Outline

• Quick recap of execution architecture
• Memory architecture
 – Registers, SM shared memory, global memory, and cached memory
• Synchronization, Communication, and Control flow
• CUDA (moved to Lecture 14)

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 – From The University of Illinois ECE 498AI class
• Some slides courtesy Massimiliano Fatica (NVIDIA)
Make the Compute Core The Focus of the Architecture

- The future of GPUs is programmable processing
- Alternative the architecture around the focus of computing

Host

Input Assembler

Vtx Thread Issue

Geom Thread Issue

Pixel Thread Issue

Thread Processor

L1

L2

TF

SP

FB

Mc

ECE 498AL, University of Illinois, Urbana-Champaign

EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13
Streaming Multiprocessor (SM)

- Streaming Multiprocessor (SM)
 - 8 Streaming Processors (SP)
 - 2 Super Function Units (SFU)

- Multi-threaded instruction dispatch
 - Vectors of 32 threads (warps)
 - Up to 16 warps per thread block
 - HW masking of inactive threads in a warp
 - Threads cover latency of texture/memory loads

- 20+ GFLOPS
- 16 KB shared memory
- 32 KB in registers
- DRAM texture and memory access
Make the Compute Core The Focus of the Architecture

1 Grid (kernel) at a time

1 thread per SP (in warps of 32 across the SM)

1 - 8 Thread Blocks per SM (16 - 128 total concurrent blocks)

Host

Input Assembler

Thread Execution Manager

Parallel Data Cache

Texture

Load/store

Global Memory
Outline

• Quick recap of execution architecture
• Memory architecture
 – Registers, SM shared memory, global memory, and cached memory
• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 – From The University of Illinois ECE 498AI class
• A few slides courtesy David Luebke (NVIDIA)
SM Memory Architecture

- Registers in SP
 - 1K total per SP
 - shared between thread
 - same per thread in a block

- Shared memory in SM
 - 16KB total per SM
 - shared between blocks

- Global memory
 - Managed by Texture Units
 - Cache - read only
 - Managed by LD/STROP units
 - Uncached - read/Write
SM Register File

- Register File (RF)
 - 32 KB (1 Kword per SP)
 - Provides 4 operands/clock
- TEX pipe can also read/write RF
 - 2 SMs share 1 TEX
- Load/Store pipe can also read/write RF
Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same Block only access registers assigned to itself

© David Kirk/NVIDIA and Wen-mei Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
Matrix Multiplication Example

• If each Block has 16X16 threads and each thread uses 10 registers, how many threads can run on each SM?
 - Each Block requires $10 \times 256 = 2560$ registers
 - $8192 = 3 \times 2560 + \text{change}$
 - So, three blocks can run on an SM as far as registers are concerned

• How about if each thread increases the use of registers by 1?
 - Each Block now requires $11 \times 256 = 2816$ registers
 - $8192 < 2816 \times 3$
 - Only two Blocks can run on an SM, **1/3 reduction of parallelism!!!**
More on Dynamic Partitioning

- Dynamic partitioning gives more flexibility to compilers/programmers
 - One can run a smaller number of threads that require many registers each or a large number of threads that require few registers each
 - This allows for finer grain threading than traditional CPU threading models.
 - The compiler can tradeoff between instruction-level parallelism and thread level parallelism
ILP vs. TLP Example

• Assume that a kernel has 256-thread Blocks, 4 independent instructions for each global memory load in the thread program, and each thread uses 10 registers, global loads have 200 cycles
 - 3 Blocks can run on each SM

• If a Compiler can use one more register to change the dependence pattern so that 8 independent instructions exist for each global memory load
 - Only two can run on each SM
 - However, one only needs $200/(8*4) = 7$ Warps to tolerate the memory latency
 - Two Blocks have 16 Warps. The performance can actually be higher!
SM Memory Architecture

- Registers in SP
 - 1K total per SP
 - shared between thread
 - same per thread in a block

- Shared memory in SM
 - 16KB total per SM
 - shared between blocks

- Global memory
 - Managed by Texture Units
 - Cache - read only
 - Managed by LD/STROP units
 - Uncached - read/Write
Constants

- Immediate address constants
- Indexed address constants
- Constants stored in DRAM, and cached on chip
 - L1 per SM
- A constant value can be broadcast to all threads in a Warp
 - Extremely efficient way of accessing a value that is common for all threads in a Block!
Textures

