c) show the normalized
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Figure 5.13: Performance and system EDP while varying error tolerance lev-
els (execution time and system EDP are normalized to those of baseline ×4
chipkill).
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Table 5.6: Summary of flexible error protection with V-ECC.
Performance DRAM power System EDP
penalty reduction gain

ECC ×8
chipkill-detect 0% 29% 14.6%
chipkill-correct 0.7% 27.8% 12%
double chipkill-correct 1% 27.2% 11.2%

Non-ECC ×8

no protection 0% 37.1% 17.3%
chipkill-detect 3.4% 32.6% 10.4%
chipkill-correct 5.8% 30.1% 5.6%
double chipkill-correct 8.9% 26.7% −0.9%

Non-ECC ×16

no protection 0% 59.5% 27.8%
chipkill-detect 5.8% 53.4% 17.8%
chipkill-correct 8.9% 50.1% 46.2%
double chipkill-correct 12.8% 46.2% 4.9%

execution time and EDP of Non-ECC ×8 and Non-ECC ×16, respectively.

The overall system EDP is better than the baseline in all configurations, with

the exception of mcf, omnetpp, canneal, and GUPS. Note that the protection

method can be varied at a granularity of a single page, which can make the

options more attractive in an overall system design optimization process.

Table 5.6 summarizes the average performance penalty and DRAM

power/system EDP gains of ECC ×8, Non-ECC ×8, and Non-ECC ×16; ×4

configurations are omitted since they do not show much gain.

5.2.2.5 Implications on Multicore Processors

So far our design and evaluation have focused on a single-core system.

As described in Section 5.1.1, T2EC information is exclusively accessed by a

DRAM controller and not shared among multiple processor cores. Therefore,

it is easy to integrate V-ECC within a multiprocessor or multicore system. In

multicore systems, however, the increased traffic due to T2EC accesses and
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Figure 5.14: Performance and system EDP for ×8 V-ECC in a half-bandwidth
(6.4GB/s) multicore-like scenario.

reduced effective LLC size may be more detrimental to performance than in

a single core case because of the relatively lower per-core memory bandwidth.

We gauge the potential impact of the ×8 configurations of V-ECC on a mul-

ticore by simulating a single-core system with half the memory bandwidth

(6.4GB/s) and evaluate V-ECC in a 4-core CMP later.

The results of this reduced-bandwidth experiment are shown in Fig-

ure 5.14. The relative performance penalty of ECC ×8 and Non-ECC ×8

is only slightly worse than that of the full bandwidth system, and follows

the same trends and insights described before. One anomalous result can

be seen in libquantum, where Non-ECC ×8 slightly improves performance.

This anomaly is a result of changes in the timing of DRAM accesses. The

T2EC information in the LLC changes the eviction pattern that acts as an

eager write-back mechanism, which has been shown to improve performance

in some situations [69].
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Figure 5.15: 4-core system.

We also evaluate V-ECC in multi-core environments in Figure 5.15.

In this experiment, we use a 4-core CMP with a MESI directory protocol

and two 128-bit wide memory channels (with baseline chipkill), implement V-

ECC at LLC, and evaluate PARSEC applications with 4 threads. As shown

in Figure 5.15, V-ECC with wider DRAM configurations (×8 and ×16) shows

improved system energy efficiency and low performance penalty. The only

exception is canneal; as in single-core evaluation, V-ECC with Non-ECC

DIMMs degrades system EDP in canneal. Slightly improved performance

with V-ECC in some applications is due to the effect of eager write-back in

V-ECC.

5.3 Related Work

The proposed memory protection mechanisms build on a large body

of prior work, including general work on error coding [33, 34] and chipkill cor-

rect [15, 37, 116]. There has also been recent work on how to allocate redundant
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information across chips in a DRAM module in ways that account for modern

DRAM properties. One approach, like V-ECC, that uses the data chips to

also store redundant information is mentioned in [140]. The focus of the pa-

per was on reducing DRAM power consumption by modifying DIMM design

and enabling mini-ranks that only access a subset of the chips on a DIMM at

one time, and it included a suggestion for embedding redundancy uniformly

within the data DRAM chips. There are patents [36, 48] that describe a similar

concept of storing redundant information in data memory. This changes the

overall data layout and access properties, and its full impact on power, per-

formance, and strong chipkill protection has not been evaluated to the best of

our knowledge.

Similar to [140], MC-DIMMs [14] have also been suggested to subset

DIMM ranks and improve power consumption. As part of this work, tech-

niques to implement chipkill-correct with MC-DIMMs were developed [13].

These techniques, like the ones in Section 5.1.2, use 3-check-symbol SSC-DSD

chipkill-correct. The MC-DIMM approach uses uniform and fixed redundancy,

however, and requires dedicating one DRAM chip to each of the three check

symbols, which increases system cost. In our work, we focused on adding flex-

ibility to the design and on using standard DIMMs to support strong memory

error tolerance in efficient configurations.

Our research is also related to prior work that aims to reduce the over-

head of reliable execution by using non-uniform protection. The Duplication

Cache [12] can reduce the overhead of providing dual-modular redundancy for
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shared-memory multiprocessor reliable systems. Instead of replicating all of

memory, only dirty pages are replicated to increase effective capacity. The

duplication cache is implemented on top of the virtual memory interface and

copy-on-write exceptions to identify dirty pages. Our work is very different

and is able to reduce the overhead of all aspects of memory error tolerance

by extending ECC schemes to two tiers. Another non-uniform technique was

proposed for computation rather than the memory system. Mixed-Mode Mul-

ticore (MMM) Reliability [126] proposes a mechanism that enables different

reliability modes based on user demands; dual-modular redundant execution

for reliable programs or single-mode execution for high performance. MMM

emphasizes the need to provide flexible reliability modes in a system based on

user and environmental needs. We fully support this approach and comple-

ment prior work by introducing flexible memory error-tolerance schemes.

5.4 Summary

In this chapter, we present general mechanisms to virtualize ECC-based

memory error tolerance mechanisms. We show how V-ECC adds flexibility

to what until now has strictly been a design-time decision. Decoupling the

mapping of data from redundancy even allows systems with Non-ECC DIMMs

to tolerate potentially significant memory errors. The focus of this chapter

has been on developing the fundamental mechanisms and evaluating potential

ECC schemes that take advantage of V-ECC. We show promising results on

improving memory system efficiency with minimal impact to performance,

128



including examining near worst-case micro-benchmarks, which have very low

arithmetic intensity and are very demanding on the memory system. We

believe that the schemes we describe in this chapter are just the starting point

for opportunities to take advantage of dynamically tunable memory protection.

129



Chapter 6

Adaptive Granularity Memory Systems

The continuing improvements in device density and in the potential

performance of parallel processors place increased pressure on the through-

put, power consumption, and reliability of memory systems. With the very

high arithmetic throughput possible with modern processors, accessing off-

chip memory is often the performance bottleneck. Moreover, supporting a

large number of concurrent threads and applications requires higher memory

capacity. The power consumed by high-capacity memory can be a large frac-

tion of total system power [44]. Another issue with increased storage capacity

is that the likelihood of memory errors grows, necessitating sophisticated, and

often costly, error-tolerance mechanisms. The fundamental problem is that

systems require reliable high-capacity memory with high throughput and low

power all at the same time, while these parameters are often in conflict.

Memory systems often rely on spatial locality to reduce off-chip ac-

cesses and miss rate and to lower control and storage overheads. Usually,

caches and DRAM systems use coarse-grained accesses of 64 bytes or larger.

This conventional wisdom of amortizing overheads no longer leads to opti-

mal system tradeoffs. When spatial locality is insufficient, two key resources
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are squandered: Off-chip bandwidth is wasted, and unnecessary power is con-

sumed on fetching data that will not be referenced. Fine-grained memory

accesses used in some vector processors overcome these inefficiencies, but are

also sub-optimal because spatial locality is quite common and should be ex-

ploited. This is especially true for error-tolerant systems because providing

the same level of protection to fine-grained accesses requires more redundancy

than it does for coarse-grained accesses.

In this chapter, We present adaptive granularity [135] to combine the

best of fine-grained and coarse-grained memory accesses. We augment vir-

tual memory to allow each page to specify its preferred granularity of access

based on spatial locality and error-tolerance tradeoffs. We use sector caches

and sub-ranked memory systems to implement adaptive granularity. We also

show how to incorporate adaptive granularity into memory access scheduling.

We evaluate our architecture with and without ECC using memory intensive

benchmarks from the SPEC, Olden, PARSEC, SPLASH2, and HPCS bench-

mark suites and micro-benchmarks. The evaluation shows that performance is

improved by 61% without ECC and 44% with ECC in memory-intensive ap-

plications, while the reduction in memory power consumption (29% without

ECC and 14% with ECC) and traffic (78% without ECC and 68% with ECC)

is significant.

The remainder of this chapter is organized as follows: Section 6.1 de-

scribes a tradeoff between redundancy overhead and access granularity; Sec-

tion 6.2 presents the proposed adaptive granularity memory system; the eval-
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uation methodology is described in Section 6.3; the results and discussion

is shown in Section 6.4; Section 6.5 presents related work; then, Section 6.6

summarizes this chapter.

6.1 Error Protection and Access Granularity

In this section, we describe the tradeoff between redundancy overhead

and access granularity. The high density of DRAM coupled with the large

number of DRAM chips in many systems make memory one of the most sus-

ceptible components to errors and can reduce both the reliability and the

availability of the system [101]. The most effective method to improve relia-

bility is to tolerate errors using ECC codes [74, 100]. With ECC, every access

to memory is accompanied by an ECC operation to ensure that the access is

correct. One pertinent characteristic of commonly used ECC is that its over-

head grows sub-linearly with the size of the data it protects (O (log2 n), where

n is the size of the data) as discussed in Section 2.3. Therefore, coarse-grained

accesses can use more space-efficient codes that have lower redundancy, while

tolerating the same number of errors; the finer-grained the access, the larger

the overhead of ECC.

Moreover, since we cannot use an arbitrary width DRAM chip, the ac-

tual overhead in terms of chip count can be even larger. This ECC overhead

manifests itself in reduced storage efficiency (more DRAM chips for the same

data capacity) and lower effective pin bandwidth and power efficiency (more

pins and watts for the same data bandwidth). For example, typical overhead
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Figure 6.1: Tradeoff between access granularity and redundancy overheads.
White and gray boxes represent data and ECC blocks respectively assuming
a minimum access granularity of 8B (×8 DRAM chips and burst-8 accesses in
DDR3). The finer the granularity, the higher the overhead of redundancy.

with ECC DIMMs is 12.5% with 8 bits of ECC information for every 64 bits

of data (or a 16 bits of ECC for 128 bits of data). In Cray’s Black Widow [11],

many-narrow-channels memory subsystem (illustrated in Section 3.3.1) has

25% overhead: 7-bit SEC-DED for each 32 bits of data, but the actual over-

head is 8 bits when using ×8 DRAM chips. Furthermore, providing 8B access

granularity with DDR3 using the many-narrow-channels approach requires

100% ECC overhead (a 5-bit ECC provides SEC-DED protection for 8-bit

data, but we still need at least one ×8 DRAM chip to store ECC information,

resulting in 8 overhead bits per 8-bit of data) as well as additional control over-

head. Supporting ECC in a sub-ranked memory system is also very expensive:

MC-DIMM requires a 37.5% or higher ECC overhead for chipkill-correct [13],

for example. Figure 6.1 summarizes the tradeoff between access granularity

and storage efficiency.

