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Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

– Moved to lecture 13

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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A GPU Renders 3D Scenes

• A Graphics Processing Unit (GPU) accelerates 
rendering of 3D scenes
– Input: description of scene 
– Output: colored pixels to be displayed on a screen

• Input:
– Geometry (triangles), colors, lights, effects, textures

• Output:
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The NVIDIA GeForce Graphics Pipeline
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Another View of the 3D Graphics Pipeline 
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The NVIDIA GeForce Graphics Pipeline
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Stream Execution Model

• Data parallel streams of data
• Processing kernels

– Unit of Execution is processing of one stream element in one 
kernel – defined as a thread

Kernel 1 Kernel 2
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Stream Execution Model

• Can partition the streams into chunks
– Streams are very long and elements are independent
– Chunks are called strips or blocks

• Unit of Execution is processing one block of data by 
one kernel – defined as a thread block

Kernel 1 Kernel 2
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Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class
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• The future of GPUs is programmable processing
• So – build the architecture around the processor

Make the Compute Core The Focus of the 
Architecture
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Vertex and Fragment Processing Share Unified 
Processing Elements

© NVIDIA Corp., 2007
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Vertex and Fragment Processing Share Unified 
Processing Elements

• Load balancing HW is a problem
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Vertex and Fragment Processing Share Unified 
Processing Elements

• Load balancing SW is easier
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Vertex and Fragment Processing is 
Dynamically Load Balanced

Unified Shader UsageUnified Shader Usage
Less Geometry More Geometry

High pixel shader use

Low vertex shader use

Balanced use 
of pixel shader

and 
vertex shader
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Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing
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• The future of GPUs is programmable processing
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Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing
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Outline
• 3D graphics recap and architecture motivation
• Overview and definitions
• Execution core architecture
• Memory architecture

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class
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GeForce-8 Series HW Overview
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• SPA – Streaming Processor Array
– Array of TPCs

• 8 TPCs in GeForce8800

• TPC – Texture Processor Cluster
– Cluster of 2 SMs + 1 TEX

• TEX is a texture processing unit

• SM – Streaming Multiprocessor
– Array of 8 SPs
– Multi-threaded processor core
– Fundamental processing unit for a thread block

• SP – Streaming Processor
– Scalar ALU for a single thread

• With 1K of registers

CUDA Processor Terminology

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 12 21

Streaming Multiprocessor (SM)
• Streaming Multiprocessor (SM)

– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)
– Up to 16 warps per thread block

• HW masking of inactive threads in a warp
– Threads cover latency of 

texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• 32 KB in registers
• DRAM texture and memory access
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Thread Life Cycle in HW
• Kernel is launched on the SPA

– Kernels known as grids of thread blocks

• Thread Blocks are serially distributed 
to all the SM’s

– Potentially >1 Thread Block per SM
– At least 96 threads per block

• Each SM launches Warps of Threads
– 2 levels of parallelism

• SM schedules and executes Warps 
that are ready to run

• As Warps and Thread Blocks 
complete, resources are freed

– SPA can distribute more Thread Blocks
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SM Executes Blocks
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• Threads are assigned to SMs in 
Block granularity
– Up to 8 Blocks to each SM as 

resource allows
– SM in G80 can take up to 768 

threads
• Could be 256 (threads/block) * 3 

blocks 
• Or 128 (threads/block) * 6 blocks, 

etc.

• Threads run concurrently
– SM assigns/maintains thread IDs
– SM manages/schedules thread 

execution
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Thread Scheduling/Execution
• Each Thread Block is divided into 

32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM 
and each Block has 256 threads, 
how many Warps are there in an 
SM?
– Each Block is divided into 256/32 = 

8 Warps
– There are 8 * 3 = 24 Warps 
– At any point in time, only one of the 

24 Warps will be selected for 
instruction fetch and execution.
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SM Warp Scheduling
• SM hardware implements zero-

overhead Warp scheduling
– Warps whose next instruction has its 

operands ready for consumption are 
eligible for execution

– All threads in a Warp execute the 
same instruction when selected

– Scoreboard scheduler

• 4 clock cycles needed to 
dispatch the same instruction for 
all threads in a Warp in G80
– If one global memory access is 

needed for every 4 instructions
– A minimal of 13 Warps are needed 

to fully tolerate 200-cycle memory 
latency

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96
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SM Instruction Buffer – Warp Scheduling

• Fetch one warp instruction/cycle
– from instruction L1 cache 
– into any instruction buffer slot

• Issue one “ready-to-go” warp 
instruction/cycle
– from any warp - instruction buffer slot
– operand scoreboarding used to prevent 

hazards

• Issue selection based on round-robin/age 
of warp

• SM broadcasts the same instruction to 32 
Threads of a Warp
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Scoreboarding
• All register operands of all instructions in the 

Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until 

scoreboarding prevents issue
– allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops
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Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or 
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM can take 
up to 768 threads, it can take up to 12 Blocks. However, each 
SM can only take up to 8 Blocks, only 512 threads will go into 
each SM!

– For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve 
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit 
into an SM!
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