
Lane Decoupling for Improving the Timing-Error Resiliency of
Wide-SIMD Architectures

Evgeni Krimer1, Patrick Chiang2, and Mattan Erez1

1Electrical and Computer Engineering Department, The University of Texas at Austin
2School of Electrical Engineering and Computer Science, Oregon State University

krimer@utexas.edu, pchiang@eecs.oregonstate.edu, mattan.erez@mail.utexas.edu

Abstract
A significant portion of the energy dissipated in mod-

ern integrated circuits is consumed by the overhead associ-
ated with timing guardbands that ensure reliable execution.
Timing speculation, where the pipeline operates at an un-
safe voltage with any rare errors detected and resolved by
the architecture, has been demonstrated to significantly im-
prove the energy-efficiency of scalar processor designs. Un-
fortunately, applying the same timing-speculative approach
to wide-SIMD architectures, such as those used in highly-
efficient GPUs, may not provide similar gains.

In this work, we make two important contributions. The
first is a set of models describing a parametrized general
error probability function that is based on measurements
of a fabricated chip and the expected efficiency benefits of
timing speculation in a SIMD context. The second contribu-
tion is a decoupled SIMD pipeline that more effectively uti-
lizes timing speculation and recovery, when compared with
a standard SIMD design that uses only conventional timing
speculation. The proposed lane decoupling enables each
SIMD lane to tolerate timing errors independent of other
adjacent lanes, resulting in higher throughput and improved
scalability. We validate our models and evaluate our design
using a cycle-based GPU simulator, describe the conditions
where efficiency improvements can be obtained, and explore
the benefits of decoupling across a wide range of parame-
ters. Our results show that timing speculation can achieve
up to 10.3% improvement in efficiency.

This research was funded in part by the U.S. Government. The views
and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either ex-
pressed or implied, of the U.S. Government.

c© 2012 IEEE. This is the authors version of the work. The defini-
tive version was published in the Proceedings of ISCA2012. Personal
use of this material is permitted. Permission from IEEE must be ob-
tained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, cre-
ating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

1 Introduction

Energy consumption and power dissipation are two of
the most important considerations for future processor de-
signs. In previous technology generations, process advance-
ments such as transistor scaling reduced energy consump-
tion sufficiently to enable continued computational density
increases, reduced form factor, and improved battery life.
Today, however, transistor density is scaling faster than im-
provements in energy consumption because supply voltage
cannot be scaled as aggressively as in the past. As a result of
this slow scaling of efficiency, it is necessary to optimize en-
ergy efficiency and power across the entire computing sys-
tem in order to continue to scale performance.

In this paper we explore one such promising combina-
tion of architecture and circuits research. We combine the
highly-efficient and high-performance design of a modern
graphics processing unit (GPU) with timing-speculation cir-
cuit techniques, in order to boost efficiency [7, 6, 2]. Be-
cause GPUs rely on massive explicit parallelism, they can
support a large number of hardware contexts that tolerate
memory latencies and maximize throughput by utilizing a
large number of computational units. Hence, control over-
head can be kept low while the processor provides very high
parallel performance. In order to improve GPU efficiency
further, a single controller (sequencer) schedules the opera-
tions of a large number of parallel functional units in single-
instruction, multiple-data (SIMD) fashion, amortizing the
control overhead across many operations. Even with this ef-
ficient throughput-based design, overall performance is still
bounded by total power consumption.

Further efficiencies can be gained through integrated ar-
chitecture and circuit-level techniques. One such opportu-
nity arises from the fact that a significant portion of the com-
putational energy is consumed not in performing the arith-
metic operation itself, but in providing timing guardbands
that ensure reliable execution. By operating at a higher-
than-the-minimum-required supply voltage, modern guard-
banded systems provide enough slack to tolerate timing un-

certainties due to temperature effects, process variations,
supply noise, signal integrity, and others. Furthermore, the
maximum clock frequency is set to accommodate the worst
(critical) path delay of any computation, even though it may
occur rarely. Hence, guard-bands have a negative effect on
both maximum clock frequency and power consumption, as
the supply voltage cannot be scaled further in order to sus-
tain sufficient timing margin. An alternative design is to
trim the guardbands and speculate that the circuit will com-
plete its operation in time for the next cycle, even though
such aggressive timing cannot be guaranteed. The circuits
are then augmented with a mechanism to detect rare timing
violations, with the architecture designed to recover from
possible errors resulting from such violations [7]. This
architecture-circuit timing speculation technique has been
shown to significantly boost both the efficiency and varia-
tion resiliency of scalar pipelines [6, 2].

The main focus of this paper is improving the energy
efficiency of massively parallel (GPU-like) architectures
through timing speculation. We explore the tradeoffs asso-
ciated with timing speculation in the context of SIMD de-
signs, and build on our earlier work [13], to develop and
evaluate SIMD- and GPU-specific extensions to the tim-
ing speculation technique. In our initial work, we observed
that naively applying timing speculation to a SIMD pipeline
may perform poorly. Any error that occurs in a single func-
tional unit stalls all the lanes of the entire SIMD pipeline,
in effect multiplying the baseline error rate by the degree
of parallelism and crippling the benefits of timing specu-
lation [13]. In response to this deficiency, we proposed de-
coupled parallel SIMD pipelines (DPSP) [13]. DPSP allows
limited slipping between SIMD lanes and enables each lane
to tolerate errors independently, thus overcoming the defi-
ciencies of the timing-speculative SIMD described above.
DPSP also enables more efficient error recovery when a tim-
ing error is detected, as recovery is localized to a single lane.
We extend the DPSP concept to a GPU and discuss GPU-
specific implementation details for the first time. We also
perform a detailed quantitative evaluation that is based on
modeling, simulation, and fabricated circuit measurements.

To summarize our main contributions:

• We demonstrate the potential issues of applying timing
speculation to SIMD designs, arising from the fact that
an error in any SIMD lane stalls all SIMD lanes. We
also show that despite this problem, efficiency can be
improved under some conditions.

• We detail the implementation of DPSP (decoupled par-
allel SIMD pipeline) and recovery, in the specific con-
text of a GPU. We describe the microarchitecture and
its interaction with the GPU execution model, discuss
implications and alternatives, and evaluate DPSP with
detailed simulations of a GPU.

• We develop a new model for the expected probabil-
ity of errors that result from timing violations when
the supply voltage is reduced. This error rate model
is based on a combination of analytical formulation,
results from prior work [7], and measurements of a
recent test-chip fabricated in a 45nm CMOS pro-
cess [18].

• We develop a new analytical model for the potential
efficiency gains of timing speculation. This includes
modeling the expected execution time due to recovery
overheads. Our model uses the ET 2 metric to isolate
the improvements of the architecture. This is necessary
because DVFS can be applied in addition to timing
speculation, and using metrics such as energy-delay
product or energy-per-operation cannot distinguish be-
tween these techniques.

• We validate the efficiency model using detailed cycle-
level simulations of a GPU architecture augmented
with timing speculation. We then draw conclusions
and present insights into when timing speculation and
DPSP are beneficial, and describe expected future
trends. This is the first detailed treatment of timing
speculation in the context of an efficient parallel archi-
tecture built upon lock-step execution. We conclude
that naive timing speculation for a GPU will only im-
prove efficiency (ET 2) by 7.8%, whereas DPSP ex-
tends the potential gains to 10.3%.