In summary, neither a conventional coarse-grained memory system nor

a fine-grained memory system, including many-narrow-channels and sub-ranking
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schemes, can provide optimal throughput and efficiency. Optimizing the sys-

tem for coarse-grained accesses sacrifices throughput when spatial locality is

low, while tuning for fine-grained accesses makes the overheads of control

and/or ECC significant. Modern computing systems, however, require all

of these merits: high throughput both for coarse-grained and fine-grained ac-

cesses and high reliability and availability levels, and all of these at low power

and storage overheads.

6.2 Adaptive Granularity Memory System

We propose the adaptive granularity memory system (AGMS) that

combines the best of fine-grained and coarse-grained accesses. The main idea

is to use a coarse-grained configuration for memory regions with high spatial

locality and a fine-grained configuration for memory regions with low spatial

locality. The proposed mechanism is a vertical solution that requires col-

laboration between several system levels: The application provides preferred

granularity information (Section 6.2.1); the OS manages per-page access gran-

ularity by augmenting the virtual memory (VM) interface (Section 6.2.2); a

sector cache manages fine-grained data in the cache hierarchy (Section 6.2.3);

and a sub-ranked memory system and mixed-granularity memory scheduling

provide efficient handling of multiple access granularities within off-chip mem-

ory system (Section 6.2.4 and Section 6.2.5). We also discuss the tradeoffs in

making granularity decisions (Section 6.2.6).
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6.2.1 Application Level Interface

As explained in Section 6.1, AGMS requires different memory protec-

tion schemes for different access granularities. The degree of redundancy,

and thus the memory layout, has to change (see Section 6.2.4 for details).

Consequently, the processor cannot adapt the granularity independent of the

software. The tuning/adaptation can be done either statically at compile time

or dynamically by the OS (we discuss the dynamic case later). In the static

approach, the programmer or an auto-tuner provides granularity information

through a set of annotations, hints, compiler options, and defaults that asso-

ciate a specific tolerance mechanism with every memory location.1 We envision

that the programmer will declare a preferred access granularity when memory

is allocated. More accurately, we allow the programmer to override the default

access granularity using annotations and compiler hints. In Fortran, program-

mer annotations can take the form of another array attribute; in C, we can

add a parameter to malloc; in C++, we can overload the new operator. The

compiler may also select granularity with appropriate analysis.

6.2.2 OS Support

Granularity and protection schemes are applied when physical memory

is allocated and are thus closely related to the virtual memory manager. We

augment the virtual memory interface to allow software to specify the preferred

1Note that a physical memory location can only be protected using a single mechanism
at any given time because the protection scheme and redundant information need to be
checked and updated consistently.
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access granularity for each page. The per-page access granularity is stored

in a page table entry (PTE) when a page is allocated. This information is

propagated through the memory hierarchy along with requests, miss status

handling registers, and cache lines so that the memory controller can use the

information to control DRAM channels. Since most architectures have reserved

bits in a PTE, we can accommodate the preferred access granularity similar

to per-page cache attributes in the ×86 ISA [57].

Because the OS manages both access granularity and virtual memory,

it is possible to dynamically adapt the granularity without application knowl-

edge. This would require hardware support for determining access granularity,

such as the mechanisms proposed for fine-grained cache management [67] as

well as the OS to copy (migrate) pages or change granularity when paging.

We leave further exploration of this idea to future work and discuss it further

in Section 6.2.6.

6.2.3 Cache Hierarchy

AGMS issues both coarse- and fine-grained requests to main memory

and thus needs to manage both granularities of data within the cache hierarchy.

The simplest way is to use a cache with a line size equal to the smallest access

granularity, e.g. 8B. A better design choice is a sector cache [75, 98] (illustrated

in Section 3.3.2). A cache line in a sector cache is divided into multiple sectors,

and each sector maintains its own valid and dirty bits, but there is only one tag

for each multi-sectored cache line. Since sector caches do not increase address
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tag overhead, the additional cost is only the storage for valid and dirty bits:

14 bits per cache line when a 64B cache line is divided into eight 8B sectors.

While the more advanced cache architectures described in Section 6.5

can provide better management of fine-grained data, we choose a simple sector

cache in this dissertation to better isolate performance gains from adaptive

granularity memory access; the simple sector cache allows a fair comparison

between the adaptive granularity memory system and a conventional coarse-

grain-only architecture.

6.2.4 Main Memory

Sub-Ranked Memory Systems. We leverage the sub-ranked memory

system approach (described in Section 3.3.1) because it enables fine-grained

accesses with minimal control overhead. We use a 64-bit wide memory channel

with DDR3 DRAMs: eight×8 DRAMs per rank. Figure 6.2(a) shows the main

memory architecture for this study. The minimum access granularity in our

system is 8B since we can control each memory device independently. Though

sub-ranked memory systems can provide multiple granularities (8B, 16B, 24B,

32B, and 64B), we restrict access granularity to 64B (coarse-grained) and 8B

(fine-grained) in this dissertation. A fine-grained 8B request is serviced by a

burst of 8 transfers from a single ×8 DRAM chip, and a coarse-grained 64B

request is serviced by a burst of 8 transfers from all 8 ×8 DRAM chips in a

rank.
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Figure 6.2: Sub-ranked memory with a register/demux architecture of 1×,
2×, and 4× ABUS bandwidth. We use a register/demux similar to the one
suggested in MC-DIMM [14]. Note that we do not use a register with the 1×
ABUS configuration.

Address Bus Bandwidth. Because each fine-grained access reads or writes

only 8B of data, it requires a factor of 8 more memory requests to achieve the

equivalent throughput of coarse-grained accesses. In other words, fine-grained

accesses will saturate an address/command bus (ABUS) that is designed for

coarse-grained accesses, and greater command signaling bandwidth is required

for fine-grained accesses to fully utilize the DRAM bandwidth. Many com-

mercial high-end systems including FB-DIMM [83], Power 7 [59], Cray Black

Widow [11] as well as the custom address/command bus in the Convey S/G
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DIMM [25] and decoupled DIMM [141] already use or suggest 3 to 4 times,

or even more, faster signaling for the ABUS. Increasing ABUS bandwidth is

a matter of overall system optimization in terms of cost, power, and perfor-

mance. We explore the design space of ABUS bandwidth later in this section.

Figure 6.2(b)-(d) show the architectures of the register/demux used

in the sub-ranked memory system, and Figure 6.2(c) and Figure 6.2(d) show

how 2× and 4× ABUS bandwidths are provided. While the 2× ABUS scheme

can be achieved by using double data rate signaling as with the data bus

(DBUS) with a relatively simple register/demux, the 4× ABUS scheme, which

uses quad data rate signaling, may increase design complexity due to signal

integrity issues.

Memory controllers. An interesting challenge in implementing adap-

tive granularity, compared to fixed granularity memory systems, is the ef-

fective co-scheduling of memory requests with different granularities; this in-

cludes buffering, scheduling, and providing quality of service. The example

in Figure 6.3(a) illustrates how a coarse-grained request is unfairly deferred

when there are many fine-grained requests, assuming the commonly used FR-

FCFS [95] scheduling policy. The coarse-grained request at time 2 cannot be

immediately issued due to pending fine-grained requests F0 and F3, which were

queued at time 0 and time 1 respectively. While the coarse-grained request

waits in the queue, other fine-grained requests (F1, F2, and F0) arrive and

are scheduled quickly since a fine-grained request can be serviced once its sin-

gle associated sub-rank becomes ready. Coarse-grained requests, on the other
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(c) Splitting coarse-grained requests

Figure 6.3: AGMS scheduling examples. Fx represents a fine-grained request
to sub-rank x, and C represents a coarse-grained request. There are four sub-
ranks, and a memory device returns a 4-cycle burst after a request is made.
FR-FCFS scheduling is used, and data bus contention is the only constraint
in scheduling in this simple example.

hand, can only be scheduled when all sub-ranks are available at the same time.

As a result, the coarse-grained request is serviced only after all fine-grained

requests are serviced, potentially degrading performance significantly.
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We propose two solutions to address this problem: (i) to give higher pri-

ority to coarse-grained requests; and (ii) to split a coarse-grained request into

multiple fine-grained requests. The first solution prioritizes a coarse-grained

request when its service is unfairly deferred due to fine-grained requests. Sup-

porting different request priorities is a common feature of modern out-of-order

memory schedulers. As shown in Figure 6.3(b) when the scheduler detects

that a coarse-grained request is deferred due to fine-grained requests (at time

2), it raises the priority of the coarse-grained request. This prevents fine-

grained requests with normal priority from being scheduled. As a result, the

coarse-grained request finishes at time 9, after which fine-grained requests are

serviced.

Our second solution splits a coarse-grained request into many fine-

grained requests so that each fine-grained request (belonging to a single coarse-

grained request) can be opportunistically scheduled. The original coarse-

grained request finishes when all its fine-grained requests are serviced. Fig-

ure 6.3(c) shows such an example. At time 2, the coarse-grained request is

split into four fine-grained requests (C0, C1, C2, and C3), and the coarse-

grained request finishes when all of them are serviced (at time 9). A caveat

to this solution is that it potentially increases ABUS bandwidth requirement.

We compare the two solutions in more detail later in this subsection.
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Figure 6.4: Coarse-grained and fine-grained accesses with ECC

6.2.4.1 Data Layout.

When ECC is not used, the data layout in physical memory is the same

for both fine-grained and coarse-grained pages. When ECC is enabled, on the

other hand, we need to use a different data layout for fine-grained pages to

account for the higher required redundancy. Figure 6.4 compares a coarse-

grained and fine-grained accesses with ECC in a DDR3-based system. Note

that single hardware with AGMS can provide both coarse-grained and fine-

grained configurations unlike conventional memory systems that are either

coarse-grain only or fine-grain only. Fine-grained data can provide higher

throughput with low spatial locality, but it increases the ECC overhead since

every data block needs its own ECC code. The 8B minimum access granularity

dictates at least 8B for ECC.

In this dissertation, we use a simple scheme in which a fine-grained

physical page is twice as large as a coarse-grained nominal page, e.g. 8kB of

storage for a 4kB data page. Each 8B of data is associated with 8B of ECC.

Hence, a fine-grained request is serviced by accessing 16B in total. Memory

controllers must interpret this change in addressing when making fine-grained

data accesses with ECC, and the OS should manage physical memory pages
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accordingly. As a result, fine-grained pages have low storage efficiency, but

can still provide better throughput than always using coarse-grained accesses.

We store data and its associated ECC in different memory devices, providing

better reliability than other embedded-ECC designs [36, 48, 140], which store

ECC in the same DRAM row as the data it protects. A more generalized

and flexible scheme such as Virtualized ECC [133] (described in Chapter 5)

can manage ECC without changing physical data layout and can even handle

granularities other than 64B and 8B easily, but we leave exploring such con-

figurations to future work. We assume that ECC DIMMs are used, and ECC

information for coarse-grained accesses is stored in the dedicated ECC DRAM

chips.

6.2.5 AGMS Design Space

We now explore the design space of AGMS. We describe the details of

the simulation settings and system parameters in Section 6.3. We use GUPS for

exploring the design space because it is very memory-intensive and has many

fine-grained requests. Furthermore, GUPS is often used as the gold standard

for evaluating memory systems and network designs in large-scale systems and

is considered to be a challenging benchmark [2]. We later show that AGMS

provides significant benefits to real applications in addition to this important

micro-benchmark.

GUPS performs a collection of independent read-modify-write operations

to random locations (8B elements in our experiments). GUPS has two buffers:

143



an index array and a data array. The index array is accessed sequentially.