- Textures are 2D arrays of values stored in global DRAM
- Textures are cached in L1 and L2
- Read-only access
- Caches optimized for 2D access:
 - Threads in a warp that follow 2D locality will achieve better memory performance
SM Memory Architecture

- Registers in SP
 - 1K total per SP
 - shared between thread
 - same per thread in a block

- Shared memory in SM
 - 16KB total per SM
 - shared between blocks

- Global memory
 - Managed by Texture Units
 - Cache - read only
 - Managed by LD/STROP units
 - Uncached - read/Write
Shared Memory

• Each SM has 16 KB of Shared Memory
 – 16 banks of 32-bit words

• CUDA uses Shared Memory as shared storage visible to all threads in a thread block
 – read and write access

• Not used explicitly for pixel shader programs
 – we dislike pixels talking to each other 😊
Multiply Using Several Blocks

- One **block** computes one square sub-matrix P_{sub} of size BLOCK_SIZE.
- One **thread** computes one element of P_{sub}.
- Assume that the dimensions of M and N are multiples of BLOCK_SIZE and square shape.
Matrix Multiplication
Shared Memory Usage

• Each Block requires $2 \times WIDTH^2 \times 4$ bytes of shared memory storage
 - For $WIDTH = 16$, each BLOCK requires 2KB, up to 8 Blocks can fit into the Shared Memory of an SM
 - Since each SM can only take 768 threads, each SM can only take 3 Blocks of 256 threads each
 - Shared memory size is not a limitation for Matrix Multiplication of
Parallel Memory Architecture

- In a parallel machine, many threads access memory
 - Therefore, memory is divided into banks
 - Essential to achieve high bandwidth

- Each bank can service one address per cycle
 - A memory can service as many simultaneous accesses as it has banks

- Multiple simultaneous accesses to a bank result in a bank conflict
 - Conflicting accesses are serialized
Bank Addressing Examples

- **No Bank Conflicts**
 - Linear addressing
 - stride == 1

- **No Bank Conflicts**
 - Random 1:1 Permutation

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 13
Bank Addressing Examples

- **2-way Bank Conflicts**
 - Linear addressing

 \[
 \text{stride} = 2
 \]

- **8-way Bank Conflicts**
 - Linear addressing

 \[
 \text{stride} = 8
 \]
How addresses map to banks on G80

- Each bank has a bandwidth of 32 bits per clock cycle
- Successive 32-bit words are assigned to successive banks
- G80 has 16 banks
 - So bank = address % 16
 - Same as the size of a half-warp
 - No bank conflicts between different half-warps, only within a single half-warp
Shared memory bank conflicts

- Shared memory is as fast as registers if there are no bank conflicts.

- **The fast case:**
 - If all threads of a half-warp access different banks, there is no bank conflict.
 - If all threads of a half-warp access the identical address, there is no bank conflict (broadcast).

- **The slow case:**
 - Bank Conflict: multiple threads in the same half-warp access the same bank.
 - Must serialize the accesses.
 - Cost = max # of simultaneous accesses to a single bank.
Linear Addressing

- Given:

```c
__shared__ float shared[256];
float foo =
    shared[baseIndex + s * threadIdx.x];
```

- This is only bank-conflict-free if \(s \) shares no common factors with the number of banks
 - 16 on G80, so \(s \) must be odd
Data types and bank conflicts

- This has no conflicts if type of `shared` is 32-bits:

  ```
  foo = shared[baseIndex + threadIdx.x]
  ```

- But not if the data type is smaller
 - 4-way bank conflicts:
    ```
    __shared__ char shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```

 - 2-way bank conflicts:
    ```
    __shared__ short shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```
Structs and Bank Conflicts

- **Struct assignments compile into as many memory accesses as there are struct members:**

  ```c
  struct vector { float x, y, z; };
  struct myType {
    float f;
    int c;
  };
  __shared__ struct vector vectors[64];
  __shared__ struct myType myTypes[64];
  ```

- **This has no bank conflicts for vector; struct size is 3 words**
 - 3 accesses per thread, contiguous banks (no common factor with 16)

  ```c
  struct vector v = vectors[baseIndex + threadIdx.x];
  ```

- **This has 2-way bank conflicts for myType; (2 accesses per thread)**

  ```c
  struct myType m = myTypes[baseIndex + threadIdx.x];
  ```
Common Array Bank Conflict Patterns

1D

- Each thread loads 2 elements into shared mem:
 - 2-way-interleaved loads result in 2-way bank conflicts:

\[
\text{int \: tid = threadIdx.x;}
\]

\[
\text{shared[2*tid] = global[2*tid];}
\]

\[
\text{shared[2*tid+1] = global[2*tid+1];}
\]

