
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 12 – GPU Architecture (NVIDIA G80) 

Mattan Erez

The University of Texas at Austin



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 2

Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

– Moved to lecture 13

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 3

A GPU Renders 3D Scenes

• A Graphics Processing Unit (GPU) accelerates 
rendering of 3D scenes
– Input: description of scene 
– Output: colored pixels to be displayed on a screen

• Input:
– Geometry (triangles), colors, lights, effects, textures

• Output:



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 4

The NVIDIA GeForce Graphics Pipeline

Host

Vertex Control
Vertex 
Cache

VS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

Matt
20

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 5

Another View of the 3D Graphics Pipeline 

Host

Vertex Control stream of vertices
(NV ~100K)

VS: Transform
stream of vertices

(NV)

VS: Geometry
stream of vertices

(NV)

VS: Lighting
stream of vertices

(NV)

VS: Setup
stream of vertices

(NV)

Raster
stream of fragments

(NF ~10M)

FS 0
stream of fragments

(NF)

FS 1
stream of fragments

(NF)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 6

The NVIDIA GeForce Graphics Pipeline

Host

Vertex Control

Vertex Shader

Triangle Setup

Raster

Fragment Shader

ROP FBI
Frame
Buffer

Memory

Matt
20

Vertex Shader Vertex Shader Vertex Shader

Fragment Shader Fragment Shader Fragment Shader



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 7

Stream Execution Model

• Data parallel streams of data
• Processing kernels

– Unit of Execution is processing of one stream element in one 
kernel – defined as a thread

Kernel 1 Kernel 2



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 8

Stream Execution Model

• Can partition the streams into chunks
– Streams are very long and elements are independent
– Chunks are called strips or blocks

• Unit of Execution is processing one block of data by 
one kernel – defined as a thread block

Kernel 1 Kernel 2



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 9

Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 10

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

• The future of GPUs is programmable processing
• So – build the architecture around the processor

Make the Compute Core The Focus of the 
Architecture

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 11

Vertex and Fragment Processing Share Unified 
Processing Elements

© NVIDIA Corp., 2007



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 12

Vertex and Fragment Processing Share Unified 
Processing Elements

• Load balancing HW is a problem

Heavy Geometry
Workload Perf = 4

Vertex Shader

Pixel Shader

Idle hardware

Heavy Pixel
Workload Perf = 8

Vertex Shader

Pixel Shader

Idle hardware

© NVIDIA Corp., 2007



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 13

Vertex and Fragment Processing Share Unified 
Processing Elements

• Load balancing SW is easier

Heavy Geometry
Workload Perf = 11

Unified Shader

Pixel

Vertex Workload

Heavy Pixel
Workload Perf = 11

Unified Shader

Vertex

Pixel Workload

© NVIDIA Corp., 2007



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 14

Vertex and Fragment Processing is 
Dynamically Load Balanced

Unified Shader UsageUnified Shader Usage
Less Geometry More Geometry

High pixel shader use

Low vertex shader use

Balanced use 
of pixel shader

and 
vertex shader

© NVIDIA Corp., 2007



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 15

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing
• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 16

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Manages thread blocks
Only one kernel at a time



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 17

Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 18

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Compute Core

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

Manages thread blocks
Only one kernel at a time

TPC

(texture
processor

cluster)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 19

GeForce-8 Series HW Overview

TPC TPC TPC TPC TPC TPC

TEX

SM

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Texture Processor Cluster Streaming Multiprocessor

SM

Shared Memory

Streaming Processor Array

…

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 20

• SPA – Streaming Processor Array
– Array of TPCs

• 8 TPCs in GeForce8800

• TPC – Texture Processor Cluster
– Cluster of 2 SMs + 1 TEX

• TEX is a texture processing unit

• SM – Streaming Multiprocessor
– Array of 8 SPs
– Multi-threaded processor core
– Fundamental processing unit for a thread block

• SP – Streaming Processor
– Scalar ALU for a single thread

• With 1K of registers

CUDA Processor Terminology

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 21

Streaming Multiprocessor (SM)
• Streaming Multiprocessor (SM)

– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)
– Up to 16 warps per thread block

• HW masking of inactive threads in a warp
– Threads cover latency of 

texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• 32 KB in registers
• DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 22

Thread Life Cycle in HW
• Kernel is launched on the SPA

– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed 
to all the SM’s

– Potentially >1 Thread Block per SM
– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps 
that are ready to run

• As Warps and Thread Blocks 
complete, resources are freed

– SPA can distribute more Thread Blocks

Host

Kernel 
1

Kernel 
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 23

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

SM Executes Blocks

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

• Threads are assigned to SMs in 
Block granularity
– Up to 8 Blocks to each SM as 

resource allows
– SM in G80 can take up to 768 

threads
• Could be 256 (threads/block) * 3 

blocks 
• Or 128 (threads/block) * 6 blocks, 

etc.

• Threads run concurrently
– SM assigns/maintains thread IDs
– SM manages/schedules thread 

execution



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 24

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Thread Scheduling/Execution
• Each Thread Block is divided into 

32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM 
and each Block has 256 threads, 
how many Warps are there in an 
SM?
– Each Block is divided into 256/32 = 

8 Warps
– There are 8 * 3 = 24 Warps 
– At any point in time, only one of the 

24 Warps will be selected for 
instruction fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 25

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

SM Warp Scheduling
• SM hardware implements zero-

overhead Warp scheduling
– Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution

– All threads in a Warp execute the 
same instruction when selected

– Scoreboard scheduler

• 4 clock cycles needed to 
dispatch the same instruction for 
all threads in a Warp in G80
– If one global memory access is 

needed for every 4 instructions
– A minimal of 13 Warps are needed 

to fully tolerate 200-cycle memory 
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 26

SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache 
– into any instruction buffer slot

• Issue one “ready-to-go” warp 
instruction/cycle
– from any warp - instruction buffer slot
– operand scoreboarding used to prevent 

hazards

• Issue selection based on round-robin/age 
of warp

• SM broadcasts the same instruction to 32 
Threads of a Warp

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 27

Scoreboarding
• All register operands of all instructions in the 

Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until 

scoreboarding prevents issue
– allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 28

Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or 
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM can take 
up to 768 threads, it can take up to 12 Blocks. However, each 
SM can only take up to 8 Blocks, only 512 threads will go into 
each SM!

– For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve 
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit 
into an SM!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign


	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 12 – GPU Architecture (NVIDIA G
	Outline
	A GPU Renders 3D Scenes
	The NVIDIA GeForce Graphics Pipeline
	Another View of the 3D Graphics Pipeline 
	The NVIDIA GeForce Graphics Pipeline
	Stream Execution Model
	Stream Execution Model
	Outline
	Make the Compute Core The Focus of the Architecture
	Vertex and Fragment Processing Share Unified Processing Elements
	Vertex and Fragment Processing Share Unified Processing Elements
	Vertex and Fragment Processing Share Unified Processing Elements
	Vertex and Fragment Processing is Dynamically Load Balanced
	Make the Compute Core The Focus of the Architecture
	Make the Compute Core The Focus of the Architecture
	Outline
	Compute Core
	GeForce-8 Series HW Overview
	CUDA Processor Terminology
	Streaming Multiprocessor (SM)
	Thread Life Cycle in HW
	SM Executes Blocks
	Thread Scheduling/Execution
	SM Warp Scheduling
	SM Instruction Buffer – Warp Scheduling
	Scoreboarding
	Granularity and Resource Considerations