The values stored in the index array are random numbers that are used for

addressing the data array to be updated. For adaptive granularity, we define

the index array as a coarse-grained region and the data array as a fine-grained

region. We simulate a 4-core system with an instance of GUPS per core and

a single 1067MHz DDR3 channel. We choose this relatively low-bandwidth

configuration because it is representative of future systems that are expected

to have larger compute to memory bandwidth ratios than current systems.

Limited experiments with higher bandwidth yielded very similar results in the

case of GUPS.

Figure 6.5(a) shows the throughput of various system configurations

using weighted speedup [43]. In Figure 6.5, CG represents a conventional

fixed-granularity coarse-grained system, AG is the baseline AGMS with stan-

dard FR-FCFS scheduling, AGpriority and AGsplit are AGMS, where the former

uses higher priority for deferred coarse-grained requests and the latter splits

coarse-grained requests into multiple fine-grained requests. The suffix +ECC

represents ECC support in each configuration. Note that CG+ECC has iden-

tical performance to CG so the throughput of CG+ECC is not shown here.

Compared to CG (coarse-grain-only), the AG schemes improve system

throughput significantly: 100−130% with nominal 1× ABUS bandwidth, 150−

200% with 2× ABUS, and up to 480% with 4× ABUS. Note that with AG, the

index array uses coarse-grained accesses and the data array is accessed with

fine granularity. The performance of the AG schemes with 1× and 2× ABUS is
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Figure 6.5: GUPS 4-core simulation for design space exploration.

limited by ABUS bandwidth: They have almost 100% ABUS utilization, while

data bus (DBUS) utilization is only 25% (1× ABUS) and 50% (2× ABUS).

With 4× ABUS, DBUS utilization reaches more than 70%. Note that even

with 1× ABUS, the effective throughput is still twice as high as that of a

coarse-grain-only system.

The throughput of the baseline AG system is limited by coarse-grained

requests to the index array that are unfairly deferred due to many fine-grained

accesses. This effect is more pronounced with 2× or 4× ABUS. AGpriority

and AGsplit overcome this inefficiency by allowing coarse-grained requests to
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complete in a timely manner. AGpriority performs slightly better when ABUS

bandwidth limits overall throughput (1× ABUS), but AGsplit is best when

ABUS bandwidth is higher (2× and 4× ABUS).

When ECC is enabled, the AG schemes improve performance by 120−

130% with 1× ABUS, 200 − 210% with 2× ABUS, and up to 250% with 4×

ABUS. One anomalous case is AGsplit with 1× ABUS, where the throughput of

AGsplit+ECC is better than that of AGsplit . The reason is that AGsplit+ECC

makes coarser requests because of the ECC data and thus requires less ABUS

bandwidth. The coarse-grained requests are split into only four finer-grained

requests (as opposed to eight requests with AGsplit without ECC). Note that

4× ABUS does not provide any further improvements because the data bus

is already heavily utilized (more than 70%) with 2× ABUS due to the extra

bandwidth consumed by the redundant ECC information.

Figure 6.5(b) and Figure 6.5(c) compare the DRAM power consumption

of the evaluated configurations. In general, the AG schemes consume much

less power than CG because they avoid accesses and transfers of unnecessary

data and mitigate DRAM “overfetch” [13]. Having higher ABUS bandwidth

increases DRAM system utilization and DRAM power consumption. The sig-

nificant improvements to system throughput, however, compensate for this

increased power, leading to superior power efficiency.

Based on the evaluation results shown in Figure 6.5, in the rest of

the chapter, we use AGsplit with 2× ABUS both for non-ECC and ECC con-

figurations. Although 4× ABUS improves GUPS significantly, GUPS’s access
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pattern of almost exclusively fine-grained requests is not common in real ap-

plications. Therefore, we choose a 2× ABUS configuration over a 4× ABUS

system given its design complexity and power overhead of a 4× ABUS system.

Both AGpriority and AGsplit perform equally well with 2× ABUS bandwidth in

general, but AGsplit can utilize bandwidth more efficiently in a few cases.

6.2.6 Access Granularity Tradeoffs

While fine-grained accesses can utilize off-chip bandwidth more effi-

ciently than coarse-grained ones, we should also consider that fine-grained

access may degrade performance because of potentially higher average mem-

ory access latency. Ideally, bottom-line performance can be used to determine

granularity, but the high cost of copying (migrating) a page to change its

data layout (when ECC is used) for a different access granularity dictates that

such changes be infrequent. As a result, common approaches to “experiment”

dynamically and monitor performance are ill-suited for granularity selection.

Instead, we propose a heuristic that incorporates metrics of spatial locality

and DRAM characteristics.

The first component of our heuristic is cache spatial locality. Fine-

grained accesses avoid fetching unnecessary data and utilize scarce off-chip

bandwidth resources more effectively. Minimizing traffic generally reduces

memory power consumption and can maximize system throughput when mem-

ory throughput is the bottleneck. We estimate the spatial locality of a page by

averaging the number of words used in each fetched cache line for that page.
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Thus, we can estimate the average traffic for fetching a line from a page as

follows:

• The cost for a coarse-grained access (64B) is 73B: 64B data, 8B ECC,

and 1B for control.

• The cost for a fine-grained access (8B) depends on the number of words

referenced. For each referenced word, we need 17B: 8B data, 8B ECC,

and 1B for control.

Consequently, fine-grained accesses minimize the amount of traffic if an average

cache line in a page has fewer than 4 referenced words (for the configuration

parameters used in this study).

Minimizing traffic, however, does not always guarantee higher overall

performance or efficiency. The reason is that with fine-grained requests, mul-

tiple accesses to the same line will all be treated as cache misses (they hit in

the tag array, but miss on the actual data word because of the sector cache

design). These misses could have been avoided with coarse-grained accesses.

Thus, if memory bandwidth is not the bottleneck, fine-grained accesses can

degrade performance. We account for this effect by considering DRAM access

characteristics that make fetching additional data relatively cheap.

The second component of the heuristic is DRAM page hit rate. A high

DRAM page hit rate reduces the potential gains of fine-grained data access

since the relative overhead of fetching an entire cache line is smaller when page
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hit rate is high. When the page hit rate is low, fine-grained accesses allow more

rapid transitions between pages and also increase the level of parallelism in

the memory system (sub-rank level parallelism in addition to rank and bank

level parallelism). Thus, if the page hit rate is high, pre-fetching extra data

with coarse-grained accesses does not significantly impact effective memory

throughput and can improve cache hit rate and average load latency.

We combine cache-line spatial locality and page hit rate by adding a

penalty (α) to fine-grained accesses when page hit rate is high: We opt for

fine granularity if α× fine-grained-cost ≤ coarse-grained-cost. α is a parameter

that penalizes fine-grained accesses and is 1.0 when only one word is referenced

for more than 70% of cache lines in a page. Otherwise, α is determined by

DRAM page hit-rate: 1.0 if page hit-rate is lower than 60%; 1.3 if lower than

70%; 1.8 if lower than 80%; and 3.0 otherwise. These weights were chosen

arbitrarily, and we determined that performance is insensitive to this choice

to a large extent.

The two components of the granularity-decision heuristic can be calcu-

lated statically, using programmer hints or compiler analyses, or dynamically,

by allowing the OS to track access characteristics. In this research, we use an

intermediate approach to identify fine-grained data regions using off-line pro-

filing. Instead of modifying the application code and OS, we use the profiler to

guide our decisions. We discuss the potential merits of this approach compared

to dynamic prediction in the evaluation section, but overall, we determine that

once an application starts running, its granularity characteristics are stable.
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Note that the OS can always dynamically override granularity decisions and

set all pages to coarse-grained if it determines that to be the most beneficial

approach. For example, if memory bandwidth utilization is expected to be

low leading to fine-grained access increasing memory footprint with no likely

benefit to performance.

6.3 Evaluation Methodology

We evaluate AGMS using a combination of PIN-based emulation [77]

to collect granularity statistics for full application runs and detailed cycle-

based simulations to determine impact on performance and power. For the

cycle-based simulations, we use the Zesto simulator [76] integrated with a de-

tailed in-house DRAM simulator that supports sub-ranked memory systems as

well as variable ABUS bandwidth as described in Section 6.2.4. The DRAM

simulator models memory controllers and DRAM modules faithfully, simu-

lating buffering of requests, FR-FCFS [95] scheduling of DRAM commands,

contention on shared resources such as ABUS and DBUS, and all latency and

timing constraints of DDR3 DRAM. Banks and sub-ranks are XOR interleaved

to minimize conflicts [139].

Workloads. We use a mix of several applications from SPEC CPU 2006 [109],

PARSEC [21], Olden [30], SPLASH2 [129], and the HPCS [3] benchmark

suites as well as micro-benchmarks such as GUPS [42], STREAM [82], and Linked

List [4] (Table 6.1). We choose mostly memory-intensive applications without

spatial locality, but also include applications that are not memory intensive

150



Table 6.1: Benchmark statistics: LLC MPKI (misses per thousand instruc-
tions), DRAM page hit rates and IPC are estimated from the baseline cycle-
accurate simulation with a single core; average number of used words per cache
line is gathered using PIN.

Benchmark
Input

IPC
LLC

DRAM Avg.

Description
size MPKI

page referenced
hit words per
rate cache line

SPEC
mcf ref 0.24 31.3 19.1% 3.59 Vehicle scheduling using

a network simplex algorithm
omnetpp ref 0.49 11.6 47.8% 3.22 Discrete event simulations
libquantum ref 0.45 15.6 98.9% 4.09 Simulates a quantum computer
bzip2 ref 0.80 3.2 57.1% 3.63 bzip2 compression
hmmer ref 0.98 0.87 91.3% 7.93 Protein sequence analysis

using hidden Markov models
astar ref 0.87 0.59 44.0% 2.86 A* path finding algorithm
lbm ref 0.56 22.9 82.6% 3.92 Fluid dynamics using

Lattice-Boltzmann method
PARSEC
canneal 400k 0.32 17.2 14.1% 1.87 Simulated annealing

elements to minimize the routing cost
streamcluster 16k 0.49 14.5 86.8% 7.24 On-line clustering

points of an input stream
SPLASH2
OCEAN 10262 0.54 18.6 92.6% 6.68 Simulates large-scale

grid ocean movements
Olden
mst 2k 0.12 41.6 40.5% 2.30 Minimum spanning tree

nodes
em3d 200k 0.19 39.4 27.4% 2.62 Simulates electromagnetic wave

nodes
HPCS
SSCA2 64k 0.27 25.4 25.5% 2.63 Computes betweenness centrality

nodes in a large graph
Micro-benchmarks
Linked List 342 0.04 111.9 34.2% 1.99 Linked list traversal

linked
lists

GUPS 8M 0.08 174.9 10.9% 1.84 Updates random memory locations
elements

STREAM 2M 0.4 51.9 96.5% 7.99 streaming copy, scale,
elements add, and triad

and/or have high spatial locality. Note that with adaptive granularity, all

applications can perform at least as well as on the baseline system because
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coarse-grained accesses are used by default, but we report numbers based on

the heuristic described in Section 6.2.6.

mcf and omnetpp are memory intensive and have low spatial locality

with less than half a cache line referenced by a processor core on average

and low DRAM page hit rate. libquantum and lbm are memory-intensive

and fewer than half the words in a cache line are accessed on average, but

have high spatial locality for DRAM (high DRAM page hit rate). bzip2,

astar, and hmmer are not memory-intensive. Applications from PARSEC

(except streamcluster), Olden, HPCS SSCA2, and the micro-benchmarks

(except STREAM) all stress main memory and have very low spatial locality:

DRAM page hit rate is low, and only one or two words are referenced in each

cache line on average. STREAM (micro-benchmark), OCEAN (SPLASH2), and

streamcluster (PARSEC) are memory intensive, but present high DRAM

page hit rate and access most words in a cache line. Note that we do not

include applications that do not stress memory as the results will be the same

for the baseline system and AGMS.

