EE382V (17325): Princ iples in C omputer Arc hitec ture Parallelism and Locality
Fall 2007
Lecture 10 - Example of Using Parallel Constructs

Mattan Erez UTETECE

The University of Texas at Austin

Outline

- Molec ular dyna mic s example
- Problem description
- Stepsto solution
- Build data structures; Compute forces; Integrate for new; positions; Check global solution; Repeat
- Finding concurrency
- Scans; data decomposition; reductions
- Algorithm structure
- Supporting structures

Credits

- Pa rallel Sc an slides courtesy Da vid Kirk (NVIDIA) a nd Wen-Mei Hwu (UIUC)
- Taken from EE493-AI taught at UIUC in Sprig 2007
- Redction slides courtesy Dr. Rodric Rabbah (IBM)
- Taken from 6.189 IAP taught at MIT in 2007

GROMACS

- Highly optimized molecular-dynamics package
- Popularcode
- Specific ally tuned for protein folding
- Hand optimized loopsfor SSE3 (and other extensions)

Memimac Integrates a Scalar Control Unit and a Stream Processing Unit

- GROMACScomponents:
- Non-bonded forces
- Water-water with cutoff
- Protein-protein tabulated
- Water-water tabulated
- Protein-water ta bulated
- Bonded forces
- Angles
- Dihedrals
- Boundary conditions
- Verlet integrator
- Constraints
- SHAKE
- SETILE
- Other
- Temperature-pressure coupling
- Virial calculation

GROMACS Water-Water Force Calc ulation

- Non-bonded long-range interactions
- Coulomb
- Lennard-Jones
- 234 operations per interaction

$$
V_{n b}=\sum_{i, j}\left[\frac{1}{4 \pi \epsilon_{0}} \frac{q_{i} q_{j}}{r_{i j}}+\left(\frac{C_{12}}{r_{i j}^{12}}-\frac{C_{6}}{r_{i j}^{6}}\right)\right]
$$

GROMACS Uses Non-Tǐvial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Moleculeslocated more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$

Effic ient algorithm leads to va riable rate input strea ms

GROMACS Uses Non-Tǐvial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Moleculeslocated more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
central molecules
neighbor molecules

Effic ient algorithm leads to variable rate input strea ms

GROMACS Uses Non-Tívial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
central molecules

Effic ient algorithm leads to variable rate input strea ms

GROMACS Uses Non-Tívial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
central molecules

Effic ient algorithm leads to variable rate input strea ms

G ROMACS Uses Non-Trivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
- Separate neighbor-list for each molecule
- Neighbor-lists have va riable number of elements
central molecules

Effic ient algorithm leads to variable rate input strea ms

Parallel Prefix Sum (Scan)

- Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity l , and an a ray of n elements

$$
\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]
$$

and retums the ordered set

$$
\left[1, a_{0},\left(a_{0} \oplus a_{1}\right), \ldots,\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n-2}\right)\right]
$$

- Example: if \oplus is addition, then scan on the set
$[31704163]$
retums the set

$[0341111151622]$ | Exclusive scan: last |
| :---: |
| input element is not |
| included in the result |

Applications of Scan

- Scan is a simple and useful pa rallel building block
- Convert recurences from sequential:

$$
\begin{aligned}
& \text { for }(j=1 ; j<n ; j++) \\
& \quad \text { out }[j]=\text { out }[j-1]+f(j) ;
\end{aligned}
$$

- into parallel:

```
forall(j) { temp[j] = f(j) };
    scan(out, temp);
```

- Useful for ma ny pa rallel a lgo nithms:
- radixsort
- quicksort
- String comparison
- Lexic al a nalysis
- Stream compaction
- Polynomial evaluation
- Solving recurences
- Tree operations
- Building data structures
- Etc.

Building Data Structures with Scans

- Fun on the board

Scan on the CPU

```
void scan( float* scanned, float* input, int length)
{
    scanned[0] = 0;
    for(int i = 1; i < length; ++i)
    {
                scanned[i] = input[i-1] + scanned[i-1];
    }
}
```

- Just add each element to the sum of the elements before it
- Trivial, but sequential
- Exactly n adds: optimal

A First-Attempt Parallel Scan Algorithm

Each UE reads one value from the input array in device memory into shared memory array T0. UE 0 writes 0 into shared memory array.

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.

A First-Attempt Parallel Scan Algorithm

1. (previous slide)
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#1
Stride = 1

- Active UEs: stride to $n-1$ (n-stride UEs)
- UE j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#2
 Stride $=2$

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#3
 Stride $=4$

A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
3. Write output to device memory.

What is wrong with our first-attempt parallel scan?

- Work Effic ient:
- A parallel algorithm is work efficient if it does the same a mount of work as an optimal sequential complexity
- Scan executes log(n) parallel iterations
- The steps do n-1, n-2, n-4,... n/2 adds each
- Totaladds: n * $(\log (\mathrm{n})-1)+1 \rightarrow O(\mathrm{n} * \log (\mathrm{n}))$ work
- This sc a n a lgorithm is NOTwork effic ient
- Sequential scan algonthm does n adds
- A factor of $\log (\mathrm{n})$ hurts: 20 x for $10 \wedge 6$ elements!

Improving Effic iency

- A common parallel algorithm pattem:

Balanced Trees

- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each UE does at each step
- Forscan:
- Traverse down from leaves to root building partial sums at intemal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Build the Sum Tree

T	3	1	7	0	4	1	6	3

Assume array is already in shared memory

Build the Sum Tree

Iteration 1, n/2 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration 2, nI4 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration $\log (n), 1$ UE

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value.
Note that this algorithm operates in-place: no need for double buffering
© David Kirk/NVIDIA and

Zero the Last Element

T	3	4	7	11	4	5	6	0

> We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Build Scan From Partial Sums

T	3	4	7	11	4	5	6	0

Build Scan From Partial Sums

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Iteration 2 2 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Done! We now have a completed scan that we can write out to device memory.
Total steps: 2 * $\log (n)$.
Total work: 2 * ($n-1$) adds $=O(n) \quad$ Work Efficient!
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

Reductions

- Many to one
- Many to many
- Simply multiple reductions
- Also known asscatter-add and subset of parallel prefix sums
- Use
- Histograms
- Superposition
- Physical properties

Serial Reduction

Tree-based Reduction

- n steps for 2^{n} units of exec ution
- When reduction operator is associative
- Especially attractive when only one task needs result

Rec ursive-doubling Reduction

- n steps for 2^{n} units of exec ution
- If all units of execution need the result of the reduction

Rec ursive-doubling Reduction

- Better than tree-based approach with broadcast
- Each units of execution has copy of the reduced value at the end of n steps
- In tree-based approach with broadcast
- Reduction takesn steps
- Broadcast cannot begin until reduction is complete
- Broadcast can take n steps (architecture dependent)

Other Examples

- More pattems
- Reductions
- Scans
- Building a data structure
- More examples
- Search
- Sort
- FFTasdivide and conquer
- Structured meshes and grids
- Sparse algebra
- Unstructured meshes and graphs
- Trees
- Collections
- Particles
- Rays