The rest of the paper is organized as follows: we present
closely related work in Section 2, detail the implementation
of timing speculation in a GPU in Section 3, describe our
extensive methodology in Section 4, introduce a model for
the timing-violation-induced error rate in Section 5, develop
a model for the efficiency improvements of timing spec-
ulation and present model-based results in Section 6, an-
alyze detailed microarchitecture simulation results in Sec-
tion 7, and discuss implementation issues and summary in-
Section 8.

2 Related Work

The simplest way to reduce power consumption is to em-
ploy clock throttling, known as Dynamic Frequency Scaling
(DFS). This improves power linearly, but does not improve
performance/watt nor energy-efficiency. Dynamic Voltage
Scaling (DVS) attempts to maintain the same throughput
while increasing energy-efficiency quadratically by keeping
the clock constant while reducing the supply voltage. Fi-
nally, Dynamic Voltage-Frequency Scaling (DVFS) incor-
porates both techniques simultaneously, improving power
cubically [5].

While DVFS can be used to improve energy efficiency it
does not reduce the guardbands introduced to address input-
dependent variations. To reduce such guardbands, prior
work [7, 6, 2] speculatively assumed that timing will be met
in the vast majority of computations. In the rare situations
when the timing speculations were incorrect, the delay vio-
lations are detected and corrected by the pipeline. However,
these previous mechanisms have only been applied to rela-
tively simple scalar pipelines. Besides the initial work [13],
where the authors briefly analyzed the performance impact
of timing errors in the context of a SIMD pipeline, there are
little other related publications.

The introduction of timing errors requires mechanisms
for detecting errors. Ernst et al. [7] incorporated a shadow
latch to sample the logic output at a time delay after the
conventional pipeline register. When a discrepancy occurs
between the pipeline register and the shadow latch, an er-
ror is detected. Several other related techniques based on
double sampling include swapping the register components
in order to improve meta-stability [2], error-detection se-
quentials [3], and tunable-replica circuits (TRCs) [23]. Un-
fortunately, due to min-path race constraints, these double-
sampling approaches require that all MIN and MAX path
delays be bounded by approximately ×1/2 and ×3/2 of
the average cycle time, respectively.

In order to maintain this MIN-MAX timing constraint
for a typical pipeline, ’dummy’ delay buffers need to be
added to short delay paths. These buffers, as well as the
double latches in the detectors, result in energy and area
overhead regardless of whether supply voltage scaling or
timing speculation is used. Hence, in order to minimize
this overhead, Razor-based systems are typically used spar-
ingly only on the critical delay paths that set the worst-
case timing closure. However, for a well-designed proces-
sor implementing timing speculation, the overheads can be
very small. RazorII [6], for example, showed a 33% im-
provement in overall energy consumption using supply volt-
age scaling, with the RazorII and min-path buffer insertion
power overhead only 1.2% and 1.3%, respectively. Simi-
larly, Bowman et. al. [2] demonstrated a 22% improvement
in energy-efficiency and 41% improvement in throughput
for their resilient processor. Here, the error-detection mech-
anisms are inserted into only 12% of the critical path reg-
isters, resulting in an overall 3.8% area increase and 0.9%
power overhead, including min-path buffer insertion. Fi-
nally, a more recent Razor-based design using an ARM pro-
cessor [4] achieves an aggregate 52% power reduction, with
the proposed transition detectors and min-delay buffers ex-
hibiting a 9.4% and 6.9% overhead with respect to power
and area, respectively.

Prior work on modeling timing violation error probabil-
ities [20] derived their delay distributions from the error
probability distribution reported by Ernst et al. [7]. In this

work, we also use that data reported in [7]. In addition, fol-
lowing the same modeling principles, we present our own
measurement data using a fabricated chip we designed in
a modern CMOS process. Moreover, we make a further
contribution by extracting an analytical model for the prob-
ability of error as a function of Vdd that corresponds well
with both the published and new measurement results.

3 DPSP Architecture

Prior work, such as Razor [7], proposed to reduce the
large overhead of guardbands by speculating that timing
will be met in the vast majority of cases. Timing-violation
detectors (based on a shadow latch) and a correction mech-
anism are introduced to enable timing-speculation and im-
prove efficiency. To date, all analysis and experiments have
been with a simple sequential pipeline. In initial work [13],
we observed that naively applying timing speculation to a
SIMD core may work very poorly. An error in any func-
tional unit stalls the entire pipeline, in effect multiplying the
baseline error rate by the SIMD width. Therefore even for
relatively low error rates, the effective throughput decreases
drastically (Fig. 1).

To overcome the sharp decrease in throughput of the
SIMD pipeline with timing speculation, we previously pro-
posed the decoupled parallel SIMD pipeline (DPSP) mi-
croarchitecture [13]. With DPSP, all functional units in
the SIMD organization still execute the same instructions
in the same order, but parallel pipelines are allowed to slip
with respect to one another so that they can tolerate tim-
ing violations independently. Thus, the average throughput
will be optimal, in that no additional performance overhead
is introduced because of the SIMD nature of the pipeline
and degradation is on par with sequential (single-instruction
single-data, SISD) pipelines. We describe DPSP below, ap-
ply it in the context of a GP-GPU, and evaluate the effec-
tiveness and potential of timing speculation in this context.

To enable DPSP in a GPU, we replace the pipeline latch
between the decode stage and the register access and ex-
ecute stages of the sequential parallel pipeline with a set
of shallow FIFO decoupling queues (one per SIMD lane).
When a timing violation is detected in one of the lanes, only
that particular lane stalls and initiates local recovery. The
sequencer continues to place instructions into the decou-
pling queues and all non-faulting lanes execute normally. If
timing violations are equally distributed between operations
and lanes, the average execution rate is identical across the
entire DPSP. The entire parallel pipeline stalls only if vio-
lations are not balanced between the lanes and one of the
decoupling queues fills up.

The DPSP concept is shown in Fig. 2, where the addi-
tional DPSP resources are highlighted. Note that additional
decoupling queues can be placed between any two pipeline

Psingle-stage-errorwidth

 0.5
 0.6
 0.7
 0.8
 0.9

 1

Frac. of Peak
Throughput

0
0.05

0.1204060

Frac. of Peak
Throughput

(a)

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

0 0.05 0.1

F
ra

c
.

o
f

P
e

a
k

T
h

ro
u

g
h

p
u

t

Psingle-stage-error

SIMD
DPSP
SISD

(b)

Figure 1: Expected fraction of peak throughput of a 5-stage SIMD pipeline and a 5-stage decoupled parallel SIMD
pipelines with decoupling queues as a function of the total probability of error compared to a SISD pipeline (legend
for both figures appears in (b)): (a) for varying SIMD width; (b) for 16-wide SIMD. Reproduced from [13].