For the cycle-based simulations, we ran a representative region from

each application. We use Simpoint [49] to determine the regions for SPEC

applications and manually skipped the initialization of the simpler and more

regularly-behaved Oldeni, PARSEC, and SPLASH2 benchmark suites, HPCS

SSCA2, and the micro-benchmarks. The size of each representative region is

200M instructions for the 4-core simulations and 100M instructions for the
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Table 6.2: Simulated base system parameters.
Processor core 4GHz x86 out-of-order core (4 or 8 cores)
L1 I-caches 32kB private, 2-cycle latency, 64B cache line
L1 D-caches 32kB private, 2-cycle latency, 64B cache line
L2 caches 256kB private for instruction and data, 7-cycle latency

64B cache line
Last-Level caches (L3) shared cache, 64B cache line

4MB 13-cycle latency for 4-core systems
8MB 17-cycles latency for 8-core systems
64B cache line

On-chip memory controller FR-FCFS scheduler [95], 64-entry read queue, 64-entry write queue
XOR-based bank, sub-rank mapping [139]

Main memory 1 72-bit wide DDR3-1066 channel (64-bit data and 8-bit ECC)
×8 DRAMs, 8 banks per rank, 4 ranks per channel
parameters from Micron 1Gb DRAM [84]

8-core simulations. For the PIN-based experiments, we ran all applications to

completion.

Data page profiling. To collect profiling information, we use PIN [77]

and emulate a 1-level 1MB 8-way set-associative cache with 64B lines. During

program execution, we profile which 8B words are referenced within each cache

line. We then aggregate the per-cache line cost across each 4kB page and

determine the granularity recommendation that can be overridden dynamically

by the OS (see Section 6.2.6), although we do not override the decision in this

study. We use this static profiling method to report the ECC storage overheads

of fine-grained pages in Section 6.4.1 and to identify fine-grained data pages

for the cycle-based simulations (Section 6.4.2–6.4.3).

System Configurations. Table 6.2 gives the parameters of the baseline

coarse-grain-only system used in our cycle-based simulations. The cache hier-

archy of the base system has an instruction pointer prefetcher for the instruc-

tion caches and a stream prefetcher for the data caches.
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We use the following configurations for evaluating the potential of the

AGMS approach.

• CG+ECC: coarse-grain-only system as described in Table 6.2. ECC is

stored in dedicated DRAMs.

• CGsub-ranked+ECC: coarse-grain-only system, but it uses a sub-ranked

memory system, similar to MC-DIMM [13]. We use the best configu-

ration from [13], 4 sub-ranks per rank (see Figure 3.6(c)). For ECC

support, we assume that each sub-rank has a dedicated ECC DRAM so

that a 64B request is served by a burst of 32 transfers outt of three ×8

DRAMs, of which two is for data and one is for ECC.

• FG+ECC: fine-grain-only system. The memory controller accesses only

requested words (8B), but every fine-grained access is accompanied by

8B ECC; an 8B request is served by a burst of 8 transfers out of two ×8

DRAMs, of which one is for data and the other is for ECC. As a result,

the effective memory channel is only 32 bits wide. L1D and L2 caches

and LLC are sector caches, where a 64B cache line is divided into eight

8B sectors to manage fine-grained data in the cache hierarchy.

• AG+ECC: AGMS with the AGsplit scheme described in Section 6.2.4 and

2× ABUS. As FG+ECC, AG+ECC also uses sector caches in L1D and

L2 caches and LLC.
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In addition to the above configurations with ECC, we also evaluate

systems without ECC: CG, CGsub-ranked, FG, and AG. These non-ECC con-

figurations are identical to their ECC counterparts except that they do not

support ECC. CG and CGsub-ranked do not have dedicated ECC DRAMs. FG

and AG (for fine-grained accesses) do not transfer ECC, yielding twice the peak

fine-grained data rates of FG+ECC and AG+ECC. Note that the AG schemes

(AG and AG+ECC) can emulate the CG schemes (CG and CG+ECC) and

the FG schemes (FG and FG+ECC) when we set all pages to coarse-grained

or fine-grained, respectively.

Power models. We estimate DRAM power consumption using a power

model developed by Micron Corporation [7]. For processor power analysis,

we use the IPC-based mechanism presented in [13]: The maximum power

per core is estimated as 16.8W based on a 32nm Xeon processor model using

the McPAT 0.7 tool [72]; and half of the maximum power is assumed to be

static (including leakage) with the other half being dynamic power that is

proportional to IPC. In our experience, this rather simple measure of processor

core power produces a power estimate that matches WATTCH [26] results well.

Furthermore, our study focuses on main memory, and our mechanisms have

minimal impact on the processor core’s power behavior. We estimate LLC

power using CACTI 6 [85]. To account for the cost of sector caches and the

sub-ranked memory system with 2× ABUS and the register/demux, we add

a 10% power penalty to the LLC and DRAM power consumption in AGMS,

which we believe to be very conservative.
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Table 6.3: PIN-based data page profiling.

Benchmark Total data
Fine-grained Fraction of
data fine-grained data

SPEC
mcf 1676MB 1676MB 100%
omnetpp 175MB 159MB 91%
libquantum 122MB 0.1MB 0.1%
bzip2 208MB 124MB 59%
hmmer 64MB 0.1MB 0.2%
astar 349MB 258MB 74%
lbm 409MB 6.3MB 1.5%
PARSEC
canneal 158MB 157MB 99%
streamcluster 9MB 0.1MB 1.6%
SPLASH2
OCEAN 56MB 0.1MB 0.1%
Olden
mst 201MB 193MB 96%
em3d 89MB 28MB 31%
HPCS
SSCA2 186MB 18MB 10%
Micro-benchmarks
Linked List 178MB 178MB 100%
GUPS 192MB 64MB 33%
STREAM 47MB 0.1MB 0.2%

6.4 Results and Discussion

This section presents our analysis of AGMS: Section 6.4.1 provides

data page profiling results and reports the storage overhead of the redundant

information in fine-grained pages; Section 6.4.2 and Section 6.4.3 present cycle-

based simulation results from 4 cores and 8 cores, respectively.

6.4.1 Page Profiling Results

We use PIN with the simple cache model described in Section 6.3 to pro-

file fine-grained pages as well as total data pages. The fraction of fine-grained

data pages is important because the storage overhead of ECC for fine-grained

pages is twice that of coarse-grained ones. As shown in Table 6.3, the frac-
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Table 6.4: Application mix for 4-core simulations.
MIX-1 mcf omnetpp mcf omnetpp

MIX-2 SSCA2 lbm astar SSCA2

MIX-3 libquantum hmmer mst mcf

MIX-4 SSCA2 Linked List mst hmmer

tion of fine-grained pages is low in hmmer, libquantum, lbm, streamcluster,

OCEAN, em3d, SSCA2, GUPS, and STREAM, but is nearly 100% in many applica-

tions. Therefore, declaring a data page as fine grained must be done judiciously

and used as part of overall system optimization (trading off performance and

power-efficiency with a larger memory footprint). For some applications, the

choice is clear. As shown in the performance analysis in Section 6.4.2, those

applications that have a small fraction of fine-grained pages perform very well

with AGMS. Others still gain from using AGMS, but require significantly more

memory capacity. This particular tradeoff depends on many system-level pa-

rameters, and we leave this evaluation to future work.

6.4.2 4-core Cycle-Based Results

In this subsection, we present cycle-based simulation results of 4-core

systems. Multi-programmed workloads are used for the 4-core system evalua-

tion. We use 4 replicas of an application (suffix×4) as well as application mixes

(Table 6.4). We utilize weighted speedup as the metric of system throughput.

We use the fine-/coarse-grained decisions from our profiler. Both profiler and

simulations used the same dataset, but the profiler was not heavily tuned.
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Figure 6.6: 4-core system off-chip traffic and power.

Off-Chip Traffic and Power. First, we compare the off-chip traffic

and DRAM power consumption of CG+ECC, CGsub-ranked+ECC, FG+ECC,

and AG+ECC. Figure 6.6(a) shows the total memory traffic including ECC.

AG+ECC reduces off-chip traffic by 66%, on average, compared to CG+ECC

(56% excluding the micro-benchmarks: GUPS, STREAM, and Linked List).

The reduced off-chip traffic leads to lower DRAM power consumption

as shown in Figure 6.6(b). Remember that we added a conservative 10%
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power penalty to the AG+ECC configurations. AG+ECC reduces DRAM

power by 7% to 21% in most applications, and 14% on average. DRAM power

actually increases for GUPS, but that is a result of the much higher performance

obtained; efficiency is significantly improved as discussed below.

CGsub-ranked+ECC, though the sub-ranked memory system was sug-

gested for better energy efficiency, shows increased traffic and DRAM power

consumption. This is mainly due to the cost of accessing redundant informa-

tion; narrow access width in CGsub-ranked+ECC necessitates high redundancy.

FG+ECC, on the other hand, is effective in reducing traffic in most cases.

FG+ECC, however, generates more traffic than AG+ECC. This is, again, due

to ECC traffic; when spatial locality is high, coarse-grained accesses not only

reduce miss rate but also minimize traffic including ECC. Though FG+ECC

can minimize DRAM power consumption, since it touches only the necessary

data, the reduced DRAM power consumption in FG+ECC does not neces-

sarily lead to better performance or power efficiency as we show in the next

paragraph.

Throughput and Power Efficiency. Figure 6.7(a) shows the system

throughput of CG+ECC, CGsub-ranked+ECC, FG+ECC, and AG+ECC. Over-

all, AG+ECC improves system throughput significantly: more than 130% in

GUPS, 30% to 70% in mst, em3d, SSCA2, canneal, and Linked List, and 44%

on average (22% on average excluding micro-benchmarks).

The results also show the advantage of adapting granularity compared

to just using one of the mechanisms AGMS relies on fine-grained access (FG+ECC)
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Figure 6.7: 4-core system throughput and power efficiency.

and memory sub-ranking (CGsub-ranked+ECC). Even in these applications that

can benefit from fine-grained access, AG+ECC consistently matches or out-

performs FG+ECC.

We also evaluate applications with high spatial locality in Figure 6.8.

As expected, when most pages are coarse-grained, AG+ECC does not de-

grade performance when compared to CG+ECC. The one exception is bzip2,

which shows a very minor degradation, again as a result of inaccurate profil-

ing. FG+ECC, on the other hand, degrades system throughput significantly:

17% in libquantum, 34% in bzip2, 36% in OCEAN, 50% in streamcluster, and
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Figure 6.8: Applications with high spatial locality.

48% in STREAM. lbm is the only case that FG+ECC improves throughput (7%).

Though lbm has very high DRAM page hit rate (82.6%), lbm references fewer

than 4 words per cache line on average; hence, the FG scheme (FG+ECC),

with lower total traffic, can slightly improve performance.

We also show that sub-ranking alone (CGsub-ranked+ECC) significantly

impacts performance because access latency increases as it takes longer to

transfer a coarse-grained cache line into the cache over a narrower channel.

This effect is pronounced in our system configuration that has limited latency

hiding with only a single thread per core.