- This makes sense for traditional CPU threads, locality in cache line usage and reduced sharing traffic.
 - Not in shared memory usage where there is no cache line effects but banking effects
A Better Array Access Pattern

- Each thread loads one element in every consecutive group of blockDim elements.

```
shared[tid] = global[tid];
shared[tid + blockDim.x] =
    global[tid + blockDim.x];
```
Vector Reduction with Bank Conflicts

Array elements

0 1 2 3 4 5 6 7 8 9 10 11

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
No Bank Conflicts
Common Bank Conflict Patterns (2D)

- Operating on 2D array of floats in shared memory
 - e.g. image processing
- Example: 16x16 block
 - Each thread processes a row
 - So threads in a block access the elements in each column simultaneously (example: row 1 in purple)
 - 16-way bank conflicts: rows all start at bank 0

- Solution 1) pad the rows
 - Add one float to the end of each row
- Solution 2) transpose before processing
 - Suffer bank conflicts during transpose
 - But possibly save them later
Load/Store (Memory read/write)
Clustering/Batching

- Use LD to hide LD latency (non-dependent LD ops only)
 - Use same thread to help hide own latency

- Instead of:
 - LD 0 (long latency)
 - Dependent MATH 0
 - LD 1 (long latency)
 - Dependent MATH 1

- Do:
 - LD 0 (long latency)
 - LD 1 (long latency - hidden)
 - MATH 0
 - MATH 1

- Compiler handles this!
 - But, you must have enough non-dependent LDs and Math
Outline

• Quick recap of execution architecture
• Memory architecture
 – Registers, SM shared memory, global memory, and cached memory
• Synchronization, Communication, and Control flow
• CUDA

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 – From The University of Illinois ECE 498AI class
• A few slides courtesy David Luebke (NVIDIA)
Communication

• How do threads communicate?

• Remember the execution model:

 – Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world

 – These never communicate

• Some communication allowed in compute mode:

 – Shared memory for threads in a thread block

 • No special communication within warp or using registers

 – No communication between thread blocks

 – Kernels communicate through global device memory

• Mechanisms designed to ensure portability
Synchronization

• Do threads need to synchronize?
 - Basically no communication allowed

• Threads in a block share memory – need sync
 - Warps scheduled OoO, can’t rely on warp order
 - Barrier command for all threads in a block
 - __syncthreads()

• Blocks cannot synchronize
 - Implicit synchronization at end of kernel
Control

- Each SM has its own warp scheduler
- Schedules warps OoO based on hazards and resources
- Warps can be issued in any order within and across blocks
- Within a warp, all threads always have the same position
 - Current implementation has warps of 32 threads
 - Can change with no notice from NVIDIA
Conditionals within a Thread

• What happens if there is a conditional statement within a thread?

• No problem if all threads in a warp follow same path

• **Divergence**: threads in a warp follow different paths
 - HW will ensure correct behavior by (partially) serializing execution
 - Compiler can add predication to eliminate divergence

• Try to avoid divergence
 - If (TID > 2) {…} \rightarrow If(TID / warp_size > 2) {…}
Outline

• Quick recap of execution architecture
• Memory architecture
 – Registers, SM shared memory, global memory, and cached memory
• Synchronization, Communication, and Control flow
• CUDA
 – System
 – Programming Model
 – API

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 – From The University of Illinois ECE 498AI class
• A few slides courtesy David Luebke (NVIDIA)
Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor

Matches architecture features
Specific parameters not exposed
The CUDA Platform

• The G80 GPU is not integrated into the CPU
 - Connects through a PCI Express bus
 - Communicates through OS (drivers)
Better in the Near Future

- **AMD Torrenza technology**
 - Allows licensing of coherent HyperTransport™ to 3rd party manufacturers to make socket-compatible accelerators/co-processors
 - Allows 3rd party PPUs (Physics Processing Unit), GPUs, and co-processors to access main system memory directly and coherently
 - Eliminate the “driver model”?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
CUDA Programming System

- **Targeted software stack**
 - Compute oriented drivers, language, and tools

- **Driver for loading computation programs into GPU**
 - Standalone Driver - Optimized for computation
 - Interface designed for compute-graphics free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management
CUDA API and Language: Easy and Lightweight

- The API is an extension to the ANSI C programming language
 - Low learning curve

- The hardware is designed to enable lightweight runtime and driver
 - High performance