
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 13 – GPU Architecture (NVIDIA G80)

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 2

Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA (moved to Lecture 14)

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Some slides courtesy Massimiliano Fatica (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 3

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

• The future of GPUs is programmable processing
• So – build the architecture around the processor

L2

FB

SP SP

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

SP SP

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 4

Streaming Multiprocessor (SM)
• Streaming Multiprocessor (SM)

– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)
– Up to 16 warps per thread block

• HW masking of inactive threads in a warp
– Threads cover latency of

texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• 32 KB in registers
• DRAM texture and memory access

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 5

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM
(16 – 128 total concurrent blocks)

1 thread per SP
(in warps of 32
across the SM)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 6

Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 7

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 8

SM Register File

• Register File (RF)
– 32 KB (1 Kword per SP)
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also
read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 9

Programmer View of Register File

• There are 8192 registers
in each SM in G80
– This is an implementation

decision, not part of CUDA
– Registers are dynamically

partitioned across all Blocks
assigned to the SM

– Once assigned to a Block,
the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access registers
assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 10

Matrix Multiplication Example

• If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are

concerned
• How about if each thread increases the use of

registers by 1?
– Each Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of

parallelism!!!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 11

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads that require many

registers each or a large number of threads that require few
registers each

• This allows for finer grain threading than traditional CPU threading
models.

– The compiler can tradeoff between instruction-level parallelism
and thread level parallelism

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 12

ILP vs. TLP Example
• Assume that a kernel has 256-thread Blocks, 4 independent

instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist
for each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory

latency
– Two Blocks have 16 Warps. The performance can actually be higher!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 13

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 14

Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and

cached on chip
– L1 per SM

• A constant value can be
broadcast to all threads in a Warp
– Extremely efficient way of accessing a

value that is common for all threads in a
Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 15

Textures

• Textures are 2D arrays of values stored in global
DRAM

• Textures are cached in L1 and L2
• Read-only access
• Caches optimized for 2D access:

– Threads in a warp that follow 2D locality will achieve better
memory performance

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 16

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 17

Shared Memory

• Each SM has 16 KB of Shared
Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as
shared storage visible to all
threads in a thread block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 18

Multiply Using Several Blocks

• One block computes one square
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one
element of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 19

Matrix Multiplication
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks can fit

into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix Multiplication of

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 20

Parallel Memory Architecture

• In a parallel machine, many threads access
memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per
cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 21

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 22

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 23

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock
cycle

• Successive 32-bit words are assigned to
successive banks

• G80 has 16 banks
– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 24

Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no

bank conflict
– If all threads of a half-warp access the identical address, there is

no bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 25

Linear Addressing

• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *
threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
– 16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 26

Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 27

Structs and Bank Conflicts

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

• Struct assignments compile into as many memory accesses as
there are struct members:

struct vector { float x, y, z; };

struct myType {

float f;

int c;

};

__shared__ struct vector vectors[64];

__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per
thread)
struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 28

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into
shared mem:
– 2-way-interleaved loads result in

2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU
threads, locality in cache line usage
and reduced sharing traffice.
– Not in shared memory usage where

there is no cache line effects but
banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 29

A Better Array Access Pattern

• Each thread loads one element
in every consecutive group of
bockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] =
global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 30

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 31

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 32

Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared
memory
– e.g. image processing

• Example: 16x16 block
– Each thread processes a row
– So threads in a block access the elements in

each column simultaneously (example: row 1
in purple)

– 16-way bank conflicts: rows all start at bank 0

• Solution 1) pad the rows
– Add one float to the end of each row

• Solution 2) transpose before processing
– Suffer bank conflicts during transpose
– But possibly save them later

Bank Indices without Padding
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Bank Indices with Padding

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 33

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Load/Store (Memory read/write)
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 34

Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 35

Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices,

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 36

Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 37

Control

• Each SM has its own warp scheduler
• Schedules warps OoO based on hazards and

resources
• Warps can be issued in any order within and across

blocks
• Within a warp, all threads always have the same

position
– Current implementation has warps of 32 threads
– Can change with no notice from NVIDIA

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 38

Conditionals within a Thread
• What happens if there is a conditional statement

within a thread?

• No problem if all threads in a warp follow same
path

• Divergence: threads in a warp follow different
paths
– HW will ensure correct behavior by (partially) serializing

execution
– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…} If(TID / warp_size > 2) {…}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 39

Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

– System
– Programming Model
– API

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 40

Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

Matches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 41

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

The CUDA Platform

• The G80 GPU is not integrated into the CPU
– Connects through a PCI Express bus
– Communicates through OS (drivers)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 42

Better in the Near Future

• AMD Torrenza technology
– Allows licensing of coherent

HyperTransport™ to 3rd party
manufacturers to make socket-
compatible accelerators/co-
processors

– Allows 3rd party PPUs (Physics
Processing Unit), GPUs, and co-
processors to access main system
memory directly and coherently

– Eliminate the “driver model”?

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 43

CUDA Programming System

GPU

CPU

CUDA Runtime

CUDA Libraries
(FFT, BLAS)

CUDA Driver

Application

• Targeted software stack
– Compute oriented drivers, language,

and tools

• Driver for loading computation
programs into GPU
– Standalone Driver - Optimized for

computation
– Interface designed for compute -

graphics free API
– Data sharing with OpenGL buffer

objects
– Guaranteed maximum download &

readback speeds
– Explicit GPU memory management

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 44

CUDA API and Language:
Easy and Lightweight

• The API is an extension to the ANSI C
programming language

Low learning curve

• The hardware is designed to enable lightweight
runtime and driver

High performance

	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 13 – GPU Architecture (NVIDIA G
	Outline
	Make the Compute Core The Focus of the Architecture
	Streaming Multiprocessor (SM)
	Make the Compute Core The Focus of the Architecture
	Outline
	SM Memory Architecture
	SM Register File
	Programmer View of Register File
	Matrix Multiplication Example
	More on Dynamic Partitioning
	ILP vs. TLP Example
	SM Memory Architecture
	Constants
	Textures
	SM Memory Architecture
	Shared Memory
	Multiply Using Several Blocks
	Matrix Multiplication �Shared Memory Usage
	Parallel Memory Architecture
	Bank Addressing Examples
	Bank Addressing Examples
	How addresses map to banks on G80
	Shared memory bank conflicts
	Linear Addressing
	Data types and bank conflicts
	Structs and Bank Conflicts
	Common Array Bank Conflict Patterns�1D
	A Better Array Access Pattern
	Vector Reduction with Bank Conflicts
	No Bank Conflicts
	Common Bank Conflict Patterns (2D)
	Load/Store (Memory read/write) Clustering/Batching
	Outline
	Communication
	Synchronization
	Control
	Conditionals within a Thread
	Outline
	Compute Unified Device Architecture
	The CUDA Platform
	Better in the Near Future
	CUDA Programming System
	CUDA API and Language:�Easy and Lightweight