MIX-3 and bzip2 are the only experiments we ran in which performance

degraded with the AG scheme, but the degradation is less than 4%. In bzip2,

most memory accesses fall within coarse-grained regions so AG+ECC practi-

cally do not affect execution (degrade throughput by less than 4%). MIX-3

suffers a more apparent performance degradation. This is most likely because

of unfair DRAM scheduling between the applications. The performance of mcf

is degraded, but that of mst is improved. In the meanwhile, the performance
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of libquantum and bzip2 results almost remained unchanged. This is because

mst has a relatively high DRAM page hit rate compared to mcf (40.5% vs.

19.1%). Since the FR-FCFS scheduling policy used in our memory controller

tries to maximize memory throughput, mst’s requests are favored over those

of mcf, leading to unfair resource allocation between mcf and mst. We believe

that combining the adaptive granularity scheme with a better scheduling mech-

anism that provides fairness, such as parallelism-aware batch scheduling [86],

can overcome this inefficiency in MIX-3. Note that AGMS does improve the

performance of MIX-D in the 8-core simulation (see Section 6.4.3). MIX-D

has two instances of each application of MIX-3, and AG+ECC improves per-

formance when relative off-chip bandwidth is more scarce.

Recall that AGMS allows every page to have its own granularity. Hence,

we can nullify all performance degradation; the OS can override the granularity

hint if it suspects an increase in unfairness. The OS can set fine-grained regions

in a more conservative way or even use only coarse-grained accesses.

We report the system power efficiency in terms of throughput per unit

power (including cores, caches, and DRAM) in Figure 6.7(b). With reduced

DRAM power consumption, AG+ECC improves the system power efficiency

except in MIX-3. AG+ECC improves efficiency by 46% on average (24%

excluding micro-benchmarks). The AG scheme degrades the throughput per

power of MIX-3 by only less than 2%, which is due entirely to the 10% DRAM

power penalty we conservatively added to account for the register/demux. In

many current systems that are coarse-grained only, however, registered DIMMs
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Figure 6.9: 4-core system throughput and power efficiency (non-ECC).

are already used for higher capacity. Compared to such systems, we do not

expect any degradation in efficiency.

Note that we use power efficiency rather than a metric such as energy-

delay product (EDP) because of our multi-programmed simulation method-

ology. All applications continue to run until the slowest-running application

completes, and thus the amount of work varies from one configuration to an-

other. Keep in mind that this is only for measuring power consumption, and

the statistics for a specific core freeze when a core executes a fixed number of

instructions so that the IPC comparison is based on the same number of in-
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Table 6.5: Application mix for 8-core simulations.
MIX-A mcf ×4 omnetpp ×4

MIX-B
SSCA2 ×2 mcf ×2
omnetpp ×2 mst ×2

MIX-C
SSCA2 mcf omnetpp mst

astar hmmer lbm bzip2

MIX-D
libquantum ×2 hmmer ×2
mst ×2 mcf ×2

structions across different configurations. We believe our approach is the most

appropriate for our analysis. Alternative approaches, such as FIESTA [51],

propose that in each experiment the same number of instructions is executed.

Thus, the amount of work does not vary across experiments, allowing energy

comparison. In FIESTA, however, the longest job runs alone at the end of

a simulation, monopolizing shared resources such as shared caches and main

memory. Because contention for shared memory resources is the crux of our

research, applications running alone will skew the results.

We also present the throughput and the overall power efficiency of

non-ECC configurations in Figure 6.9. While overall tendency is the same

as the results of ECC configurations, AG shows even further gains: 61% in

throughput and 67% in power efficiency on average (34% and 40% excluding

micro-benchmarks). Note that we use the same profiler designed for AG+ECC,

showing that AGMS is not sensitive to the profiler designs; using sub-optimal

profiler in AG still provides significant gains in most applications. Further-

more, based on the improvements in FG and FG+ECC, simple per-thread

decision (either all coarse-grained or all fine-grained) in the AGMS will lead

to better performance and efficiency than coarse-grain-only baseline.
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Figure 6.10: 8-core system throughput.

6.4.3 8-core Cycle-Based Results

This section presents results from 8-core system simulations. Systems

with more cores are likely to have more memory channels, but we evaluate

an 8-core system with a single channel. We chose this configuration because

we expect systems in the future to generally have a lower memory bandwidth

versus overall core arithmetic throughput. We use 8 replicas of an application

(suffix ×8) as well as application mixes (Table 6.5).

The results of 8-core simulations (Figure 6.10) show similar trends to

those of 4-core systems. The performance and power gains, however, are higher

in the more bandwidth-constrained 8-core configurations. Performance is im-

proved by 85% (59% excluding micro-benchmarks) with AG+ECC. Though we

do not show, AG (without ECC) shows further gains of 116% throughput im-

provement (87% excluding micro-benchmarks). Reductions in DRAM power

consumption and traffic are similar to those in the 4-core experiments. In fu-

ture systems, where off-chip bandwidth will be severely limited, it is likely that
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virtually all applications will be bandwidth-bound; hence, we expect AGMS,

which utilizes off-chip bandwidth more efficiently, to be even more beneficial.

6.5 Related Work

Caches. While orthogonal to our research on adaptive memory access granu-

larity, work on cache architectures that support fine-grained data management

is a necessary component of our design. These architectures provide mecha-

nisms to maintain valid and dirty information at a granularity finer than just

an entire cache line.

We already discussed the sector cache [75] in Section 3.3.2. The de-

coupled sectored cache [104] and a pool-of-sectors cache [97] refine the sector

design and enable more elastic mapping between sectors and tags to reduce

the miss rate of a sector cache. The dual cache [45] uses two L1 caches, one

with large line size and the other with small line size. Similarly, the adap-

tive line size cache [120] gradually changes cache line size. Other techniques,

spatial footprint prediction [67] and spatial pattern prediction [32], utilize a

hardware predictor to reduce fetch traffic between L1 and L2 or to save leak-

age power by applying power-gating to the subblocks that are predicted to

be non-referenced; and the line-distillation cache [93] splits the LLC into a

line-oriented cache and a word-oriented cache.

These techniques assume that off-chip memory can be accessed with

fine granularity, which is unfortunately no longer true because modern DRAM

systems evolved to provide high bandwidth with coarse access granularity.
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Our adaptive granularity memory system re-enables these fine-grained cache-

management techniques. AGMS can be combined with any fine-grained cache-

management technique, and in this dissertation we use a “sector cache” as a

simple example.

DRAM Systems. As reviewed in Section 3.3.1, there are several pro-

posals that can enable fine-grained accesses in modern DRAM systems. The

many-narrow-channels approach such as Cray Black Widow [11] provides high

throughput for fine-grained accesses, but is inherently expensive due to ABUS

pin and redundancy overheads. The sub-ranked DRAM systems are also pro-

posed and studied: Rambus’s micro-threading [124] and threaded memory

module [8, 125]; HP’s MC-DIMM [13, 14]; Mini-rank memory system [140]; and

Convey’s S/G DIMM [25]. Most of these proposals focus on energy efficiency

of coarse-grained accesses by mitigating the “overfetch” problem. Though

slightly discussed in [13, 25, 124], to the best of our knowledge, we provide the

first quantitative evaluation of sub-ranked memory systems for fine-grained

access and ECC support.

Other Related Work. Our adaptive granularity memory system is closely

related to the Impulse memory controller [136] that uses a shadow address

space to provide the illusion of contiguous data for non-unit stride or indexed

gather/scatter accesses. The Impulse memory controller translates a shadow

address to potentially multiple physical addresses, and then collects multiple

fine-grained data blocks to form a dense coarse-grained data block, reduc-

ing traffic on the bus between the cache controller and the off-chip memory
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controller. Unfortunately, on chip memory controllers in recent architectures

as well as ever-increasing memory access granularity neutralize Impulse’s ad-

vantages. Moreover, it is unclear how to support both fine-grained memory

accesses and ECC with Impulse.

Similar to the tradeoff between storage efficiency and fine-grained through-

put presented in this dissertation, RAID-Z implemented in the ZFS file sys-

tem [5] uses different reliability schemes for stores with varying granularities.

RAID-Z, however, has completely different management mechanisms and char-

acteristics because it deals with the much larger data blocks of hard disk drives.

6.6 Summary

We present a novel architecture that enables a tradeoff between stor-

age efficiency and fine-grained throughput and power efficiency. The adaptive

granularity memory system (AGMS) utilizes finite off-chip bandwidth more

efficiently: Fine-grained memory access minimizes off-chip traffic and reduces

DRAM power consumption by not transferring unnecessary data, while also in-

creasing concurrency in memory accesses and improving performance; coarse-

grained memory access minimizes control and redundancy overheads and can

potentially reduce miss rate. In 4-core systems, AGMS, even with higher ECC

overhead, improves system throughput and power efficiency by 44% and 46%

respectively. It also reduces memory power consumption and traffic by 14%

and 66%. AGMS, though we design it for ECC-enabled memory systems,

is also beneficial for non-ECC memory systems and provides further gains:
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Throughput improvement is 61%; and power efficiency gain is 67%. When off-

chip bandwidth is more constrained, as in our 8-core configurations, AGMS

is even more beneficial and important: System throughput increases are 85%

with ECC and 116% without ECC. Thus, we conclude that adapting access

granularity will be more effective in future systems, where off-chip bandwidth

is relatively scarce. Note that these promising results were obtained with a

very rough profiler for determining the preferred granularity. We expect to

improve on this work by developing more sophisticated heuristics, utilizing

more programmer knowledge, and studying dynamic adaptivity.
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Chapter 7

Conclusions and Future Research Directions

This dissertation presents and evaluates a set of memory resiliency

mechanisms. We demonstrate that the proposed mechanisms reduce on-chip

cache area and power consumption as well as improve system-wide energy effi-

ciency with minimal impact on performance. Also, the proposed mechanisms

are flexible so that the error tolerance level and access granularity can be tuned

to dynamic user, system, and environmental demands.

The key to the efficient and flexible resiliency mechanisms are (i) two-

tiered protection that minimizes the common case resiliency penalty, and

(ii) virtualizing redundant information that decouples data and its associ-

ated ECC, allowing dynamic adaptation of error tolerance levels and access

granularities.

Two-tiered LLC protection. Two-tiered protection, introduced in Sec-

tion 3.1, is a generalization scheme of previously proposed decoupled error de-

tection/correction [64, 71, 99]. Two-tiered protection splits the common case

error detection/light-weight error correction and the uncommon case error cor-

rection. The uniform T1EC provides simple and efficient error detection (or

light-weight error correction), while the T2EC provides strong error correc-
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tion capability. Furthermore, we store the T2EC within memory namespace

to avoid dedicating resources to the T2EC.

In Chapter 4, we apply two-tiered protection with virtualized T2EC to

LLC protection and develop Memory Mapped ECC (MME) and ECC FIFO.

Both mechanisms saves on-chip area and power by 15 − 25% and 9 − 18%,

respectively, while performance penalty is only 0.7% on average. Two-tiered

LLC protection is flexible in choosing ECC codes, and even very strong ECC

codes can be used at low area and power overheads. We describe a set of

example two-tiered ECC codes and show the error protection tradeoffs also.

Virtualized Redundant Information. Virtualizing redundant informa-

tion is introduced in Section 3.2 and allows single hardware to use different

ECC schemes based on user, system, and environmental demands.

In Chapter 5, we develop Virtualized ECC (V-ECC) for chipkill-correct

level main memory protection. We augment the virtual memory interface to

store all or part of redundant information within memory namespace itself.

The simpler T1EC, with the virtualized T2EC, relaxes DRAM module design

constraints so that more energy efficient, wider, DRAM configurations can be

used for chipkill-correct. We show that V-ECC can improve system energy

efficiency by 12%, while performance impact is only 1− 2%. We also develop

V-ECC with Non-ECC DIMMs, enabling memory protection in low-cost or

performance-oriented platforms.
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Another key advantage with V-ECC is the flexible and adaptive error

tolerance level. With the virtualized T2EC, it is possible to use different

ECC for different memory pages. As a result, we avoid unnecessary cost for

reliability by adapting the error tolerance level.

