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Outline
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check 
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures
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Credits
• Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei 

Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

• Redction slides courtesy Dr. Rodric Rabbah (IBM)
– Taken from 6.189 IAP taught at MIT in 2007
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GROMACS

• Highly optimized molecular-dynamics package
– Popular code
– Specifically tuned for protein folding
– Hand optimized loops for SSE3 (and other extensions)
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Merrimac Integrates a Scalar Control Unit and 
a Stream Processing Unit

• GROMACS components:
– Non-bonded forces

• Water-water with cutoff
• Protein-protein tabulated
• Water-water tabulated
• Protein-water tabulated

– Bonded forces
• Angles
• Dihedrals

– Boundary conditions
– Verlet integrator
– Constraints

• SHAKE
• SETTLE

– Other
• Temperature–pressure coupling
• Virial calculation
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GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions
– Coulomb 
– Lennard-Jones
– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time
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GROMACS Uses Non-Trivial Neighbor-List 
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams
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GROMACS Uses Non-Trivial Neighbor-List 
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each 
molecule
– Neighbor-lists have variable 

number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative operator 
⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example: 
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set 

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 
input element is not 
included in the result

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



Dr. Rodric Rabbah, IBM EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 8 13

Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :  
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:

• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Building data structures
• Etc.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Building Data Structures with Scans

• Fun on the board
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Scan on the CPU

• Just add each element to the sum of the elements before it
• Trivial, but sequential
• Exactly n adds: optimal

void scan( float* scanned, float* input, int length) 
{
scanned[0] = 0; 
for(int i = 1; i < length; ++i) 
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

Each UE reads one value from the input
array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

• Active UEs: stride to n-1 (n-stride UEs)
• UE j adds elements j and j-stride from T0 and writes 
result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 0 3 4 8 7 4 5 7
Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #2
Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #3
Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

Out 0 3 4 11 11 15 16 22

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

3. Write output to device 
memory. 

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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What is wrong with our first-attempt parallel scan?

• Work Efficient: 
– A parallel algorithm is work efficient if it does the same amount of work 

as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Improving Efficiency
• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it to and 

from the root
– Tree is not an actual data structure, but a concept to determine

what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal 

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums.  Since this is an exclusive scan,
set the last element to zero.  It will propagate back to the first element.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 UE

Stride 4

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2 
2 UEs

Stride 4

Stride 2

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  
Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 
n/2 UEs

Stride 2

Stride 4

Stride 1

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Reductions

• Many to one
• Many to many

– Simply multiple reductions
• Also known as scatter-add and subset of parallel prefix sums

• Use
– Histograms
– Superposition

• Physical properties
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Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction operator is 
not associative

• Usually followed by a 
broadcast of result
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Tree-based Reduction

• n steps for 2n units of execution
• When reduction operator is associative
• Especially attractive when only one task needs result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]
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Recursive-doubling Reduction

• n steps for 2n units of execution
• If all units of execution need the result of the reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]
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Recursive-doubling Reduction

• Better than tree-based approach with broadcast
– Each units of execution has a copy of the reduced value at the 

end of n steps
– In tree-based approach with broadcast

• Reduction takes n steps
• Broadcast cannot begin until reduction is complete
• Broadcast can take n steps (architecture dependent)
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Other Examples
• More patterns

– Reductions
– Scans

• Building a data structure

• More examples
– Search
– Sort
– FFT as divide and conquer
– Structured meshes and grids
– Sparse algebra
– Unstructured meshes and graphs
– Trees
– Collections 

• Particles
• Rays
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