SEQ ALURF MEM WB

ALURF MEM WB

ALURF MEM WB

ALURF MEM WB

ALURF MEM WB

ALURF MEM WB

opQ

opQ

opQ

opQ

opQ

opQ

Figure 2: A SIMD pipeline with DPSP. DPSP
components are highlighted.

stages to allow for rebalancing of the violations internally
within each lane. Our evaluation indicates that a single
queue is sufficient to maintain high throughput in the face of
input-dependent timing violation errors. Fig. 1.a compares
the throughput of SIMD and DPSP for an ideal pipeline that
does not stall across a range of random timing-violation er-
ror rates (input dependent errors). Fig. 1.b shows a cross-
section of the 3D curve for a 16-wide SIMD pipeline and
demonstrates how DPSP experiences much lower and more
gradual degradation in throughput as the likelihood of a vi-
olation grows, maintaining 50−80% better throughput than
a simple SIMD with recovery. With the evenly distributed
errors used in the analysis shown in the figure, decoupling
works nearly perfectly and DPSP matches the degradation
curve of a sequential pipeline (SISD). We verify this prop-
erty of DPSP with detailed architectural simulation and er-
ror injection in Section 7.

While the decoupling queues increase the effectiveness
of timing speculation, the slip between DPSP lanes requires
additional architectural mechanisms to ensure correct exe-
cution. In the original SIMD design, all lanes always exe-
cute in lockstep and implicitly synchronize after every in-
struction, but this is not true with DPSP. Any time the lanes
explicitly synchronize or potentially communicate the de-
coupled lanes must be aligned. Current GPUs rely on SIMD
pipelines for efficiency and on large degree of data paral-
lelism to hide memory latencies. The execution model is
such that communication between lanes is only guaranteed
to be correct if an explicit barrier synchronization is exe-
cuted [16, 21]. A barrier requires all DPSP lanes to inter-
nally synchronize to guarantee that all lanes execute the bar-
rier. We adopt a simple solution that we show to be effective
in the GPU context. When a barrier is issued, the instruction
sequencer is stalled until all decoupling queues are empty.
This ensures that no operations in any lane can bypass the
barrier regardless of timing violations. It is possible to re-
duce the overhead associated with stalling the sequencer us-
ing micro barriers [13], however, our simulations indicate
that this complexity is not necessary because barriers are
executed rarely.

Even though the GPU execution model requires explicit
synchronization before any communication between lanes
occurs, it is possible that some applications ignore this con-
straint. We analyzed the applications used in the evaluation
and none violate this restriction. Nonetheless, we also eval-
uate a design in which each memory operation introduces a
barrier to guarantee correctness. This barrier is handled as
above and stalls the instruction sequencer until every decou-
pling queue is empty. As we show in our detailed evaluation
(Section 7), synchronizing on memory accesses performs
well because it maintains the original order and parallelism
of memory accesses, to which some applications are sensi-
tive.

3.1 Error Detection and Recovery

We utilize the conventional double-sampling [7] error
detection mechanism (Fig. 3), utilizing a shadow latch to
sample the logic output at a fixed time delay after the con-
ventional pipeline register flip-flop. In case an error is
detected (latched outputs do not match output at delayed
clock), the system recovers by stalling the pipeline for one
cycle and restarts using the correct outputs of the shadow
latch. Stalling for one cycle is sufficient time to allow the
pipeline stage that did not meet timing to settle to a correct
value. For this type of recovery to succeed, the stall signal
must propagate to all pipeline stages before they overwrite
the shadow latch. While this is likely not feasible in mod-
ern CPUs, and perhaps even in a wide-SIMD design, it is
achievable with DPSP. Because of the decoupling queues,
the error signal is required to propagate only within a sin-
gle lane, which is small and can be traversed rapidly. We
successfully implemented this recovery policy in our 45nm
test-chip [18] with DPSP, even though we were unable to
accommodate single-cycle stalls with traditional SIMD. En-
abling this simple single-cycle recovery mechanism is an
important advantage of DPSP, because alternative recov-
ery schemes require energy- and time-consuming pipeline

DFF

D Q

Shadow

Latch

D Q

0

1

clk

data in

delayed clk

error

data out

(a)

D2

D2D1

D1

clk

delayed clk

error

data out D0

D0data in

(b)

Figure 3: Double sampling error detection mechanism: (a) A shadow latch controlled by a delayed
clock usage for error detection; (b) Recovery from error in cycle 2.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.64 0.66 0.68 0.7 0.72 0.74 0.76

T
e

c
h

n
o

lo
g

y
 [

n
m

]

Vmin/Vnom

BULK
UTB FD

MG

Figure 4: Projected Vmin
Vnom

based on ITRS [10] 1

flushes [7]. When comparing DPSP to SIMD, however, we
assume SIMD can recover in a single cycle as well.

Note that double-sampling can detect timing violations
only as large as half of the cycle time. Therefore, because
we set the nominal supply voltage to be Vnom , the supply
voltage Vdd can be reduced down to only Vmin , such that
T (Vmin)
T (Vnom) = 3

2 , where T is the critical path delay. We deter-
mine Vmin using the Alpha power-law model [19]. Fig. 4
shows the ratio of Vmin

Vnom
for various technologies based

on ITRS [10]. This minimum voltage also ensures that re-
covery is possible by stalling for a single cycle.

3.2 Implementation Overheads

There are two sources of overhead that need to be ad-
dressed: the timing speculation mechanism and the DPSP
structures. Because there is a range of overhead values for
various timing speculation mechanisms reported in the liter-
ature (see Section 2), we choose to present the entire range
of overheads, up to a conservative 15% energy overhead.
To estimate the energy consumption of the DPSP decou-
pling queues we use Orion 2.0 [11]. A 4 entry 32-bit wide
FIFO queue with a single write and a single read port is esti-
mated to consume ∼ 0.285pJ in 65nm and scales down to
∼ 0.15pJ in 32nm . Compared to ∼ 255pJ/op in a mod-
ern GPU [17], this overhead is negligible and is not visible
in our results.

4 Methodology

The goal of our evaluation is to study the potential
energy-efficiency improvements possible with timing spec-
ulation in a wide-SIMD architecture, and demonstrate the
advantage of using the proposed DPSP technique. To that
end, we develop a set of models for estimating timing viola-
tion error rates, performance in the presence of such errors,
and estimated energy efficiency improvements. The models
are based on measurements of a manufactured chip proto-
type, circuit simulations, and architectural simulations. Us-

ing these models, we can quickly explore the design space
and gain architectural insight. We then perform detailed ar-
chitectural simulations to validate our model-based predic-
tions.

We explain our model for error-rate as a function of Vdd
in Section 5. Our methodology is to measure the distribu-
tion of delays of a functional unit, and use this distribution
to determine the fraction of computations that will result in
an error for a particular supply voltage. We scale the de-
lays using the Alpha power-law model [19] and identify the
cutoff based on the nominal operating frequency; we then
scale the supply voltage to improve energy-efficiency for a
set frequency. The initial delay distributions are based on
measurements of a 16-bit multiplier fabricated in a 45nm
IBM SOI CMOS process. We also use the error-rate re-
sults presented by Ernst et al. [7] for an 18-bit multiplier
implemented in an FPGA and a 32-bit Kogge-Stone adder
simulated in SPICE.