Adaptive Granularity. One of the limitation with uniform ECC is that the

ECC code determines memory access granularity, and typically we use coarse-

grained accesses to amortize ECC overhead over a large data block. We present

that this coarse-grain-only system squanders two important resources: Off-

chip bandwidth is wasted, and unnecessary power is consumed for transferring

unused data bits.

In Chapter 6, we develop the adaptive granularity memory system

(AGMS) that can adapt memory access granularity according to application

memory access patterns. AGMS relies on virtualizing redundant informa-

tion to enable ECC support for fine-grained accesses and employ sub-ranked

DRAM and the sector cache described in Section 3.3. AGMS achieves 44%

higher throughput and 46% better power efficiency than conventional coarse-

grain-only systems in a 4-core CMP. In future CMP systems, where off-chip

bandwidth is more scarce, AGMS provides even better system efficiency, while

providing memory resiliency.

7.1 Future Research Directions

The key mechanisms, we develop in this dissertation, can be applied to

other architectures, even for different purposes, and we present the short-term
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future work in Section 7.1.1. Also, dynamically tunable resiliency is important

and necessary in future power-limited systems, and we describe the long-term

future work on system-level dynamic tunable resiliency in Section 7.1.2.

7.1.1 Extending the Proposed Resiliency Mechanisms

We plan to apply the proposed resiliency mechanisms to other architec-

tures. This includes two-tiered protection for low-VCC caches and GPU on-chip

memory, V-ECC for GPU main memory and emerging non-volatile memory

(NVRAM), applying V-ECC mechanisms for managing generic meta-data, and

AGMS for vector/GPU architectures.

Two-Tiered Protection for Low-VCC Caches. Recent proposal on low

VCC caches reduce error margins to save energy consumption. This, however,

makes many memory cells, which operate correctly under nominal VCC, faulty

in low-VCC mode, appearing as random bit errors.

We can design two-tiered protection for low-VCC caches; the T1EC

detects many random-bit errors and correct small number of errors for the

common case accesses, while the T2EC, off-loaded to main memory namespace,

can handle the uncommon case of T1EC DUE. With the T2EC off-loaded to

main memory, the two-tiered approach can mitigate the overhead of prior

solutions in low-VCC caches.

Two-Tiered Protection for GPU On-Chip Memory. Graphics process-

ing units (GPUs) are already being used as compute accelerators, and memory

protection is essential for integrating GPUs in larger high-end systems. For
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instance, NVidia’s Fermi GPU [89] implement uniform ECC for on-chip mem-

ory. As we discussed in Section 2, this uniform ECC dedicates storage and

bandwidth to redundant information, yielding lower system efficiency. For in-

stance, uniform SEC (single bit-error correcting) code at a 32-bit granularity

requires 22% static storage overhead.

With two-tiered protection, we can accommodate only the T1EC uni-

formly (1-bit parity per 32-bit data word) and store the SEC T2EC in main

memory namespace. Although GPU on-chip memory does not maintain dirty

words explicitly, the compiler can help identify dirty words in the explicitly

managed GPU on-chip memory so that we can write-back only dirty word

T2EC to main memory.

V-ECC for GPU Memory. Main memory for GPU is high-bandwidth

memory products (such as GDDR5), where the dedicated storage for ECC is

not available. V-ECC for Non-ECC DIMMs can be straightforwardly applied

and enable memory protection in GPU systems.

Already, NVidia’s Fermi [89] supports SEC-DED protection with GDDR5

memory, and we believe that the mechanism is quite similar to the technique

we present in Section 5, but without adaptivity. We argue that SEC-DED

(and static in-memory ECC) is not enough for GPU systems. Unlike general

purpose systems, GPU systems do not utilize memory modules so the entire

card needs to be replaced if only a single memory device fails (or manifests

any intolerable hard failures). Hence, more stringent protection mechanisms

(e.g., chipkill-correct) are required in GPU systems eventually to maintain
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low cost and high availability. Supporting chipkill-correct level redundancy

in GPUs, however, will significantly degrade system efficiency. The flexible

memory protection enabled with V-ECC can allow GPU systems to support

just the required error tolerance level. In essence, the cost of chipkill-correct

is only be incurred after a memory device fails, enabling graceful performance

degradation at low cost.

V-ECC for Emerging NVRAM. V-ECC can also protect emerging NVRAM

such as phase-change memory (PCRAM) or memristors. This new memory

technology has finite write-endurance so tolerating hard failures is a challenge.

V-ECC can dynamically adapt error tolerance levels to NVRAM wear-out

status; only minimal protection is applied to brand new devices, maximiz-

ing performance, while the error tolerance levels are increased as necessary to

NVRAM wear-out status.

V-ECC Mechanism for Generic Meta-Data Storage. Recently, there

have been proposals leveraging meta-data [19, 40, 47, 114, 121, 128] in memory

systems for security, concurrency checking, directory-based cache coherency,

and safety checking. Like uniform ECC, we can accommodate meta-data along

with data in dedicated DRAM chips. This, however, not only is inefficient but

also requires custom memory modules for storing uniform meta-data.

The mechanisms presented in Section 5 is general enough to manage

any meta-data in memory systems. We can virtualize meta-data within mem-

ory namespace, similar to V-ECC; this allows any form of meta-data and

selectively enable/disable different meta-data for user demands.
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AGMS for Vector/GPU Architectures. In applications running on

vector processors or GPUs, the off-chip bandwidth is often the bottleneck.

Also, these applications leverage gather/scatter memory operations to handle

irregular patterns in a regular SIMD datapath. Thus, AGMS can naturally

fit to these high-throughput computing platforms, where both better off-chip

bus utilization and reliability are necessary.

7.1.2 Dynamically Tunable Resiliency

In this dissertation, we focus on hardware frameworks that enable flex-

ible and tunable resiliency mechanisms and evaluate the potential of this ap-

proach. The unique combination of two-tiered protection and virtualizing

redundant information enables new tradeoffs between cost, error tolerance,

and performance. Importantly, these new tradeoffs can be tuned at runtime

to meet dynamically changing reliability needs. In future research, we will

develop runtime support for the adaptive/tunable protection and study how

applications exploit dynamically tunable resiliency.

One research direction is to design a runtime module that monitors

system wear-out status or soft error rates; this runtime module sets the default

error tolerance level and takes the reliability demands from applications so

that the system operates at optimal energy efficiency, while guaranteeing the

required reliability.

Another research direction is to augment programming languages to

embrace error tolerance and access granularity. This can be achieved by adding
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annotations to exiting programming languages or overload runtime support

functions. Then, the programmer can request the required error tolerance

level and the preferred access granularity for each memory object or region.

Finally, we can exploit the adaptive error tolerance levels for mitigating

the reliability cost in large-scale computing platforms. Currently, such systems

implement periodic co-ordinated checkpointing and roll-back to the previous

checkpoint upon an error. This overhead of taking periodic checkpointing is

increasing and predicted to be unacceptably high in future systems. With

adaptive resiliency, we can selectively increase error tolerance levels of nodes

that suffer frequent errors. Even with increased checkpointing periods, the

nodes with stronger error tolerance can make progress, by tolerating errors

rather than rolling-back to a checkpoint.

177



Bibliography

[1] Cross-layer reliability. http://www.xlayer.org.

[2] HPC challenge. http://icl.cs.utk.edu/hpcc/hpcc_results.cgi.

[3] HPCS scalable synthetic compact application (SSCA). http://www.

highproductivity.org/SSCABmks.htm.

[4] Linked list traversal micro-benchmark. http://www-sal.cs.uiuc.

edu/~zilles/llubenchmark.html.

[5] ZFS the last word in file systems. http://www.opensolaris.org/os/

community/zfs/docs/zfs_last.pdf.

[6] Calculating memory system power for DDR2. Technical Report TN-47-

04, Micron Technology, 2005.

[7] Calculating memory system power for DDR3. Technical Report TN-41-

01, Micron Technology, 2007.

[8] Rambus and Kingston co-develop threaded module prototype for multi-

core computing, 2009.

[9] M. Abbott, D. Har, L. Herger, M. Kauffmann, K. Mak, J. Murdock,

C. Schulz, T. B. Smith, D. Tremaine, D. Yeh, and L. Wong. Durable

178



memory RS/6000TM system design. In Proc. the 24th Int’l Symp.

Fault-Tolerant Computing (FTCS), Jun. 1994.

[10] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gonzalez. Low

Vccmin fault-tolerant cache with highly predictable performance. In

Proc. the 42nd IEEE/ACM Int’l Symp. Microarchitecture (MICRO),

Dec. 2009.

[11] D. Abts, A. Bataineh, S. Scott, G. Faanes, J. Schwarzmeier, E. Lund-

berg, M. Byte, and G. Schwoerer. The Cray Black Widow: A highly

scalable vector multiprocessor. In Proc. the Int’l Conf. High Perfor-

mance Computing, Networking, Storage, and Analysis (SC), Nov. 2007.

[12] N. Aggarwal, J. E. Smith, K. K. Saluja, N. P. Jouppi, and P. Ran-

ganathan. Implementing high availability memory with a duplication

cache. In Proc. the 41st IEEE/ACM Int’l Symp. Microarchitecture

(MICRO), Nov. 2008.

[13] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber.

Future scaling of processor-memmory interfaces. In Proc. the Int’l Conf.

High Performance Computing, Networking, Storage and Analysis (SC),

Nov. 2009.

[14] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multicore

DIMM: An energy efficient memory module with independently con-

trolled DRAMs. IEEE Computer Architecture Letters, 8(1):5–8, Jan. -

Jun. 2009.

179



[15] AMD. BIOS and kernel developer’s guide for AMD NPT family 0Fh

processors, Jul. 2007.

[16] H. Ando, K. Seki, S. Sakashita, M. Aihara, R. Kan, K. Imada, M. Itoh,

M. Nagai, Y. Tosaka, K. Takahisa, and K. Hatanaka. Accelerated test-

ing of a 90nm SPARC64 V microprocessor for neutron SER. In Proc. the

IEEE Workshop on Silicon Errors in Logic - System Effects (SELSE),

Apr. 2007.

[17] S. Ankireddi and T. Chen. Challenges in thermal management of mem-

ory modules. http://electronics-cooling.com/html/2008_feb_a3.

php.

[18] J. Baggio, D. Lambert, V. Ferlet-Cavrois, C. D’hose, K. Hirose, H. Saito,

J. M. Palau, F. Saigne, B. Sagnes, N. Buard, and T. Carriere. Neutron-

induced SEU in bulk and SOI SRAMs in terrestrial environments. In

Proc. the IEEE 42nd Ann. Int’l Reliability Physics Symp. (IRPS), 2004.

[19] L. Baugh, N. Neelakantam, and C. Zilles. Using hardware memory

protection to build a high-performance, strongly-atomic hybrid transac-

tional memory. In Proc. the 35th Ann. Int’l Symp. Computer Architec-

ture (ISCA), Jun. 2008.

[20] R. C. Baumann and E. B. Smith. Neutron-induced Boron fission as a

major source of soft errors in deep submicron SRAM devices. In Proc.

the IEEE 41st Ann. Int’l Reliability Physics Symp. (IRPS), 2000.

180



[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC bench-

mark suite: Characterization and architectural implications. Technical

Report TR-811-08, Princeton Univ., Jan. 2008.

