
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 6 – Summary of HW Parallelism; SW Parallelism

Mattan Erez

The University of Texas at Austin

Outline

• Corrections/clarifications
• Pipelining
• Summary of parallel HW (multiple ALUs)
• Classification of ILP/DLP/TLP in software
• Patterns for parallel programming

Reminders

• This is not a microarchitecture class
– We will be discussing microarch. of various stream

processors though
• Details deferred to later in the semester

• This class is not a replacement for Parallel
Computer Architecture class
– We only superficially cover many details of parallel

architectures
– Focus on parallelism and locality at the same time

Corrections/clarifications

• Intel μops vs. AMD R-ops
– Intel μops are RISC-like LD/ST

• μops can occasionally be fused to improve scheduling
– AMD R-ops can have memory operands

• Removed when actually issued to ALUs

• SMT and TLS
– TLS: convert ILP → TLP
– SMT: convert TLP → ILP (in execution part of pipeline)

Evaluate DLP/ILP/TLP based on actual HW
mechanisms (rather than names)

Outline

• Corrections/clarifications
• Pipelining
• Summary of parallel HW (multiple ALUs)
• Classification of ILP/DLP/TLP in software
• Patterns for parallel programming

Simplified view of a processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

memory
hierarchy

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

memory
hierarchy

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r3
3:add r6, r2, r3

1 F D I R E E E W C F D I R E E E W C F D I R E E
2 F D I R E E E W C
3 F D I R E E E W C

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r3
3:add r6, r2, r3

1 F D I R E E E W C F D I R E E E W C F D I R E E
2 F D I R E E E W C
3 F D I R E E E W C

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r3
3:add r6, r2, r3

1 F D I R E E E W C
2 F D I R E E E W C
3 F D I R E E E W C

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r3
3:add r6, r2, r3

1 F D I R E E E W C
2 F D I R E E E W C
3 F D I R E E E W C

What are the parallel resources?

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r4
3:add r6, r5, r3

1 F D I R E E E W C
2 F D I R E E E W C
3 F D I R E E E W C

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r4
3:add r6, r5, r3

1 F D I R E E E W C
2 F D I R E E E W C
3 F D I R E E E W C

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:add r5, r1, r3
3:add r6, r2, r3

1 F D I R E E E W C
2 F D I R E E E W C
3 F D I R E E E W C

Communication and synchronization mechanisms?

Simplified view of a pipelined processor

sequencer
fetch

decode

dispatch
(issue) reg. access

execute
write-back

commit

1:add r4, r1, r2
2:ld r5, r4
3:add r6, r5, r3
4:add r7, r1, r3

1 F D I R E E E W C
2 F D I R L L L L L L L L L W C
3 F D I R E E E W C
4 F D I R E E E W C

Simplified view of a OOO pipelined processor

issue
(dispatch)

scheduler

reg. access
execute

write-back
commit

sequencer
fetch

decode
rename

dispatch
(issue)

1:add r4, r1, r2
2:ld r5, r4
3:add r6, r5, r3
4:add r7, r1, r3

1 F D I d R E E E W C
2 F D I d R L L L L L L L L L W C
3 F D I d R E E E W C
4 F D I d R E E E W C
Communication and synchronization mechanisms?

Pipelining Summary

• Pipelining is using parallelism to hide latency
– Do useful work while waiting for other work to finish

• Multiple parallel components, not multiple
instances of same component

• Examples:
– Execution pipeline
– Memory pipelines

• Issue multiple requests to memory without waiting for
previous requests to complete

– Software pipelines
• Overlap different software blocks to hide latency:

computation/communication

Outline

• Corrections/clarifications
• Pipelining
• Summary of parallel HW (multiple ALUs)

– Analyze by shared resources
– Analyze by synch/comm mechanisms
– ILP, DLP, and TLP organizations

• Classification of ILP/DLP/TLP in software
• Patterns for parallel programming

Resources in a parallel processor/system

• Execution
– ALUs
– Cores/processors

• Control
– Sequencers
– Instructions
– OOO schedulers

• State
– Registers
– Memories

• Networks

Communication and synchronization

• Synchronization
– Clock – explicit compiler order
– Explicit signals (e.g., dependences)
– Implicit signals (e.g., flush/stall)

• More for pipelining than multiple ALUs

• Communication
– Bypass networks
– Registers
– Memory
– Explicit (over some network)

Organizations for ILP (for multiple ALUs)

Superscalar (ILP for multiple ALUs)

schedulersequencer

memory
hierarchy

• Synchronization
– Explicit signals

(dependences)
• Communication

– Bypass, registers, mem
• Shared

– Sequencer, OOO, registers,
memories, net, ALUs

• Partitioned
– Instructions

How many ALUs?