The above methodology is based on a few example mea-
surements, where each measurement is of a different type
of implementation (test-chip fabrication, simulation, and
FPGA-prototyping). We develop a model that captures the
key characteristics of the resulting three very different error-
rate functions, enabling us to explore a larger design space
than just these three measurements alone.

Our methodology for modeling tradeoffs in energy, ex-
plained in Section 6, uses this error-rate model to synthe-
size an analytical model that combines the impact of timing
errors on performance with established models for energy
consumption [22, 5]. We use this model to show results
across a wide range of parameters. We then validate our
model for execution time using a detailed cycle-based ar-
chitectural simulation (GPGPU-sim [1] ver. 2.1.2), which
we enhanced to support DPSP and error injection Section 7.
The corresponding energy model for the simulated GPU
processor is based on the one presented in [9].

1BULK represents planar bulk CMOS, UTB FD represents ultra-thin
body fully depleted SOI CMOS, and represents multi-gate CMOS (e.g.,
FinFETs).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4.5 5 5.5 6 6.5 7 7.5

P
ro

b
a
b
ili

ty

Delay[ns]

experimental data
fitted gamma distr.

Figure 5: Measured delays and fitted distribution
function.

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
rr

o
r

P
ro

b
a
b
ili

ty

Relative Vdd

Fabr. Mul.
Adder [7]

Mul. [7]
exp. approx.

Figure 6: Error rate as a function of supply volt-
age Vdd for various circuits.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

M
e
a
s
u
re

d
 R

e
la

ti
v
e
 T

h
ro

u
g
h
p
u
t

Modeled Relative Throughput

Figure 7: Measured (in GPGPU-sim) and pre-
dicted (via model) throughput of DPSP relative to
no errors for a synthetic compute-bound kernel.

Table 1: Simulated architecture properties.

Number of Shader Cores 30
Threads in Warp 32

SIMD Pipeline Width* 8×4
Number of Threads / Core 1024

Number of CTAs / Core 8
Shared Memory / Core 16KB
Constant Cache / Core 8KB

Texture Cache / Core 8KB
Number of Memory Channels 8

L1 Cache none
L2 Cache none

Main Memory GDDR3
Bandwidth per Memory Module 4 Bytes/Cycle
DRAM Request Queue Capacity 32

Memory Controller Out-of-Order (FR-FCFS)
Branch Divergence Method Immediate Post Dominator

Warp Scheduling Policy Round Robin
Interconnect Network Crossbar

Number of MSHRs per / Core 64

Tab. 1 summarizes the parameters of the simulated GPU
architecture. This configuration is a good match for the
processor used in NVIDIA’s Quadro FX5800 and GTX280
GPUs. Note that the SIMD pipeline in each core has 8 lanes
and that each operation is repeated 4 times for an instruction
vector/SIMD length of 32.

To directly compare results across the various configura-
tions, we use theET 2 metric, which is the energy dissipated
to perform the given computation multiplied by the square
of the time it took to execute [15]. The reason we primarily
use this metric is that it isolates efficiency improvements to
the architecture only and is independent of voltage. A bet-
ter (lower) ET 2 implies that the system will have superior
efficiency for a given performance. Note that ET 2 is the
system-level equivalent for the circuit-level ED2 (energy
delay squared product) [15].

5 Error Probability Model

In this section, we present our model for the probability
of errors that result from both reducing the voltage guard-

band and speculating that the circuit will meet timing con-
straints. We show the error probability as Vdd is changed for
three functional unit components and then develop a model
that generalizes these three profiles. This model allows us to
explore a much larger space of tradeoffs between the error
rate and the supply voltage.

The first circuit we analyze is a 16-bit multiplier fab-
ricated in the 45nm IBM SOI process. The multiplier is
part of a chip manufactured to test the DPSP idea [13], but
due to a combination of design and fabrication issues we
are only able to measure delays with this spin of the chip.
We measure the circuit delays at a single supply voltage (V0
= 0.53V) and extrapolate the results to the full delay distri-
bution by fitting the data to an analytical Gamma function,
as suggested by Kay and Pileggi [12] (Fig. 5 and Tabs. 2–3)
. We then use the Alpha power-law model [19] to scale the
analytical model of the delays to a range of supply voltages
(we use Vth = 480mV and α = 1.3). We then calculate
the error probability as a function of Vdd for a fixed target
frequency. The target frequency was chosen to exhibit no
errors at nominal Vdd . Next, the error probability is gener-
ated from the fraction of inputs that require a delay greater
than the target cycle time (τ) for a varying supply voltage.
This is shown in Equations 2 – 3.

P (delay = t) =
(t− c)a−1

baΓ (a)
e−

t−c
b (1)

FVdd (t) = P (t ≤ τ |Vdd)

= FV0

(
t · V0

(Vdd − Vth)α
· (V0 − Vth)α

Vdd

) (2)

Perror (Vdd) = P (t > τ |Vdd) = 1− FVdd (t) (3)

Table 2: Gamma dis-
tribution parameters

a 4.6124
b 2.10× 10−10

c 4.24× 10−9

Table 3: Fit quality metrics

Kolmogorov-Smirnov 0.1579
Anderson-Darling 1.8276
Chi-Squared 22.074

Fig. 6 depicts the error probabilities as a function of rela-
tive supply voltage for all three functional unit components.
We use relative Vdd (ν ≡ Vdd

Vnom
), in order to generalize

our results across multiple CMOS processes, as each com-
ponent was designed for a different nominal Vnom . The
probabilities for the fabricated multiplier were based on the
power-law methodology described above (Vnom = 1V).
For the 18-bit multiplier and 64-bit adder, we use the proba-
bilities reported by Ernst et al. [7]. These probabilities were
derived from measurements of an FPGA implementation of
the multiplier (Vnom = 1.8V) and SPICE simulations tar-
geting 0.18µm for the adder (Vnom = 1.05V).

Fig. 6 also shows the exponential trendline for each of
the circuits. This exponential function is a good approxima-
tion for the error probability within a range of Vdd values.
Our model (Eq. 4) includes the “slope” of the probability
curve (the exponent) S and the relative voltage Vmaxerr at
which the error probability reaches 1. While this model pre-
dicts a non-zero probability of error at the nominal Vdd , this
error is negligible and we ignore this inaccuracy for simplic-
ity. Tab. 4 summarizes the model parameters for the three
circuits we evaluated.

Table 4: Model parameters and R2 for the circuits evaluated.

Vmaxerr S R2

Adder [7] 0.395545254 18.58 0.9491
Multiplier [7] 0.735367316 190.7 0.9935

Measured Fabricated Multiplier 0.751256185 47.82 0.9967

Perror (ν) =


0 if ν = 1

eS·(Vmaxerr−ν) if Vmaxerr ≤ ν < 1
1 if ν <Vmaxerr

(4)

6 Model-Based Energy Efficiency Evaluation

We now address the main issue of this paper and evaluate the
relationship between the supply voltage, timing speculation errors
and recovery, and the resulting energy efficiency of a traditional
SIMD pipeline and a DPSP-enabled design. We first present a
model for energy efficiency that abstracts many architectural de-
tails and enables a rapid exploration of the tradeoff space. We vali-
date this model and show results from a detailed cycle-based archi-
tectural simulator in Section 7. We construct this energy-efficiency
model by evaluating the impact of fixed-frequency voltage scaling
on execution time, dynamic power, and leakage power.