[22] R. E. Blahut. Algebraic Codes for Data Transmission. Cambridge

University Press, 2003.

[23] R. C. Bose and D. K. Ray-Chaudhuri. On a class of error correcting

binary group codes. Information and Control, 3:68–79, 1960.

[24] D. C. Bossen. B-adjacent error correction. IBM J. Res. and Dev.,

14(4):402–408, 1970.

[25] T. M. Brewer. Instruction set innovations for the Convey HC-1 com-

puter. IEEE Micro, 30(2):70–79, 2010.

[26] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proc. the 27th

Ann. Int’l Symp. Computer Architecure (ISCA), Jun. 2000.

[27] B. H. Calhoun and A. P. Chandrakasan. A 256kb sub-threshold SRAM

in 65nm CMOS. In Proc. the Int’l Solid State Circuits Conf. (ISSCC),

Feb. 2006.

[28] P. Calingaert. Two-dimensional parity checking. J. ACM, 8(2):186–

200, Apr. 1961.

181



[29] E. H. Cannon, D. D. Reinhardt, M. S. Gordon, and P. S. Makowenskyj.

SRAM SER in 90, 130 and 180 nm bulk and SOI technologies. In Proc.

the IEEE 42nd Ann. Int’l Reliability Physics Symp. (IRPS), 2004.

[30] M. C. Carlisle and A. Rogers. Software caching and computation mi-

gration in Olden. Technical Report TR-483-95, Princeton University,

1995.

[31] L. Chang, D. M. Fried, J. Hergenrother, J. W. Sleight, R. H. Dennard,

R. K. Montoye, L. Sekaric, S. J. McNab, A. W. Topol, C. D. Adams,

K. W. Guarini, and W. Haensch. Stable SRAM cell design for the

32nm node and beyond. In Digest of Technical Papers of Symp. VLSI

Technology, Jun. 2005.

[32] C. Chen, S.-H. Yang, B. Falsafi, and A. Moshovos. Accurate and

complexity-effective spatial pattern prediction. In Proc. the 10th Int’l

Symp. High-Performance Computer Architecture (HPCA), Feb. 2004.

[33] C. L. Chen. Symbol error correcting codes for memory applications.

In Proc. the 26th Ann. Int’l Symp. Fault-Tolerant Computing (FTCS),

Jun. 1996.

[34] C. L. Chen and M. Y. Hsiao. Error-correcting codes for semiconductor

memory applications: A state-of-the-art review. IBM J. Res. and Dev.,

28(2):124–134, Mar. 1984.

182



[35] Z. Chisti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu. Im-

proving cache lifetime reliability at ultra-low voltages. In Proc. the

42nd IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec. 2009.

[36] R. Danilak. Transparent error correction code memory system and

method. US Patent, US 7,117,421, Oct. 2006.

[37] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for PC

server main memory. IBM Microelectronics Division, Nov. 1997.

[38] T. J. Dell. System RAS implications of DRAM soft errors. IBM J. Res.

and Dev., 52(3):307– 314, 2008.

[39] N. Derhacobian, V. A. Vardanian, and Y. Zorian. Embedded memory

reliability: The SER challenge. In Proc. the Records of the 2004 Int’l

Workshop on Memory Technology, Design, and Testing, Aug. 2004.

[40] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic. Hard-

Bound: Architectural support for spatial safety of the C programming

language. In Proc. the 13th Int’l Conf. Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), Mar. 2008.

[41] Digital Equipment Corporation. Alpha 21264 Microprocessor Hardware

Reference Manual, Jul. 1999.

[42] Earl Joseph II. GUPS (giga-updates per second) benchmark. http:

//www.dgate.org/~brg/files/dis/gups/.

183



[43] S. Eyerman and L. Eeckhout. System-level performance metrics for

multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[44] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a

warehouse-sized computer. In Proc. the 34th Ann. Int’l Symp. Com-

puter Architecture (ISCA), Jun. 2007.

[45] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with multiple

caching strategies tuned to different types of locality. In Proc. the Int’l

Conf. Supercomputing (ICS), Jul. 1995.

[46] C. S. Guenzer, E. A. Wolicki, and R. G. Allas. Single event upset of

dynamic RAMs by neutrons and protons. IEEE Trans. Nuclear Science,

26(6):5048–5052, Dec. 1979.

[47] L. Gwennap. Alpha 21364 to easse memory bottleneck. Micro-processor

Report, Oct. 1998.

[48] M. J. Haertel, R. S. Polzin, A. Kocev, and M. B. Steinman. ECC

implementation in non-ECC components. US Patent Pending, Serial

No. 725,922, Sep. 2008.

[49] G. Hamerly, E. Perelman, J. Lau, and B. Calder. SimPoint 3.0: Faster

and more flexible program analysis. In Proc. the Workshop on Modeling,

Benchmarking and Simulation (MoBS), Jun. 2005.

[50] R. W. Hamming. Error correcting and error detecting codes. Bell

System Technical J., 29:147–160, Apr. 1950.

184



[51] A. Hilton, N. Eswaran, and A. Roth. FIESTA: A sample-balanced

muilti-program workload methodology. In Proc. the Workshop on Mod-

eling, Benchmarking and Simulation (MoBS), Jun. 2009.

[52] A. Hocquenghem. Codes correcteurs d’erreurs. Chiffres (Paris), 2:147–

156, 1959.

[53] M. Y. Hsiao. A class of optimal minimum odd-weight-column SEC-DED

codes. IBM J. Res. and Dev., 14:395–301, 1970.

[54] M. Y. Hsiao, D. C. Bossen, and R. T. Chien. Orthogonal latic square

codes. IBM J. Res. and Dev., 14(4):390–394, Jul. 1970.

[55] J. Huynh. White Paper: The AMD Athlon MP Processor with 512KB

L2 Cache, May 2003.

[56] IBM. Enhancing IBM Netfinity server reliability. ftp://ftp.software.

ibm.com/systems/support/system_x/chipkif1.pdf, 1999.

[57] Intel Corp. Intel(R) IA-64 and IA-32 Architecture Software Developer’s

Manual, Mar. 2010.

[58] S.-M. Jung, H. Lim, W. Cho, H. Cho, H. Hong, J. Jeong, S. Jung,

H. Park, B. Son, Y. Jang, and K. Kim. Soft error immune 0.46 µm2

SRAM cell with MIM node capacitor by 65nm CMOS technology for

ultra high speed SRAM. In Technical Digest of IEEE Int’l Electron

Devices Meeting (IEDM), Dec. 2003.

185



[59] R. Kalla, B. Sinharoy, W. J. Starke, and M. Floyd. Power7: IBM’s

next-generation server processor. IEEE Micro, 30(2):7–15, 2010.

[60] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: Exploiting genera-

tional behavior to reduce cache leakage power. In Proc. the 28th Ann.

Int’l Symp. Computer Architecture (ISCA), Jun.-Jul. 2001.

[61] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD

Opteron processor for multiprocessor servers. IEEE Micro, 23(2):66–76,

Mar.-Apr. 2003.

[62] G. H. Kemmetmueller. RAM error correction using two dimensional

parity checking. US Patent, US 4,183,463, Jan. 1980.

[63] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. Multi-bit

error tolerant caches using two-dimensional error coding. In Proc. the

40th IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Dec. 2007.

[64] S. Kim. Area-efficient error protection for caches. In Proc. the Conf.

Design Automation and Test in Europe (DATE), Mar. 2006.

[65] S. Kim and A. K. Somani. Area efficient architectures for informa-

tion integrity in cache memories. In Proc. the 26th Ann. Int’l Symp.

Computer Architecture (ISCA), May 1999.

[66] J. P. Kulkarni, K. Kim, and K. roy. A 160mV robust schmitt trigger

based subthreshold SRAM. IEEE J. Solid-State Circuits, 42(10):2303–

2313, Oct. 2007.

186



[67] S. Kumar and C. Wilkerson. Exploiting spatial locality in data caches

using spatial footprints. In Proc. the 25th Ann. Int’l Symp. Computer

Architecture (ISCA), Jun. 1998.

[68] R. Kuppuswamy, S. R. Sawant, S. Balasubramanian, P. Kaushik, N. Natara-

jan, and J. D. Gilbert. Over one million TPCC with a 45nm 6-core Xeon

CPU. In Proc. the Int’l Solid State Circuits Conf. (ISSCC), Feb. 2009.

[69] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback -

a technique for improving bandwidth utilization. In Proc. the 33rd

IEEE/ACM Int’l Symp. Microarchitecture (MICRO), Nov.-Dec. 2000.

[70] K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian.

Mitigating soft error failures for multimedia applications by selective

data protection. In Proc. the Int’l Conf. Compilers, Architecture and

Synthesis for Embedded Systems (CASES), Oct. 2006.

[71] L. Li, V. S. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.

Soft error and energy consumption interactions: A data cache perspec-

tive. In Proc. the Int’l Symp. Low Power Electronics and Design

(ISLPED), Aug. 2004.

[72] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi. McPAT: An integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Proc. the 42nd

Ann. IEEE/ACM Int’l Symp Microarchitecture (MICRO), Dec. 2009.

187



[73] K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Rein-

hardt. Understanding and designing new server architectures for emerg-

ing warehouse-computing environments. In Proc. the 35th Ann. Int’l

Symp. Computer Architecture (ISCA), Jun. 2008.

[74] S. Lin and D. J. Costello Jr. Error Control Coding: Fundamentals and

Applications. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1983.

[75] J. S. Liptay. Structural aspects of the system/360 model 85, part II:

The cache. IBM Sys. J., 7:15–21, 1968.

[76] G. H. Loh, S. Subramaniam, and Y. Xie. Zesto: A cycle-level simulator

for highly detailed microarchitecture exploration. In Proc. the Int’l

Symp. Performance Analysis of Software and Systems (ISPASS), Apr.

2009.

[77] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. J. Reddi, and K. Hazelwood. PIN: Building customized program

analysis tools with dynamic instrumentation. In Proc. the ACM Conf.

Programming Language Design and Implementation (PLDI), Jun. 2005.

[78] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,

J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. SIMICS: A full

system simulation platform. IEEE Computer, 35:50–58, Feb. 2002.

188



[79] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Characterization of

multi-bit soft error events in advanced SRAMs. In Technical Digest of

the IEEE Int’l Electron Devices Meeting (IEDM), Dec. 2003.

[80] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,

A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multi-

facet’s general execution-driven multiprocessor simulator (GEMS) toolset.

SIGARCH Computer Architecture News (CAN), 33:92–99, Nov. 2005.

[81] T. C. May and M. H. Woods. A new physical mechanism for soft errors

in dynamic memories. In Proc. the 16th Ann. IEEE Int’l Reliability

Physics Symp. (IRPS), Apr. 1978.

[82] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high

performance computers. http://www.cs.virginia.edu/stream/.

[83] M. McTague and H. David. Fully buffered DIMM (FB-DIMM) design

considerations. Intel Developer Forum (IDF), Feb. 2004.

[84] Micron Corp. Micron 1 Gb ×4, ×8, ×16, DDR3 SDRAM: MT41J256M4,

MT41J128M8, and MT41J64M16, 2006.

[85] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0.

Technical report, HP Labs., Apr. 2009.

[86] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En-

hancing both performance and fairness of shared DRAM systems. In

189



Proc. the 35h Ann. Int’l Symp. Computer Architecture (ISCA), Jun.

2008.

[87] J. A. Nerl, K. Pomaranski, G. Gostin, A. Walton, and D. Soper. System

and method for controlling application of an error correction code. US

Patent, US 7,437,651, Oct. 2004.

