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Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA (moved to Lecture 14)

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Some slides courtesy Massimiliano Fatica (NVIDIA)
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Make the Compute Core The Focus of the 
Architecture

• Processors execute computing threads
• Alternative operating mode specifically for computing
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• The future of GPUs is programmable processing
• So – build the architecture around the processor
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Streaming Multiprocessor (SM)
• Streaming Multiprocessor (SM)

– 8 Streaming Processors (SP)
– 2 Super Function Units (SFU)

• Multi-threaded instruction dispatch
– Vectors of 32 threads (warps)
– Up to 16 warps per thread block

• HW masking of inactive threads in a warp
– Threads cover latency of 

texture/memory loads

• 20+ GFLOPS
• 16 KB shared memory
• 32 KB in registers
• DRAM texture and memory access
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Make the Compute Core The Focus of the 
Architecture

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM 
(16 – 128 total concurrent blocks)

1 thread per SP
(in warps of 32 
across the SM)
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Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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SM Memory Architecture
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Courtesy: 
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP 

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM 

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only 
– Managed by LD/ST ROP units

• Uncached – read/Write
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SM Register File

• Register File (RF)
– 32 KB (1 Kword per SP)
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also 
read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 9

Programmer View of Register File

• There are 8192 registers 
in each SM in G80
– This is an implementation 

decision, not part of CUDA
– Registers are dynamically 

partitioned across all Blocks 
assigned to the SM

– Once assigned to a Block, 
the register is NOT 
accessible by threads in 
other Blocks

– Each thread in the same 
Block only access registers 
assigned to itself

4 blocks 3 blocks
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Matrix Multiplication Example

• If each Block has 16X16 threads and each thread 
uses 10 registers, how many thread can run on 
each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are 

concerned
• How about if each thread increases the use of 

registers by 1?
– Each  Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of 

parallelism!!!
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More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 
compilers/programmers
– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 
registers each 

• This allows for finer grain threading than traditional CPU threading 
models.

– The compiler can tradeoff between instruction-level parallelism 
and thread level parallelism
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ILP vs. TLP Example
• Assume that a kernel has 256-thread Blocks, 4 independent 

instructions for each global memory load in the thread 
program, and each thread uses 10 registers, global loads 
have 200 cycles 
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the 
dependence pattern so that 8 independent instructions exist 
for each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 

latency
– Two Blocks have 16 Warps. The performance can actually be higher!
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SM Memory Architecture
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• Registers in SP
– 1K total per SP 

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM 

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only 
– Managed by LD/ST ROP units

• Uncached – read/Write
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Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and 

cached on chip
– L1 per SM

• A constant value can be 
broadcast to all threads in a Warp
– Extremely efficient way of accessing a 

value that is common for all threads in a 
Block!
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Textures

• Textures are 2D arrays of values stored in global 
DRAM

• Textures are cached in L1 and L2
• Read-only access
• Caches optimized for 2D access:

– Threads in a warp that follow 2D locality will achieve better 
memory performance
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SM Memory Architecture
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– 16KB total per SM 
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Shared Memory

• Each SM has 16 KB of Shared 
Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as 
shared storage visible to all 
threads in a thread block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺
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Multiply Using Several Blocks

• One block computes one square 
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one 
element of Psub

• Assume that the dimensions of M 
and N are multiples of BLOCK_SIZE 
and square shape
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Matrix Multiplication 
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared 
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks can fit 

into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only 

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix Multiplication of 
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Parallel Memory Architecture

• In a parallel machine, many threads access 
memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per
cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8
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How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock 
cycle

• Successive 32-bit words are assigned to 
successive banks

• G80 has 16 banks
– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a 
single half-warp
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Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank 
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no 

bank conflict
– If all threads of a half-warp access the identical address, there is 

no bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the 

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank
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Linear Addressing

• Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * 
threadIdx.x];

• This is only bank-conflict-free if s 
shares no common factors with the 
number of banks 
– 16 on G80, so s must be odd
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Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];
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Structs and Bank Conflicts
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• Struct assignments compile into as many memory accesses as 
there are struct members:

struct vector { float x, y, z; };

struct myType { 

float f; 

int c;

};

__shared__ struct vector vectors[64];

__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per 
thread)
struct myType m = myTypes[baseIndex + threadIdx.x];
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Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into 
shared mem:
– 2-way-interleaved loads result in 

2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU 
threads, locality in cache line usage 
and reduced sharing traffice.
– Not in shared memory usage where 

there is no cache line effects but 
banking effects
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A Better Array Access Pattern

• Each thread loads one element 
in every consecutive group of 
bockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] = 
global[tid + blockDim.x];
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Vector Reduction with Bank Conflicts
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No Bank Conflicts
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Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared 
memory
– e.g. image processing

• Example: 16x16 block
– Each thread processes a row
– So threads in a block access the elements in 

each column simultaneously (example: row 1 
in purple)

– 16-way bank conflicts: rows all start at bank 0

• Solution 1) pad the rows
– Add one float to the end of each row

• Solution 2) transpose before processing
– Suffer bank conflicts during transpose
– But possibly save them later

Bank Indices without Padding
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Bank Indices with Padding

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13 33

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Load/Store (Memory read/write) 
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math
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Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices, 

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability
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Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel
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Control

• Each SM has its own warp scheduler
• Schedules warps OoO based on hazards and 

resources
• Warps can be issued in any order within and across 

blocks
• Within a warp, all threads always have the same 

position
– Current implementation has warps of 32 threads
– Can change with no notice from NVIDIA
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Conditionals within a Thread
• What happens if there is a conditional statement 

within a thread?

• No problem if all threads in a warp follow same 
path

• Divergence: threads in a warp  follow different 
paths
– HW will ensure correct behavior by (partially) serializing 

execution
– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…}   If(TID / warp_size > 2) {…}
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Outline
• Quick recap of execution architecture
• Memory architecture

– Registers, SM shared memory, global memory, and cached
memory

• Synchronization, Communication, and Control flow
• CUDA

– System
– Programming Model
– API

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80 
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

Matches architecture features
Specific parameters not exposed
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The CUDA Platform

• The G80 GPU is not integrated into the CPU
– Connects through a PCI Express bus
– Communicates through OS (drivers)
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Better in the Near Future

• AMD Torrenza technology
– Allows licensing of coherent 

HyperTransport™ to 3rd party 
manufacturers to make socket-
compatible accelerators/co-
processors

– Allows 3rd party PPUs (Physics 
Processing Unit), GPUs, and co-
processors to access main system 
memory directly and coherently

– Eliminate the “driver model”?

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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CUDA Programming System

GPU

CPU

CUDA Runtime

CUDA Libraries
(FFT, BLAS)

CUDA Driver

Application

• Targeted software stack
– Compute oriented drivers, language, 

and tools

• Driver for loading computation 
programs into GPU
– Standalone Driver - Optimized for 

computation 
– Interface designed for compute -

graphics free API
– Data sharing with OpenGL buffer 

objects 
– Guaranteed maximum download & 

readback speeds
– Explicit GPU memory management
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CUDA API and Language:
Easy and Lightweight

• The API is an extension to the ANSI C 
programming language

Low learning curve

• The hardware is designed to enable lightweight 
runtime and driver

High performance
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