6.1 Execution Time

As the supply voltage is lowered, the probability of an error
grows for any given computation. After each error that occurs, the
pipeline must recover, thereby increasing execution time. As ex-
plained in Section 3, our assumed recovery mechanism inserts a

single-cycle bubble into the pipeline and uses the stable and cor-
rect computation available at the end of the additional cycle. To
ensure that this mechanism is correct, we do not lower the voltage
below Vmin , which is the voltage at which the longest path takes
50% longer than with nominal Vnom (Section 3.1).

Another requirement for our recovery mechanism is that the er-
ror signal must be propagated in under a cycle. This is relatively
easy to do with DPSP, since the error signal is local to a single lane
and only needs to propagate up to each lane’s decoupling queue.
In a traditional SIMD design, on the other hand, it would be ex-
tremely difficult to propagate the error signal within the same cy-
cle across all lanes. Nevertheless, we assume that it is possible in
order to conservatively estimate the advantages of DPSP.

Accurately modeling the impact of errors on execution
throughput requires accounting for the effects of all architecture
features, such as memory-related stalls, resource conflicts, and ex-
plicit synchronization. To develop a simple model for quickly ex-
ploring the design space and drawing insights, we defer the eval-
uation of these other effects to Section 7, and start with a simple
model of executing a single (SIMD) instruction per cycle.

In a traditional lock-step SIMD pipeline with timing specu-
lation, each error event delays execution by one cycle on every
lanes. Our initial results [13] indicate that the impact of errors
on DPSP throughput can be approximated as the throughput of a
scalar pipeline with the same error rate. While we show full sim-
ulation results with error injection later in the paper, Fig. 7 shows
that approximating a DPSP as a scalar pipeline is a valid assump-
tion. This figure compares the simplistic DPSP model, with the
simulated impact of errors, on the throughput of an application that
executes a single SIMD instruction/cycle; a compute-bound loop
that is not hampered by memory operations and dependencies.

Given our previous model that describes the probability of error
as a function of Vdd (Perror(V)), we can now model the through-
put and execution time. Eq. 5 summarizes the throughput model,
where N = simdwidth · pipedepth is for a traditional SIMD,
accounting for the increased error probability when any lane stalls
all other lanes. For DPSP, N = pipedepth, which is an approxi-
mation of DPSP as a scalar pipeline. Next, we derive the execution
time as the inverse of throughput (Eq. 6), assuming that the appli-
cation is perfectly parallelized. Again, note that we validate these
assumptions for model simplification in Section 7.

Θ (Perror, N) = 1 · (1− Perror)N +
1

2

(
1− (1− Perror)N

)
=

1

2
+

1

2
(1− Perror)N

(5)

T (Vdd) =
1

Θ (Vdd)
(6)

6.2 Energy

We derive the relative energy consumed as a function
of Vdd by considering the dynamic and the static energy
components separately. Dynamic energy scales with V 2

dd,
because no additional computation takes place (the recov-
ery mechanism stalls the pipeline for one cycle). We model

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.7 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP

(a) Adder [7]

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP

(b) Multiplier [7]

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP

(c) Measured fabricated multiplier

Figure 8: ET 2 as a function of Vdd for the three error probability functions. Estimated ET 2 for DVFS with no speculation hardware shown by shaded range.

the static energy scaling using the execution time model de-
scribed above and approximate the change in static power as
directly proportional to Vdd , as suggested by Su et al. [22].
This linear approximation is reasonable because we vary
Vdd over a relatively small range that is within 40% of
the nominal supply voltage. Eq. 7 represents the energy
consumption at Vnom , where φ is the fraction of dynamic
energy versus the total energy for the entire cycle time at
Vnom . The relative energy as voltage is scaled is shown in
Eq. 8, where T () is the delay as a function of Vdd (Eq. 6).
The scaled time is necessary because static energy increases
as the computation time increases, due to integrated leakage
energy. When comparing ET 2, we also consider that the
baseline design does not require timing speculation. Be-
cause we do not precisely know the overhead for a GPU
pipeline (see Section 3.1), we consider overheads in the
range of 1− 15%.

E (Vnom) = Enom = φEnom︸ ︷︷ ︸
dynamic

+ (1− φ)Enom︸ ︷︷ ︸
static

(7)

E (Vdd)

Enom
=
φEnom

V 2
dd

V 2
nom

+ (1− φ)Enom
Vdd
Vnom

T (Vdd)
T (Vnom)

Enom

= φ
V 2
dd

V 2
nom

+ (1− φ)
Vdd
Vnom

T (Vdd)

T (Vnom)

(8)

6.3 Model-Based Comparison

Fig. 8 compares how ET 2 scales for non-speculative
SIMD, speculative SIMD, and DPSP, as a function of Vdd
with each of the three error probability functions for the
three analyzed components (Section 5). We choose φ = 0.8
(80% dynamic energy) as in the McPAT power estimation
tool [14]. We normalize ET 2 to that of timing-speculation-
enabled SIMD that is operated non-speculatively with
DVFS. ET 2 does not change with DVFS as time increases
while energy decreases and is a constant in the figure ([15]).

Because DVFS can be applied on top of speculation, the
ET 2 metric is particularly relevant here. We normalize to a
design with timing-speculation circuits to ease comparison
between the implementation options, and indicate a range
of non-speculative SIMD ET 2 on the figure. The bottom
of the range corresponds to a very conservative overhead
of 15% for implementing timing speculation (recent work
reported overheads of 1−2% [6, 2]). Note that the specula-
tion mechanism limits the lowest operating supply voltage
to roughly 70% of Vdd , as discussed in Section 3.1. In some
cases this lowest possible safe voltage limits the potential
benefits of timing speculation.

There are two important observations about these results.
The first is that for each of the functional units examined,
timing speculation can provide improvements in efficiency.
Even without DPSP, the simulated adder and FPGA mul-
tiplier exhibit about 15% and 20% improvements respec-
tively compared to a non-speculative baseline, even when
considering very conservative speculation implementation
overheads of 15%. The measured fabricated multiplier
however, exhibits lower gains with no DPSP because its er-
ror function has a gentle slope and quickly reaches a prob-
ability of 1, leaving less opportunity for beneficial specu-
lation. The large differences in potential arises from the
different error function properties. The voltage at which er-
ror probability becomes 1 has the strongest influence, with
a lower voltage increasing the potential gains.

The second significant result shown in Fig. 8 is that
DPSP improves ET 2 on top of speculation, even after ac-
counting for the additional energy overhead of the decou-
pling queues. The simulated adder has the greatest bene-
fit from decoupling, and ET 2 is improved by an additional
11% on top of SIMD with timing speculation. The bene-
fits are a healthy 12% with the measured multiplier, bring-
ing it below the speculation overhead, but only 3% with the
FPGA multiplier. The reason for the small benefit with the
FPGA multiplier is that the slope of the error function is
very steep, which means that the reduction in effective error
rate with decoupling has little impact in terms of energy.