SMT/TLS (ILP for multiple ALUs)

SMT/TLS (ILP for multiple ALUs)

scheduler

sequencer

memory
hierarchy

• Synchronization
– Explicit signals (dependences)

• Communication
– Bypass, registers, mem

• Shared
– OOO, registers, memories, net,

ALUs
• Partitioned

– Sequencer, Instructions, arch.
registers

Why is this ILP? How many threads?

sequencer

VLIW (ILP for multiple ALUs

VLIW (ILP for multiple ALUs)

sequencer

memory
hierarchy

• Synchronization
– Clock+compiler

• Communication
– Registers, mem, bypass

• Shared
– Sequencer, OOO,

registers, memories, net
• Partitioned

– Instructions, ALUs

How many ALUs?

Explicit Dataflow (ILP for multiple ALUs)

Explicit Dataflow (ILP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

Explicit Dataflow (ILP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

• Synchronization
– Explicit signals

• Communication
– Registers+explicit

• Shared
– Sequencer, memories,

net
• Partitioned

– Instructions, OOO, ALUs

DLP for multiple ALUs

From HW – this is SIMD

SIMD (DLP for multiple ALUs)

sequencer

memory
hierarchy

Local
Mem

Local
Mem

Local
Mem

Local
Mem

SIMD (DLP for multiple ALUs)

sequencer

memory
hierarchy

Local
Mem

Local
Mem

Local
Mem

Local
Mem

• Synchronization
– Clock+compiler

• Communication
– Explicit

• Shared
– Sequencer, instructions

• Partitioned
– Registers, memories, ALUs
– Sometimes: memories, net

Vectors (DLP for multiple ALUs)

sequencer

memory
hierarchy

Local
Mem

Local
Mem

Local
Mem

Local
Mem

Vectors: memory addresses are part of single-
instruction and not part of multiple-data

TLP for multiple ALUs

MIMD – shared memory (TLP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

MIMD – shared memory (TLP for multiple ALUs)

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

• Synchronization
– Explicit, memory

• Communication
– Memory

• Shared
– Memories, net

• Partitioned
– Sequencer, instructions,

OOO, ALUs, registers, some
nets

MIMD – distributed memory

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

memory
hierarchy

memory
hierarchy

memory
hierarchy

MIMD – distributed memory

sequencer

memory
hierarchy

scheduler scheduler scheduler scheduler

sequencer sequencer sequencer

memory
hierarchy

memory
hierarchy

memory
hierarchy

• Synchronization
– Explicit

• Communication
– Explicit

• Shared
– Net

• Partitioned
– Sequencer, instructions,

OOO, ALUs, registers, some
nets, memories

Summary of communication and
synchronization

Style Synchronization Communication

Superscalar explicit signals (RS) registers+bypass

VLIW clock+compiler registers (bypass?)

Dataflow explicit signals registers+explicit

SIMD clock+compiler explicit

MIMD explicit signals memory+explicit

Summary of sharing in ILP HW

Style Seq Inst OOO Regs Mem ALUs Net

Superscalar S P S S S S S

SMT/TLS P P S S S S S

VLIW S P N/A S S P S

Dataflow B P P B S P S

Summary of sharing in DLP and TLP

Style Seq Inst OOO Regs Mem ALUs Net

Vector S S N/A P s P B

SIMD S S N/A P p P B

MIMD P P P P S/P P B

ILP/DLP/TLP in Software?

• Back to the board.

	 EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 6 – Summary of HW Parallelis
	Outline
	Reminders
	Corrections/clarifications
	Outline
	Simplified view of a processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a pipelined processor
	Simplified view of a OOO pipelined processor
	Pipelining Summary
	Outline
	Resources in a parallel processor/system
	Communication and synchronization
	Organizations for ILP (for multiple ALUs)
	Superscalar (ILP for multiple ALUs)
	SMT/TLS (ILP for multiple ALUs)
	SMT/TLS (ILP for multiple ALUs)
	VLIW (ILP for multiple ALUs
	VLIW (ILP for multiple ALUs)
	Explicit Dataflow (ILP for multiple ALUs)
	Explicit Dataflow (ILP for multiple ALUs)
	Explicit Dataflow (ILP for multiple ALUs)
	DLP for multiple ALUs
	SIMD (DLP for multiple ALUs)
	SIMD (DLP for multiple ALUs)
	Vectors (DLP for multiple ALUs)
	TLP for multiple ALUs
	MIMD – shared memory (TLP for multiple ALUs)
	MIMD – shared memory (TLP for multiple ALUs)
	MIMD – distributed memory
	MIMD – distributed memory
	Summary of communication and synchronization	
	Summary of sharing in ILP HW
	Summary of sharing in DLP and TLP
	ILP/DLP/TLP in Software?

