EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 13 – GPU Architecture (NVIDIA G80)

Mattan Erez

The University of Texas at Austin

- Quick recap of execution architecture
- Memory architecture
 - Registers, SM shared memory, global memory, and cached memory
- Synchronization, Communication, and Control flow
- CUDA (moved to Lecture 14)

- Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - From The University of Illinois ECE 498AI class
- Some slides courtesy Massimiliano Fatica (NVIDIA)

Make the Compute Core The Focus of the Architecture

- Phoof assures of x GPU to is paragrating the phocessing
- Atterbailid the paratities the aspenditional process or puting

ECE 498AL, University of Illinois, Urbana-Champaign

Streaming Multiprocessor (SM)

- Streaming Multiprocessor (SM)
 - 8 Streaming Processors (SP)
 - 2 Super Function Units (SFU)
- Multi-threaded instruction dispatch
 - Vectors of 32 threads (*warps*)
 - Up to 16 warps per thread block
 - HW masking of inactive threads in a warp
 - Threads cover latency of texture/memory loads
- 20+ GFLOPS
- 16 KB shared memory
- 32 KB in registers
- DRAM texture and memory access

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

4

Make the Compute Core The Focus of the Architecture

1 Grid (kernel) at a time

Urbana-Champaign

- Quick recap of execution architecture
- Memory architecture
 - Registers, SM shared memory, global memory, and cached memory
- Synchronization, Communication, and Control flow
- CUDA

- Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - From The University of Illinois ECE 498AI class
- A few slides courtesy David Luebke (NVIDIA)

SM Memory Architecture

Blocks

- Registers in SP
 - 1K total per SP
 - shared between thread
 - same per thread in a block)
- Shared memory in SM
 - 16KB total per SM
 - shared between blocks
- Global memory
 - Managed by Texture Units
 - Cache read only
 - Managed by LD/ST ROP units
 - Uncached read/Write

SM Register File

- Register File (RF)
 - 32 KB (1 Kword per SP)
 - Provides 4 operands/clock
- TEX pipe can also read/write RF
 - 2 SMs share 1 TEX
- Load/Store pipe can also read/write RF

Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same
 Block only access registers
 assigned to itself

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Matrix Multiplication Example

- If each Block has 16X16 threads and each thread uses 10 registers, how many thread can run on each SM?
 - Each Block requires 10*256 = 2560 registers
 - 8192 = **3** * 2560 + change
 - So, three blocks can run on an SM as far as registers are concerned
- How about if each thread increases the use of registers by 1?
 - Each Block now requires 11*256 = 2816 registers
 - 8192 < 2816 *3
 - Only two Blocks can run on an SM, 1/3 reduction of parallelism!!!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

More on Dynamic Partitioning

- Dynamic partitioning gives more flexibility to compilers/programmers
 - One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
 - This allows for finer grain threading than traditional CPU threading models.
 - The compiler can tradeoff between instruction-level parallelism and thread level parallelism

ILP vs. TLP Example

- Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles
 - 3 Blocks can run on each SM
- If a Compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
 - Only two can run on each SM
 - However, one only needs 200/(8*4) = 7 Warps to tolerate the memory latency
 - Two Blocks have 16 Warps. The performance can actually be higher!

SM Memory Architecture

Blocks

- 1K total per SP
 - shared between thread
 - same per thread in a block)
- Shared memory in SM
 - 16KB total per SM
 - shared between blocks
 - Global memory
 - Managed by Texture Units
 - Cache read only
 - Managed by LD/ST ROP units
 - Uncached read/Write

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a Block!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

- Textures are 2D arrays of values stored in global DRAM
- Textures are cached in L1 and L2
- Read-only access
- Caches optimized for 2D access:
 - Threads in a warp that follow 2D locality will achieve better memory performance

SM Memory Architecture

Registers in SP

Blocks

- 1K total per SP
 - shared between thread
 - same per thread in a block)
- Shared memory in SM
 - 16KB total per SM
 - shared between blocks
- Global memory
 - Managed by Texture Units
 - Cache read only
 - Managed by LD/ST ROP units
 - Uncached read/Write

- Each SM has 16 KB of Shared Memory
 - 16 banks of 32bit words
- CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 - read and write access
- Not used explicitly for pixel shader programs
 - we dislike pixels talking to each other \odot

Multiply Using Several Blocks

- One block computes one square sub-matrix P_{sub} of size BLOCK_SIZE
- One thread computes one element of P_{sub}

by

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007

Urbana-Champaign

2

Assume that the dimensions of M and N are multiples of **BLOCK_SIZE** and square shape

bsize-1

- Each Block requires 2* WIDTH² * 4 bytes of shared memory storage
 - For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks can fit into the Shared Memory of an SM
 - Since each SM can only take 768 threads, each SM can only take 3 Blocks of 256 threads each
 - Shared memory size is not a limitation for Matrix Multiplication of

Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth
- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks

 Multiple simultaneous accesses to a bank Bank 15 result in a bank conflict

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign licting accesses are serialized

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

ECE 498AL, University of Illinois, Urbana-Champaign

How addresses map to banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp

Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts
- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp access the identical address, there is no bank conflict (broadcast)
- The slow case:
 - Bank Conflict: multiple threads in the same half-warp access the same bank
 - Must serialize the accesses
 - Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13

• Given:

__shared__ float shared[256];
float foo =
 shared[baseIndex + s *
 threadIdx.x];

- This is only bank-conflict-free if s shares no common factors with the number of banks
 - 16 on G80, so <mark>s</mark> must be odd

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

- But not if the data type is smaller
 - 4-way bank conflicts:

___shared___ char shared[];

foo = shared[baseIndex + threadIdx.x];

- 2-way bank conflicts: ____shared____short_shared[]; foo = shared[baseIndex + threadIdx.x];

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Structs and Bank Conflicts

• Struct assignments compile into as many memory accesses as there are struct members:

```
struct vector { float x, y, z; };
struct myType {
    float f;
    int c;
};
__shared__ struct vector vectors[64];
__shared__ struct myType myTypes[64];
```


- This has no bank conflicts for vector; struct size is 3 words
 - 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

 This has 2-way bank conflicts for my Type; (2 accesses per thread)

struct myType m = myTypes[baseIndex + threadIdx.x];

Urbana-Champaign EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13

ECE

- Each thread loads 2 elements into shared mem:
 - 2-way-interleaved loads result in 2-way bank conflicts:

```
int tid = threadIdx.x;
shared[2*tid] = global[2*tid];
shared[2*tid+1] = global[2*tid+1];
```

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffice.
 - Not in shared memory usage where there is no cache line effects but banking effects

A Better Array Access Pattern

 Each thread loads one element in every consecutive group of bockDim elements.

```
shared[tid] = global[tid];
shared[tid + blockDim.x] =
global[tid + blockDim.x];
```


© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

Common Bank Conflict Patterns (2D)

- Operating on 2D array of floats in shared memory
 - e.g. image processing
- Example: 16x16 block
 - Each thread processes a row
 - So threads in a block access the elements in each column simultaneously (example: row 1 in purple)
 - 16-way bank conflicts: rows all start at bank 0
- Solution 1) pad the rows
 - Add one float to the end of each row
- Solution 2) transpose before processing
 - Suffer bank conflicts during transpose
 - But possibly save them later

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

EE382V: Principles of Computer Architecture, Fall 2007

Bank Indices without Padding

Bank Indices with Padding

Load/Store (Memory read/write) Clustering/Batching

- Use LD to hide LD latency (non-dependent LD ops only)
 - Use same thread to help hide own latency
- Instead of:
 - LD 0 (long latency)
 - Dependent MATH 0
 - LD 1 (long latency)
 - Dependent MATH 1
- Do:
 - LD 0 (long latency)
 - LD 1 (long latency hidden)
 - MATH 0
 - MATH 1
- Compiler handles this!
 - But, you must have enough non-dependent LDs and Math

- Quick recap of execution architecture
- Memory architecture
 - Registers, SM shared memory, global memory, and cached memory
- Synchronization, Communication, and Control flow
- CUDA

- Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - From The University of Illinois ECE 498AI class
- A few slides courtesy David Luebke (NVIDIA)

- How do threads communicate?
- Remember the execution model:
 - Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world
 - These *never* communicate
- Some communication allowed in compute mode:
 - Shared memory for threads in a thread block
 - No special communication within warp or using registers
 - No communication between thread blocks
 - Kernels communicate through global device memory
- Mechanisms designed to ensure portability

© Mattan Erez

Synchronization

- Do threads need to synchronize?
 - Basically no communication allowed
- Threads in a block share memory need sync
 - Warps scheduled OoO, can't rely on warp order
 - Barrier command for all threads in a block
 - __synchthreads()
- Blocks cannot synchronize
 - Implicit synchronization at end of kernel

- Each SM has its own warp scheduler
- Schedules warps OoO based on hazards and resources
- Warps can be issued in any order within and across blocks
- Within a warp, all threads always have the same position
 - Current implementation has warps of 32 threads
 - Can change with no notice from NVIDIA

Conditionals within a Thread

- What happens if there is a conditional statement within a thread?
- No problem if all threads in a warp follow same path
- Divergence: threads in a warp follow different paths
 - HW will ensure correct behavior by (partially) serializing execution
 - Compiler can add predication to eliminate divergence
- Try to avoid divergence
 - If (TID > 2) {...} \rightarrow If(TID / warp_size > 2) {...}

© Mattan Erez

- Quick recap of execution architecture
- Memory architecture
 - Registers, SM shared memory, global memory, and cached memory
- Synchronization, Communication, and Control flow
- CUDA
 - System
 - Programming Model
 - API
- Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - From The University of Illinois ECE 498AI class
- A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez

Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel coprocessor

Matches architecture features Specific parameters not exposed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

The G80 GPU is not integrated into the CPU

- Connects through a PCI Express bus

- Communicates through OS (drivers) AMD Opteron[®] Processor-based 4P Server

ECE

Better in the Near Future

- AMD Torrenza technology
 - Allows licensing of coherent HyperTransport[™] to 3rd party manufacturers to make socketcompatible accelerators/coprocessors
 - Allows 3rd party PPUs (Physics Processing Unit), GPUs, and coprocessors to access main system memory directly and coherently
 - Eliminate the "driver model"?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign **CUDA Programming System**

- Targeted software stack
 - Compute oriented drivers, language, and tools
- Driver for loading computation programs into GPU
 - Standalone Driver Optimized for computation
 - Interface designed for compute graphics free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

- The API is an extension to the ANSI C programming language
 Low learning curve
- The hardware is designed to enable lightweight runtime and driver

