Lecture 16 - CUDA Optimization Strategies

Mattan Erez

The University of Texas at Austin
Outline

- CUDA
 - Development process
 - Performance Optimization
 - Syntax

- Most slides courtesy Massimiliano Fatica (NVIDIA)
Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor

Matches architecture features
Specific parameters not exposed
CUDA Programming Model: A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute **device** that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel

• Data-parallel portions of an application are executed on the device as **kernels** which run in parallel on many threads

• **Differences between GPU and CPU threads**
 - **GPU threads** are extremely lightweight
 - Very little creation overhead
 - **GPU needs 1000s of threads for full efficiency**
 - Multi-core CPU needs only a few
CUDA: C on the GPU

• A simple, explicit programming language solution

• Extend only where necessary

```c
__global__ void KernelFunc(...);
__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);
```

• Explicit GPU memory allocation
 - `cudaMalloc()`, `cudaFree()`

• Memory copy from host to device, etc.
 - `cudaMemcpy()`, `cudaMemcpy2D()`, ...
Compilation

• Any source file containing CUDA language extensions must be compiled with \texttt{nvcc}

• \texttt{NVCC} is a \textit{compiler driver}
 – Works by invoking all the necessary tools and compilers like \texttt{cudacc}, \texttt{g++}, \texttt{cl}, ...

• \texttt{NVCC} can output:
 – Either \texttt{C} code (CPU Code)
 • That must then be compiled with the rest of the application using another tool
 – Or PTX object code directly

• Any executable with CUDA code requires two dynamic libraries:
 – The CUDA runtime library (\texttt{cudart})
 – The CUDA core library (\texttt{cuda})
Compiling CUDA

- C/C++ CUDA Application
- NVCC
- PTX Code
- PTX to Target Compiler
- G80, ..., GPU

Target code
Compiling CUDA

C/C++ CUDA Application

NVCC

PTX Code

PTX to Target Compiler

G80...GPU

Target code

Virtual

Physical
Debugging Using the Device Emulation Mode

• An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of __syncthreads
Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode.
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host.
Outline

• CUDA
 – Development process
 – Performance Optimization
 • Optimize Algorithms for the GPU
 • Optimize Memory Access Pattern
 • Take Advantage of On-Chip Shared Memory
 • Use Parallelism Efficiently
 – Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)
CUDA Optimization Priorities

• Memory coalescing is #1 priority
 - Highest I/\$ optimization
 - Optimize for locality

• Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work

• Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks

• Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions
Parameterize Your Application

• Parameterization helps adaptation to different GPUs

• GPUs vary in many ways
 – # of multiprocessors
 – Shared memory size
 – Register file size
 – Threads per block
 – Memory bandwidth

• You can even make apps self-tuning (like FFTW)
 – “Experiment” mode discovers and saves optimal config
CUDA Optimization Strategies

- Optimize Algorithms for the GPU
- Optimize Memory Access Pattern
- Take Advantage of On-Chip Shared Memory
- Use Parallelism Efficiently
- Use appropriate mechanisms
Optimize Algorithms for the GPU

- Maximize independent parallelism

- Maximize arithmetic intensity (math/bandwidth)

- Sometimes it’s better to recompute than to cache
 - GPU spends its transistors on ALUs, not memory

- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host
Modern DRAMs are Sensitive to Pattern

Inorder Row Row+Col

%peak BW

1 1x1rd 1x1rdcf 1x1rw 1x1nwcf 1x40rd 48x48rd cr1rd cr1rw r1rd r1nw r4rd r4nw
Optimize Memory Pattern (“Coherence”)

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced

- Optimize for spatial locality in cached texture memory

- Constant memory provides broadcast within SM

- In shared memory, avoid high-degree bank conflicts
Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory

- Use one / a few threads to load / compute data shared by all threads

- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
 - See the transpose SDK sample for an example
Use Parallelism Efficiently

• Partition your computation to keep the GPU multiprocessors equally busy
 – Many threads, many thread blocks

• Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 – Registers, shared memory
Maximizing Instruction Throughput

- Minimize use of low-throughput instructions

- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses

- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads
Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory

- Group transfers
 - One large transfer much better than many small ones
Page-Locked Memory Transfers

- `cuMemAllocHost()` allows allocation of page-locked host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards

- See the “bandwidthTest” CUDA SDK sample

- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits
Optimizing threads per block

• Given: total threads in a grid
 – Choose block size and number of blocks to maximize occupancy:

 Occupancy: # of warps running concurrently on a multiprocessor divided by maximum # of warps that can run concurrently

 (Demonstrate CUDA Occupancy Calculator)
Grid/Block Size Heuristics

- # of blocks / # of multiprocessors > 1
 - So all multiprocessors have at least a block to execute
- Per-block resources at most half of total available
 - Shared memory and registers
 - Multiple blocks can run concurrently in a multiprocessor
 - If multiple blocks coexist that aren’t all waiting at a __syncthreads(), machine can stay busy
- # of blocks / # of multiprocessors > 2
 - So multiple blocks run concurrently in a multiprocessor
- # of blocks > 100 to scale to future devices
 - Blocks stream through machine in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations
Occupancy != Performance

• Increasing occupancy does not necessarily increase performance

BUT…

• Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)
Optimizing threads per block

• Choose threads per block as a multiple of warp size
 – Avoid wasting computation on under-populated warps
• More threads per block \Rightarrow better memory latency hiding
• But, more threads per block \Rightarrow fewer regs per thread
 – Kernel invocations can fail if too many registers are used

• Heuristics
 – Minimum: 64 threads per block
 • Only if multiple concurrent blocks
 – 192 or 256 threads a better choice
 • Usually still enough regs to compile and invoke successfully
 – This all depends on your computation!
 • Experiment!