[88] J. A. Nerl, K. Pomaranski, G. Gostin, A. Walton, and D. Soper. System

and method for applying error correction code (ECC) erasure mode and

clearing recorded information from a page deallocation page. US Patent,

US 7,313,749, Dec. 2007.

[89] NVIDIA. Fermi architecture. http://www.nvidia.com/object/fermi_

architecture.html.

[90] K. Osada, K. Yamaguchi, and Y. Saitoh. SRAM immunity to cosmic-

ray-induced multierrors based on analysis of an induced parasitic bipolar

effect. IEEE J. Solid-State Circuits, 39:827–833, May 2004.

[91] A. M. Patel and M. Y. Hsiao. An adaptive error correction scheme for

computer memory system. In Proc. the Fall Joint Computer Conf., part

I, Dec. 1972.

[92] N. Quach. High availability and reliability in the Itanium processor.

IEEE Micro, 20(5):61–69, Sept.-Oct. 2000.

[93] M. K. Qureshi, M. A. Suleman, and Y. N. Patt. Line distillation:

Increasing cache capacity by filtering unused words in cache lines. In

190



Proc. the 13th Int’l Symp. High Performance Computer Architecture

(HPCA), Feb. 2007.

[94] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields.

J. Soc. for Industrial and Applied Math., 8:300–304, Jun. 1960.

[95] S. Rixner, W. J. Dally, U. J. Kapasi, P. R. Mattson, and J. D. Owens.

Memory access scheduling. In Proc. the 27th Ann. Int’l Symp. Com-

puter Architecture (ISCA), Jun. 2000.

[96] P. Roche, F. Jacquet, C. Callat, and J.-P. Schoellkopf. An alpha immune

and ultra low neutron SER high density SRAM. In Proc. the IEEE 42nd

Ann. Int’l Reliability Physics Symp. (IRPS), Apr. 2004.

[97] J. B. Rothman and A. J. Smith. The pool of subsectors cache design.

In Proc. the 13th Int’l Conf. Supercomputing (ICS), Jun. 1999.

[98] J. B. Rothman and A. J. Smith. Sectored cache design and performance.

Technical Report UCB/CSD-99-1034, University of California, Berkeley,

Jan. 1999.

[99] N. N. Sadler and D. J. Sorin. Choosing an error protection scheme for

a microprocessor’s L1 data cache. In Proc. the Int’l Conf. Computer

Design (ICCD), Oct. 2006.

[100] G. Schindlbeck and C. Slayman. Neutron-induced logic soft errors in

DRAM technology and their impact on reliable server memory. In

191



Proc. the IEEE Workshop on Silicon Errors in Logic - System Effects

(SELSE), Apr. 2007.

[101] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the

wild: A large-scale field study. In Proc. the 11th Int’l Joint Conf.

Measurement and Modeling of Computer Systems (SIGMETRICS), Jun.

2009.

[102] J. R. Schwank, V. Ferlet-Cavrois, M. R. Shaneyfelt, P. Paillet, and P. E.

Dodd. Radiation effets in SOI technologies. IEEE Trans. Nuclear

Science, 50(3), Jun. 2003.

[103] N. Seifert, V. Zia, and B. Gill. Assessing the impact of scaling on the

efficacy of spatial redundancy based mitigation schemes for terrestrial

applications. In Proc. the IEEE Workshop on Silicon Errors in Logic -

System Effects (SELSE), Apr. 2007.

[104] A. Seznec. Decoupled sectored caches: Conciliating low tag implemen-

tation cost. In Proc. the 21st Ann. Int’l Symp. Computer Architecture

(ISCA), Apr. 1994.

[105] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Con-

cepts. Wiley, Dec. 2004.

[106] C. Slayman. Cache and memory error detection, correction, and reduc-

tion techniques for terrestrial servers and workstations. IEEE Trans.

Device and Materials Reliability, 5:397– 404, Sep. 2005.

192



[107] C. Slayman. Impact of error correction code and dynamic memory

reconfiguration on high-reliability/low-cost server memory. In Proc. the

IEEE Int’l Integrated Reliability Workshop (IIRW), Oct. 2006.

[108] C. Slayman. Impact and mitigation of DRAM and SRAM soft errors.

IEEE SCV Reliability Seminar http://www.ewh.ieee.org/r6/scv/rl/

articles/Soft%20Error%20mitigation.pdf, May 2010.

[109] Standard Performance Evaluation Corporation. SPEC CPU 2006. http:

//www.spec.org/cpu2006/, 2006.

[110] J. Standards. JESD89 measurement and reporting of alpha particles

and terrestrial cosmic ray-induced soft errors in semiconductor devices,

JESD89-1 system soft error rate (SSER) method and JESD89-2 test

method for alpha source accelerated soft error rate, 2001.

[111] J. Standards. JESD 79-2e DDR2 SDRAM specification, 2008.

[112] J. Standards. JESD 79-3b DDR3 SDRAM specification, 2008.

[113] D. Strukov. The area and latency tradeoffs of binary bit-parallel BCH

decoders for prospective nanoelectronic memories. In Proc. Asilomar

Conf. Signals Systems and Computers, October 2006.

[114] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program

execution via dynamic information flow tracking. In Proc. the 11th Int’l

Conf. Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Oct. 2004.

193



[115] Sun Microsystems Inc. UltraSPARC R©III Cu, Jan. 2004.

[116] Sun Microsystems Inc. OpenSPARC T2 System-On-Chip (SOC) Mi-

croarchitecture Specification, May 2008.

[117] M. Talluri and M. D. Hill. Surpassing the TLB performance of su-

perpages with less operating system support. In Proc. the 6th Int’l

Conf. Architectural Support for Programming Languages and Operating

Systems (ASPLOS), Oct. 1994.

[118] J. M. Tendler, J. S. Dodson, J. S. F. Jr., H. Le, and B. Sinharoy.

POWER4 system microarchitecture. IBM J. Res. and Dev., 46(1):5–25,

Jan. 2002.

[119] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. CACTI

5.1. Technical report, HP Labs., Apr. 2008.

[120] A. V. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji. Adapt-

ing cache line size to application behavior. In Proc. the Int’l Conf.

Supercomputing (ICS), Jun. 1999.

[121] G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic. Flexitaint:

A programmable accelerator for dynamic taint propagation. In Proc.

the 14th Int’l Symp. High Performance Computer Architecture (HPCA),

Feb. 2008.

[122] Violin Memory Inc. Scalable memory applicance. http://violin-memory.

com/DRAM.

194



[123] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel, and B. Ja-

cob. DRAMsim: A memory-system simulator. SIGARCH Computer

Architecture News (CAN), 33:100–107, Sep. 2005.

[124] F. A. Ware and C. Hampel. Micro-threaded row and column operations

in a DRAM core. In Proc. the first Workshop on Unique Chips and

Systems (UCAS), Mar. 2005.

[125] F. A. Ware and C. Hampel. Improving power and data efficiency with

threaded memory modules. In Proc. the Int’l Conf. Computer Design

(ICCD), 2006.

[126] P. M. Wells, K. Chakraborty, and G. S. Sohi. Mixed-mode multicore

reliability. In Proc. the 14th Int’l Conf. Architectural Support for

Programming Languages and Operating Systems (ASPLOS), Mar. 2009.

[127] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and

S.-L. Lu. Trading off cache capacity for reliability to enable low voltage

operation. In Proc. the 35th Ann. Int’l Symp. Computer Architecture

(ISCA), Jun. 2008.

[128] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection.

In Proc. the 10th Int’l Conf. Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Oct. 2002.

[129] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 programs: Characterization and methodological considera-

195



tions. In Proc. the 22nd Ann. Int’l Symp. Computer Architecture

(ISCA), Jun. 1995.

[130] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The asynchronous

24MB on-chip level-3 cache for a dual-core Itanium R©-family processor.

In Proc. the Int’l Solid-State Circuits Conf. (ISSCC), Feb. 2005.

[131] D. H. Yoon and M. Erez. Flexible cache error protection using an

ECC FIFO. In Proc. the Int’l Conf. High Performance Computing,

Networking, Storage, and Analysis (SC), Nov. 2009.

[132] D. H. Yoon and M. Erez. Memory mapped ECC: Low-cost error protec-

tion for last level caches. In Proc. the 36th Ann. Int’l Symp. Computer

Architecture (ISCA), Jun. 2009.

[133] D. H. Yoon and M. Erez. Virtualized and flexible ECC for main memory.

In Proc. the 15th Int’l. Conf. Architectural Support for Programming

Language and Operating Systems (ASPLOS), Mar. 2010.

[134] D. H. Yoon and M. Erez. Virtualized ECC: Flexible reliability in main

memory. IEEE Micro, Special Issue: Micro’s Top Picks from 2010

Computer Architecture Conferences (MICRO TOP PICKS), 31(1):11–

19, Jan./Feb. 2011.

[135] D. H. Yoon, M. K. Jeong, and M. Erez. Adaptive granularity memory

systems: A tradeoff between storage efficiency and throughput. In Proc.

the Int’l Symp. Computer Architecture (ISCA), June 2011.

196



[136] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter,

W. Hsieh, and S. McKee. The Impulse memory controller. IEEE

Transactions on Computers, Special Issue on Advances in High Perfor-

mance Memory Systems, 50(11):1117–1132, Nov. 2001.

[137] W. Zhang. Replication cache: A small fully associative cache to improve

data cache reliability. IEEE Trans. Computer, 54(12):1547 –1555, Dec.

2005.

[138] W. Zhang, S. Gurumurthi, M. Kandemir, and A. Sivasubramaniam.

ICR: In-cache replication for enhancing data cache reliability. In Proc.

the Int’l Conf. Dependable Systems and Networks (DSN), Jun. 2003.

[139] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based page interleav-

ing scheme to reduce row-buffer conflicts and exploit data locality. In

Proc. the 33rd IEEE/ACM Int’l Symp. Microarchitecture (MICRO),

Dec. 2000.

[140] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-

rank: Adaptive DRAM architecture for improving memory power effi-

ciency. In Proc. the 41st IEEE/ACM Int’l Symp. Microarchitecture

(MICRO), Nov. 2008.

[141] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM: Building

high-bandwidth memory systems using low-speed DRAM devices. In

Proc. the 36th Ann. Int’l Symp. Computer Architecture (ISCA), Jun.

2009.

197



[142] J. F. Ziegler and W. A. Lanford. Effects of cosmic rays on computer

memories. Science, 206:776–788, Nov. 1979.

198



Vita

Doe Hyun Yoon was born in Seoul, Korea on 21 June 1975. Doe Hyun

studied at Yonsei University, Seoul, Korea, where he received a B.S. degree in

Electrical Engineering in 1998 and an M.S. degree in Electrical and Computer

Engineering in 2000. Doe Hyun begun his work at LG Electronics, Seoul,

Korea in 2000. He has worked on audio/video codec development, real-time

OS programming, and scalable video codec (SVC) standardization at LG for

five years. Doe Hyun continued his study at Stanford University, California,

where he received an M.S. degree in Electrical Engineering in 2007.

Doe Hyun started his Ph.D. study on computer architecture at the

University of Texas at Austin in 2007. His research is focused on reliability

issues in memory systems, including caches, DRAM, and emerging non-volatile

memory. His research has been published in major computer architecture

conferences (ISCA, SC, ASPLOS, and HPCA). One paper is selected as Top

Picks by the IEEE Micro magazine. Doe Hyun worked as a research intern at

MIPS technology in 2006 and HP Labs in 2010.

Permanent address: Dong-Bu Centreville Apt. 101-801, Songpa-gu,
Garak-dong, Seoul, Korea 138-160

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

199