(a) SIMD - lower elevation is better (b) DPSP - lower elevation is better (c) Difference of SIMD and DPSP (higher elevation corre-
sponds to bigger improvement of DPSP over SIMD)

Figure 9: Optimal ET 2 with speculation relative to that of SIMD with no speculation.

R
e
la

ti
v
e
 E

T
2

Slope
10 100

0.4

0.6

0.8

1

SIMD
DPSP

(a) Adder [7] – Vmaxerr = 0.396V

R
e
la

ti
v
e
 E

T
2

Slope

10 100

0.7

0.8

0.9

1

SIMD
DPSP

(b) Multiplier [7] – Vmaxerr = 0.735V

R
e
la

ti
v
e
 E

T
2

Slope

10010

0.7

0.8

0.9

1

SIMD
DPSP

(c) Measured fabricated multiplier – Vmaxerr = 0.751V

Figure 10: ET 2 of SIMD with timing speculation and DPSP for varying error function slopes for the three Vmaxerr corresponding to the evaluated functional units.
Estimated ET 2 for DVFS with no speculation hardware shown by shaded range. Note the starting point of the y-axis.

Given the dependence on the error function properties,
we evaluate the benefits of timing speculation and DPSP
across a large space of error functions. We use our model
to compute expected ET 2 for each technique varying both
of the parameters of our modeled error function (Eq. 4):
the relative supply voltage at which error probability is 1
(Vmaxerr) and the exponential slope of the error probabil-
ity function (slope). Fig. 9 show the results as contour plots
with the “elevation” in the three subfigures corresponding to
the ET 2 of SIMD with timing speculation, ET 2 of DPSP
relative to no speculation, and the difference between the
two (subtraction); all ET 2 values are reported relative to
those of SIMD with no speculation. Note that Vmaxerr is
a parameter of the error function model and can be nega-
tive; this particularly makes sense for error functions with
a gentle slope. We also show three 2D cross sections of
the 3D surfaces in Fig. 10; each subfigure shows the rela-
tive ET 2 of speculative SIMD and DPSP with Vmaxerr set
to one of the three evaluated functional units (points indi-
cated in Fig. 9) and varying slope. Note that we do not
show points above relative ET 2 of 1, because at that point
speculation should be turned off and DVFS applied.

These results strengthen our insights on when timing
speculation and DPSP are beneficial. The steeper the slope,

the more potential there is for timing speculation to help. A
steep slope indicates that there is a region of Vdd in which
there are few errors, and decreasing voltage within that re-
gion reduces power without significantly impacting perfor-
mance. The value of Vmaxerr corresponds to the width of
this low-error region. Thus, the greatest benefit from tim-
ing speculation is towards the top-left of the surface, with
nearly no potential towards the bottom (very gentle slope –
many errors in entire range) or right (high probability of er-
ror from a high Vdd). DPSP provides the most benefit near
the diagonal of the surface with potential benefits of above
40% on top of timing speculation with a SIMD pipeline. We
confirm our earlier observation that DPSP is most effective
when the slope is not extreme. This is clearly shown in the
cross-section plots (Fig. 10). We also see that when Vmaxerr

is larger, timing speculation and the DPSP improvement on
top of it, are greater for steeper slopes.

This analysis and insights are valuable because the error
probability function is very much design dependent. Rules
of thumb and good models are necessary for making in-
formed tradeoff decisions. DPSP, for example, is able to
provide benefits even when both the slope and Vmaxerr are
high, which is very encouraging. We also believe that the
trends in the underlying fabrication technology are likely to

Table 5: Benchmark applications used in simulation.

Instr. Memory Structures Used Explicit
Benchmark Abbr. Count [M] Shared Constant Texture Synchronization

AES Cryptography AES 28 X X X X
Breadth First Search BFS 17
Molecular Dynamics - Coulombic Potential CP 126 X
Discontinuous Galerkin Time-domain Solver DG 596 X X X
3D Laplace Solver LPS 82 X X
LIBOR Monte Carlo LIB 907 X
DNA Matching MUM 77 X
Neural Network Digit Recognition NN 68
N-Queens Solver NQU 2 X X
Ray Tracing RAY 71 X X
MD5 Hashing STO 134 X
Weather Prediction WP 215

lead to error functions that are closer to the sweet spot of
DPSP. In an ideal design, Vmaxerr = 1 and the slope is very
steep, which result from perfectly balanced paths. Because
of process variation and the challenges in balancing com-
plex designs with the large number of optimization options
and uncertainties of a modern process, we believe that gen-
tler slopes and non-ideal lower Vmaxerr values are likely in
the future.

7 Detailed Microarchitecture Simulation-
Based Evaluation

In this section we present analysis based on detailed mi-
croarchitecture simulations and validate the model-based
results presented above. As explained in Section 4, we
use the GPGPU-sim [1] detailed microarchitectural GPU
simulator, which we modified to support DPSP, timing-
speculation, and error injection. We evaluate the set of 12
applications (Tab. 5) included with the GPGPU-sim distri-
bution, which are representative of GPGPU workloads [1].
We do not use the simplified exponential error probabil-
ity model from Section 5 for injecting errors. Instead, we
use the error distributions directly and choose the error rate
based on the Vdd being simulated. We use the cycle-based
simulator to estimate the impact of errors and recovery on
execution time. To model power, we rely on the technique
presented by Hong and Kim [9]. This power model was
shown to match well with real hardware, but its empirical
nature requires us to use simulation parameters that are as
close as possible to those used to develop the model. To
model improvements from timing speculation, we use Eq. 7
(Section 6.2). When presenting the results we discuss how
we account for the fact that only a fraction of overall proces-
sor power is reduced because timing speculation is mostly
applicable to logic.

We present different configurations of DPSP, varying
the size of the decoupling queues as well as the coalesc-

ing behavior. The DPSP-S* variants (where * marks the
depth of the queue) all synchronize across the lanes be-
fore each memory operation to ensure coalescing behavior
that matches the baseline implementation. The DPSP-D*
schemes rely on the coalesce buffer and on the fact that
slip between lanes is bounded by the shallow decoupling
queues, such that most memory operations hit in the coa-
lesce buffer. We also evaluated other options for determin-
ing when to synchronize the lanes, but the impact on per-
formance was minimal compared with those presented.

Fig. 11 summarizes the optimal ET 2 achieved in sim-
ulation for each application when using the three empirical
error probability profiles developed in Section 5. To find the
optimal ET 2, we simulated each application with multiple
Vdd settings (each with its appropriate error rate and power
improvement) and chose the best one. Note that the ET 2

values reported in Fig. 11 are under the assumption that the
entire processor benefits from reduced Vdd . Unfortunately,
some structures, such as the I/O drivers and SRAMs, cannot
be improved with timing speculation. The results should
be derated by a factor corresponding to the fraction of to-
tal processor power of the circuits for which margin can be
trimmed. When reporting absolute numbers in the discus-
sion below, we assume that 75% of the power is dissipated
by structures amenable to guardband reduction, which is
our best estimate based on our previously described power
models [14, 9]. Fig. 11, however, compares the techniques
without this derating factor.

