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Outline

• Corrections/clarifications
• Pipelining
• Summary of parallel HW (multiple ALUs)
• Classification of ILP/DLP/TLP in software
• Patterns for parallel programming



Reminders

• This is not a microarchitecture class
– We will be discussing microarch. of various stream 

processors though
• Details deferred to later in the semester

• This class is not a replacement for Parallel 
Computer Architecture class
– We only superficially cover many details of parallel 

architectures
– Focus on parallelism and locality at the same time



Corrections/clarifications

• Intel μops vs. AMD R-ops
– Intel μops are RISC-like LD/ST

• μops can occasionally be fused to improve scheduling
– AMD R-ops can have memory operands

• Removed when actually issued to ALUs

• SMT and TLS
– TLS: convert ILP → TLP 
– SMT: convert TLP → ILP (in execution part of pipeline)

Evaluate DLP/ILP/TLP based on actual HW 
mechanisms (rather than names) 
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What are the parallel resources?
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Simplified view of a OOO pipelined processor
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Pipelining Summary

• Pipelining is using parallelism to hide latency
– Do useful work while waiting for other work to finish

• Multiple parallel components, not multiple 
instances of same component

• Examples:
– Execution pipeline
– Memory pipelines

• Issue multiple requests to memory without waiting for 
previous requests to complete

– Software pipelines
• Overlap different software blocks to hide latency:

computation/communication



Outline

• Corrections/clarifications
• Pipelining
• Summary of parallel HW (multiple ALUs)

– Analyze by shared resources
– Analyze by synch/comm mechanisms
– ILP, DLP, and TLP organizations

• Classification of ILP/DLP/TLP in software
• Patterns for parallel programming



Resources in a parallel processor/system

• Execution
– ALUs
– Cores/processors

• Control
– Sequencers
– Instructions
– OOO schedulers

• State
– Registers
– Memories

• Networks



Communication and synchronization 

• Synchronization
– Clock – explicit compiler order
– Explicit signals (e.g., dependences)
– Implicit signals (e.g., flush/stall)

• More for pipelining than multiple ALUs

• Communication
– Bypass networks
– Registers
– Memory
– Explicit (over some network)



Organizations for ILP (for multiple ALUs)



Superscalar (ILP for multiple ALUs)

schedulersequencer

memory
hierarchy

• Synchronization
– Explicit signals 

(dependences)
• Communication

– Bypass, registers, mem
• Shared

– Sequencer, OOO, registers, 
memories, net, ALUs

• Partitioned
– Instructions

How many ALUs?



SMT/TLS (ILP for multiple ALUs)



SMT/TLS (ILP for multiple ALUs)

scheduler

sequencer

memory
hierarchy

• Synchronization
– Explicit signals (dependences)

• Communication
– Bypass, registers, mem

• Shared
– OOO, registers, memories, net, 

ALUs
• Partitioned

– Sequencer, Instructions, arch. 
registers

Why is this ILP? How many threads?

sequencer



VLIW (ILP for multiple ALUs



VLIW (ILP for multiple ALUs)

sequencer

memory
hierarchy

• Synchronization
– Clock+compiler

• Communication
– Registers, mem, bypass

• Shared
– Sequencer, OOO, 

registers, memories, net
• Partitioned

– Instructions, ALUs

How many ALUs?



Explicit Dataflow (ILP for multiple ALUs)
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Explicit Dataflow (ILP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

• Synchronization
– Explicit signals

• Communication
– Registers+explicit

• Shared
– Sequencer, memories, 

net
• Partitioned

– Instructions, OOO, ALUs



DLP for multiple ALUs

From HW – this is SIMD
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SIMD (DLP for multiple ALUs)
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• Synchronization
– Clock+compiler

• Communication
– Explicit

• Shared
– Sequencer, instructions

• Partitioned
– Registers, memories, ALUs
– Sometimes: memories, net



Vectors (DLP for multiple ALUs)
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Vectors: memory addresses are part of single-
instruction and not part of multiple-data



TLP for multiple ALUs



MIMD – shared memory (TLP for multiple ALUs)
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MIMD – shared memory (TLP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

• Synchronization
– Explicit, memory

• Communication
– Memory

• Shared
– Memories, net

• Partitioned
– Sequencer, instructions, 

OOO, ALUs, registers, some 
nets



MIMD – distributed memory
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MIMD – distributed memory

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

memory
hierarchy

memory
hierarchy

memory
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• Synchronization
– Explicit

• Communication
– Explicit

• Shared
– Net

• Partitioned
– Sequencer, instructions, 

OOO, ALUs, registers, some 
nets, memories



Summary of communication and 
synchronization

Style Synchronization Communication

Superscalar explicit signals (RS) registers+bypass

VLIW clock+compiler registers (bypass?)

Dataflow explicit signals registers+explicit

SIMD clock+compiler explicit

MIMD explicit signals memory+explicit



Summary of sharing in ILP HW

Style Seq Inst OOO Regs Mem ALUs Net

Superscalar S P S S S S S

SMT/TLS P P S S S S S

VLIW S P N/A S S P S

Dataflow B P P B S P S



Summary of sharing in DLP and TLP

Style Seq Inst OOO Regs Mem ALUs Net

Vector S S N/A P s P B

SIMD S S N/A P p P B

MIMD P P P P S/P P B



ILP/DLP/TLP in Software?

• Back to the board.
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