
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 10 – Example of Using Parallel Constructs

Mattan Erez

The University of Texas at Austin

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 2

Outline
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 3

Credits
• Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei

Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

• Redction slides courtesy Dr. Rodric Rabbah (IBM)
– Taken from 6.189 IAP taught at MIT in 2007

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 4

GROMACS

• Highly optimized molecular-dynamics package
– Popular code
– Specifically tuned for protein folding
– Hand optimized loops for SSE3 (and other extensions)

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 5

Merrimac Integrates a Scalar Control Unit and
a Stream Processing Unit

• GROMACS components:
– Non-bonded forces

• Water-water with cutoff
• Protein-protein tabulated
• Water-water tabulated
• Protein-water tabulated

– Bonded forces
• Angles
• Dihedrals

– Boundary conditions
– Verlet integrator
– Constraints

• SHAKE
• SETTLE

– Other
• Temperature–pressure coupling
• Virial calculation

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 6

GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions
– Coulomb
– Lennard-Jones
– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 7

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 8

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 9

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 10

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 11

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each
molecule
– Neighbor-lists have variable

number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 12

Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative operator
⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example:
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last
input element is not
included in the result

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 13

Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:

• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Building data structures
• Etc.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 14

Building Data Structures with Scans

• Fun on the board

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 15

Scan on the CPU

• Just add each element to the sum of the elements before it
• Trivial, but sequential
• Exactly n adds: optimal

void scan(float* scanned, float* input, int length)
{
scanned[0] = 0;
for(int i = 1; i < length; ++i)
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 16

A First-Attempt Parallel Scan Algorithm

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Each UE reads one value from the input
array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 17

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

• Active UEs: stride to n-1 (n-stride UEs)
• UE j adds elements j and j-stride from T0 and writes
result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 0 3 4 8 7 4 5 7
Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 18

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 19

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #3
Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 20

A First-Attempt Parallel Scan Algorithm

Out 0 3 4 11 11 15 16 22

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

3. Write output to device
memory.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 21

What is wrong with our first-attempt parallel scan?

• Work Efficient:
– A parallel algorithm is work efficient if it does the same amount of work

as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 22

Improving Efficiency
• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it to and

from the root
– Tree is not an actual data structure, but a concept to determine

what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 23

Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 24

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 25

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 26

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 27

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 28

Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 29

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 UE

Stride 4

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 30

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 UEs

Stride 4

Stride 2

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 31

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 UEs

Stride 2

Stride 4

Stride 1

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 32

Reductions

• Many to one
• Many to many

– Simply multiple reductions
• Also known as scatter-add and subset of parallel prefix sums

• Use
– Histograms
– Superposition

• Physical properties

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 33

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction operator is
not associative

• Usually followed by a
broadcast of result

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 34

Tree-based Reduction

• n steps for 2n units of execution
• When reduction operator is associative
• Especially attractive when only one task needs result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 35

Recursive-doubling Reduction

• n steps for 2n units of execution
• If all units of execution need the result of the reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 36

Recursive-doubling Reduction

• Better than tree-based approach with broadcast
– Each units of execution has a copy of the reduced value at the

end of n steps
– In tree-based approach with broadcast

• Reduction takes n steps
• Broadcast cannot begin until reduction is complete
• Broadcast can take n steps (architecture dependent)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 37

Other Examples
• More patterns

– Reductions
– Scans

• Building a data structure

• More examples
– Search
– Sort
– FFT as divide and conquer
– Structured meshes and grids
– Sparse algebra
– Unstructured meshes and graphs
– Trees
– Collections

• Particles
• Rays

	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 10 – Example of Using Parallel
	Outline
	Credits
	GROMACS
	Merrimac Integrates a Scalar Control Unit and a Stream Processing Unit
	GROMACS Water-Water Force Calculation
	GROMACS Uses Non-Trivial Neighbor-List Algorithm
	GROMACS Uses Non-Trivial Neighbor-List Algorithm
	GROMACS Uses Non-Trivial Neighbor-List Algorithm
	GROMACS Uses Non-Trivial Neighbor-List Algorithm
	GROMACS Uses Non-Trivial Neighbor-List Algorithm
	Parallel Prefix Sum (Scan)
	Applications of Scan
	Building Data Structures with Scans
	Scan on the CPU
	A First-Attempt Parallel Scan Algorithm
	A First-Attempt Parallel Scan Algorithm
	A First-Attempt Parallel Scan Algorithm
	A First-Attempt Parallel Scan Algorithm
	A First-Attempt Parallel Scan Algorithm
	What is wrong with our first-attempt parallel scan?
	Improving Efficiency
	Build the Sum Tree
	Build the Sum Tree
	Build the Sum Tree
	Build the Sum Tree
	Zero the Last Element
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Build Scan From Partial Sums
	Reductions
	Serial Reduction
	Tree-based Reduction
	Recursive-doubling Reduction
	Recursive-doubling Reduction
	Other Examples