The results show that the analytical model we devel-
oped in Section 6 correlates well with the overall (aver-
age) behavior of both SIMD and DPSP for all error profiles.
We also present the behavior of each application across a
range of supply voltage values (rather than just the opti-
mal) in Fig. 12. This figure shows that application behavior
also matches the model qualitatively. Because of space con-
straints, we only show the detailed behavior for the error
function corresponding to the measured multiplier circuit
from our test-chip.

 0

 0.2

 0.4

 0.6

 0.8

 1

AES BFS CP DG LIB LPS MUM NN NQU RAY STO WP average model

R
e
la

ti
v
e
 E

T
2

SIMD DPSP-D2 DPSP-S2 DPSP-D4 DPSP-S4 DPSP-D16 DPSP-S16

(a) Adder [7] error profile

 0

 0.2

 0.4

 0.6

 0.8

 1

AES BFS CP DG LIB LPS MUM NN NQU RAY STO WP average model

R
e
la

ti
v
e
 E

T
2

SIMD DPSP-D2 DPSP-S2 DPSP-D4 DPSP-S4 DPSP-D16 DPSP-S16

(b) Multiplier [7] error profile

 0

 0.2

 0.4

 0.6

 0.8

 1

AES BFS CP DG LIB LPS MUM NN NQU RAY STO WP average model

R
e
la

ti
v
e
 E

T
2

SIMD DPSP-D2 DPSP-S2 DPSP-D4 DPSP-S4 DPSP-D16 DPSP-S16

(c) Measured fabricated multiplier error profile

Figure 11: Optimal simulated and model-based ET 2 with different configurations of timing speculation and DPSP. Estimated ET 2 for DVFS with no speculation
hardware shown by shaded range.

As expected, our model overestimates the ET 2 of
timing-speculative SIMD because the natural synchroniza-
tion points and memory-related stalls of real execution. Sur-
prisingly, however, DPSP with deep queues and minimum
synchronization (only on explicit barriers) performs poorly.
The reason is that decoupling results in more non-coalesced
memory accesses, which reduces performance [16]. More-
over, the number of non-coalesced accesses is higher with
deeper decoupling queues. The DPSP configurations that
synchronize before every memory operation do not break
software optimization for coalescing. We expect newer
GPU architectures, such as NVIDIA’s Fermi [17], to be
much less sensitive to this coalescing issue because of the
introduction of a first-level cache. Unfortunately, the energy
model we use does not include a cache and its empirical na-
ture prevents us from adding one. It is also interesting to

observe that with all configurations, there is no advantage
to deeper queues, and a low-cost 4-deep decoupling queue
is sufficient.

Several applications stand out in behaving differently
from the average and we discuss each in detail below. AES
(Fig. 12.a) shows sensitivity to coalescing that is not suf-
ficiently covered by the coalesce buffer with DPSP-D*,
which allows slip on memory operations. For some spe-
cific and relatively high error rate, however, increasing the
number of stalls, in effect, decreases the slip (all lanes have
errors) resulting in a corner-case that improves coalescing.
Behavior is smoother with DPSP-S* because coalescing is
guaranteed as all loads synchronize.

BFS (Fig. 12.b) suffers from a very high control diver-
gence rate [1]. The method used by GPUs to handle control
divergence in their SIMD pipelines requires synchroniza-

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(a) AES

 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(b) BFS

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(c) CP

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(d) DG

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(e) LPS

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(f) LIB

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.7 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(g) MUM

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(h) NN

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(i) NQU

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(j) RAY

 0.8

 0.9

 1

 1.1

 1.2

 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(k) STO

 0.8

 0.9

 1

 1.1

 1.2

 0.75 0.8 0.85 0.9 0.95 1

R
e
la

ti
v
e
 E

T
2

Relative Vdd

SIMD

DPSP-D4

DPSP-S4

(l) WP

Figure 12: ET 2 as a function of Vdd for various benchmarks using the error profile measured for our fabricated multiplier.

tion each time multiple control paths reconverge [8]. The
high divergence rate of BFS results in many more barrier
operations than in a typical application, which limits the
effectiveness of decoupling. Note that our mechanism for
synchronizing the decoupled lanes stalls the instruction se-
quencer and thus significantly degrades performance. No-
tice that the deeper the queues, the higher the penalty for
synchronization because the queues are drained before in-
struction sequencing resumes.

CP, DG, and RAY (Fig. 12.c, Fig. 12.d, and Fig. 12.j)
show extreme cases of sensitivity to memory coalescing.
Timing speculation with SIMD works quite well and DPSP-
S* enables even higher efficiency.

MUM (Fig. 12.g) has unusually low SIMD occupancy
with 60% of SIMD instructions (warps in NVIDIA’s termi-
nology) having fewer than 5 operations out of a maximum
of 32 [1]. As a result, decoupling provides little advantage
because the error rate of SIMD is not amplified as much
as with other applications. Furthermore, the performance
of this application is bound by memory bandwidth, further
decreasing the benefits of decoupling. Being memory band-
width bound, on the other hand, provides a large opportu-
nity for timing speculation to improve efficiency. Even a
large number of errors can be tolerated without increasing
execution time.

WP (Fig. 12.l) is very sensitive to memory performance
and latency. The register file in our GPU configuration is
not large enough to support the levels of locality and par-
allelism required by this application and memory accesses
cannot be effectively overlapped with computation [1]. The
strong dependence of WP’s performance on memory ac-
cesses and memory scheduling results in unusual ET 2 be-
havior as Vdd is decreased. SIMD with timing speculation
reaches its highest efficiency at relative Vdd of 0.9 and fur-
ther decreases in voltage result in reduced performance and
worse ET 2. Decoupling exacerbates the memory schedul-
ing and coalescing issue and is even less effective than lock-
step SIMD execution.

8 Discussion and Conclusions

This paper, for the first time, presents a detailed dis-
cussion and evaluation of applying timing speculation to
an efficient wide-SIMD parallel pipeline. We demon-
strate that there is significant potential in extending this cir-
cuit/architecture technique to a GPU pipeline. We describe
a GPU-specific implementation that accounts for the exe-
cution model and synchronization/memory-access mecha-
nisms of GPUs. We also describe the use of low overhead
decoupling queues to minimally augment the SIMD design,
improving both DPSP execution and the tolerance to timing
violations. DPSP provides an additional benefit of simpli-

fying the recovery mechanism to enable higher efficiency
and performance. Specifically, DPSP enables each SIMD
lane to recover from errors independent of other lanes. This
implies that any error signal can only be propagated within
each simple SIMD lane, which is realizable in a single cy-
cle. Such single-cycle signaling enables stall-based recov-
ery that is most energy and performance efficient. We fur-
ther evaluate our GPU-based design and show that the pecu-
liarities of its memory access architecture result in the non-
intuitive conclusion that a very small degree of decoupling
with synchronization for every memory operation yields the
best efficiency.

We observe that the general trend in GPU architectures is
to reduce the dependence on exact memory optimizations,
and therefore expect cache-based GPUs to show greater
gains with larger amounts of decoupling. We also describe
a potential problem involving high synchronization penal-
ties for highly control divergent applications. While we do
not evaluate a solution in this paper, recent work on mecha-
nisms to mitigate the negative impact of control divergence
(e.g., Fung and Aamodt [8]) are likely to improve DPSP as
well.

