EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 16 – CUDA Optimization Strategies

Mattan Erez

The University of Texas at Austin

• CUDA

- Development process
- Performance Optimization
- Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel coprocessor

Matches architecture features Specific parameters not exposed

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA Programming Model: A Highly Multithreaded Coprocessor

- The GPU is viewed as a compute device that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

- A simple, explicit programming language solution
- Extend only where necessary

```
__global___ void KernelFunc(...);
```

____shared____int SharedVar;

```
KernelFunc<<< 500, 128 >>>(...);
```

- Explicit GPU memory allocation
 - cudaMalloc(), cudaFree()
- Memory copy from host to device, etc.
 - cudaMemcpy(), cudaMemcpy2D(), ...

- Any source file containing CUDA language extensions must be compiled with nvcc
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC can output:
 - Either C code (CPU Code)
 - That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly
- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)

© NVIDIA Corp.

© NVIDIA Corp.

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and viceversa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of _____syncthreads

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host

- CUDA
 - Development process
 - Performance Optimization
 - Optimize Algorithms for the GPU
 - Optimize Memory Access Pattern
 - Take Advantage of On-Chip Shared Memory
 - Use Parallelism Efficiently
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

CUDA Optimization Priorities

- Memory coalescing is #1 priority
 - Highest !/\$ optimization
 - Optimize for locality
- Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work
- Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks
- Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions

© NVIDIA Corp. EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16

Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Shared memory size
 - Register file size
 - Threads per block
 - Memory bandwidth
- You can even make apps self-tuning (like FFTW)
 - "Experiment" mode discovers and saves optimal config

CUDA Optimization Strategies

- Optimize Algorithms for the GPU
- Optimize Memory Access Pattern
- Take Advantage of On-Chip Shared Memory
- Use Parallelism Efficiently
- Use appropriate machanisms

Optimize Algorithms for the GPU

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transfering back and forth to host

Optimize Memory Pattern ("Coherence")

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced
- Optimize for spatial locality in cached texture memory
- Constant memory provides broadcast within SM
- In shared memory, avoid high-degree bank conflicts

© Mattan Erez

Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing
 - See the transpose SDK sample for an example

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory

Maximizing Instruction Throughput

- Minimize use of low-throughput instructions
- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads

© Mattan Erez

Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Memory Transfers

- cuMemAllocHost() allows allocation of pagelocked host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards
- See the "bandwidthTest" CUDA SDK sample
- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits

© Mattan Erez

Optimizing threads per block

- Given: total threads in a grid
 - Choose block size and number of blocks to maximize occupancy:
 - Occupancy: # of warps running concurrently on a multiprocessor divided by maximum # of warps that can run concurrently

(Demonstrate CUDA Occupancy Calculator)

Grid/Block Size Heuristics

- # of blocks / # of multiprocessors > 1
 - So all multiprocessors have at least a block to execute
- Per-block resources at most half of total available
 - Shared memory and registers
 - Multiple blocks can run concurrently in a multiprocessor
- # of blocks / # of multiprocessors > 2
 - So multiple blocks run concurrently in a multiprocessor
- # of blocks > 100 to scale to future devices
 - Blocks stream through machine in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Occupancy != Performance

Increasing occupancy does not necessarily increase performance

BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Optimizing threads per block

- Choose threads per block as a multiple of warp size
 Avoid wasting computation on under-populated warps
- More threads per block == better memory latency hiding
- But, more threads per block == fewer regs per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation!
- © Mattan Erez Experiment Principles of Computer Architecture, Fall 2007 -- Lecture 16