An important contribution of our work is the new de-
tailed models we provide for analyzing timing-speculative
SIMD and DPSP designs and the insights we draw from
these analyses. We present a novel model for deriving a
timing-speculation induced error probability. This model is
based on empirical measurements from a chip fabricated in
a modern 45nm CMOS process, as well as on previously
reported results [7] that have also been used in other related
models (VARIUS [20]). We generalize the model using
simple and intuitive parameters that allow us to explore the
large implementation space. We also develop a new model
for the behavior of relative ET 2, and validate both models
with detailed cycle-based simulations of a GPU [1].

Using this comprehensive evaluation framework leads to
interesting insights with respect to timing speculation and
SIMD. We note that current trends point to increasing SIMD
width for improved efficiency. Based on our analysis, suc-
cessfully applying timing speculation to such designs re-
quires this new DPSP mechanism, because a naive imple-
mentation results in a much higher effective error rate, elim-
inating much of the advantages provided by operating with
reduced margins. We describe how to intuitively interpret
the different error probability functions of different circuits
on the potential benefits of timing speculation. Finally, we
conclude that timing speculation is likely to remain effec-
tive in future technologies, as the trends of increasing pro-
cess variation should lead to a gentler error function slope
and a lower relative voltage where the error probability ap-
proaches 1. Based on this discussion, we conclude that the
average of 10.3% improvement in ET 2 we observe in our
evaluation is conservative rather than optimistic.

Acknowledgements

This work is supported, in part, by the following orga-
nizations: Department of Energy under Early Career Pro-
gram, DARPA under contract HR0011-10-9-0008, Intel
Corporation, and The Texas Advanced Computing Center.
We thank Robert Pawlowski, Joseph Crop, and Jacob Post-
man from the Oregon State University for their effort to im-
plement the test-chip and provide the measurements.

References

[1] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing CUDA workloads using a detailed GPU simula-
tor. In Performance Analysis of Systems and Software, 2009.
ISPASS 2009. IEEE International Symposium on, pages 163–
174. IEEE, 2009.

[2] K. Bowman, J. Tschanz, N. Kim, J. Lee, C. Wilkerson, S. Lu,
T. Karnik, and V. De. Energy-Efficient and Metastability-
Immune Resilient Circuits for Dynamic Variation Tolerance.
IEEE J. Solid-State Circuits, 44(1):49–63, 2009.

[3] K. Bowman, J. Tschanz, C. Wilkerson, S. Lu, T. Karnik,
V. De, and S. Borkar. Circuit techniques for dynamic vari-
ation tolerance. In Proceedings of the 46th Annual Design
Automation Conference, pages 4–7. ACM, 2009.

[4] D. Bull, S. Das, K. Shivashankar, G. Dasika, K. Flautner,
and D. Blaauw. A power-efficient 32 bit arm processor using
timing-error detection and correction for transient-error tol-
erance and adaptation to pvt variation. Solid-State Circuits,
IEEE Journal of, 46(1):18–31, 2011.

[5] A. Chandrakasan, M. Potkonjak, J. Rabaey, and R. Broder-
sen. Hyper-lp: A system for power minimization using archi-
tectural transformations. In Computer-Aided Design, 1992.
ICCAD-92. Digest of Technical Papers., 1992 IEEE/ACM In-
ternational Conference on, pages 300–303. IEEE, 1992.

[6] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai,
D. Bull, and D. Blaauw. RazorII: In situ error detection and
correction for PVT and SER tolerance. Solid-State Circuits,
IEEE Journal of, 44(1):32–48, 2009.

[7] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge,
N. Kim, and K. Flautner. Razor: circuit-level correction of
timing errors for low-power operation. IEEE MICRO, pages
10–20, 2004.

[8] W. W. Fung and T. M. Aamodt. Thread Block Compaction
for Efficient SIMT Control Flow. In 17th International
Symposium on High Performance Computer Architecture
(HPCA-17), February 2011.

[9] S. Hong and H. Kim. An integrated gpu power and perfor-
mance model. In Proceedings of the 37th annual interna-
tional symposium on Computer architecture ISCA 10. ACM
Press, 2010.

[10] ITRS. Process Integration, Devices, and Structures (PIDS)
Update, 2010. URL http://www.itrs.net/links/
2010itrs/home2010.htm.

[11] A. Kahng, B. Li, L. Peh, and K. Samadi. Orion 2.0: A fast
and accurate noc power and area model for early-stage de-
sign space exploration. In Proceedings of the conference
on Design, Automation and Test in Europe, pages 423–428,
2009.

[12] R. Kay and L. Pileggi. Primo: probability interpretation
of moments for delay calculation. In Proceedings of the
35th annual Design Automation Conference, pages 463–468.
ACM, 1998.

[13] E. Krimer, R. Pawlowski, M. Erez, and P. Chiang. Synctium:
a near-threshold stream processor for energy-constrained
parallel applications. IEEE IEEE Computer Architecture Let-
ters, pages 21–24, 2010.

[14] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi. Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures. In Microarchitecture, 2009. MICRO-42. 42nd An-
nual IEEE/ACM International Symposium on, pages 469–
480. IEEE, 2009.

[15] A. Martin. Towards an energy complexity of computation.
Information Processing Letters, 77(2-4):181–187, 2001.

[16] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scal-
able parallel programming with CUDA. Queue, 6(2):40–53,
2008.

[17] NVIDIA Corp. Fermi CUDA Architecture, 2009.
URL http://www.nvidia.com/object/fermi_
architecture.html.

[18] R. Pawlowski, E. Krimer, J. Crop, J. Postman, N. Moezzi-
Madani, M. Erez, and P. Chiang. Synctium-I: A 530mV,
10-lane SIMD Processor with Variation Resiliency in 45nm-
SOI. In Solid-State Circuits Conference, 2012. ISSCC 2012.
Digest of Technical Papers. IEEE International, feb. 2012.

[19] T. Sakurai and A. Newton. Alpha-power law MOSFET
model and its applications to CMOS inverter delay and other
formulas. Solid-State Circuits, IEEE Journal of, 25(2):584–
594, 1990.

[20] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Ti-
wari, and J. Torrellas. VARIUS: A model of process variation
and resulting timing errors for microarchitects. Semiconduc-
tor Manufacturing, IEEE Transactions on, 21(1):3–13, 2008.

[21] J. Stone, D. Gohara, and G. Shi. OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems.
Computing in science & engineering, 12(3):66, 2010.

[22] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full chip
leakage estimation considering power supply and tempera-
ture variations. In Proceedings of the 2003 international
symposium on Low power electronics and design, pages 78–
83. ACM, 2003.

[23] J. Tschanz, K. Bowman, S. Walstra, M. Agostinelli,
T. Karnik, and V. De. Tunable replica circuits and adaptive
voltage-frequency techniques for dynamic voltage, tempera-
ture, and aging variation tolerance. In VLSI Circuits, 2009
Symposium on, pages 112–113. IEEE, 2009.

