
EE382V (17325): Principles in Computer Architecture 
Parallelism and Locality 
Fall 2007 
Lecture 16 – CUDA Optimization Strategies

Mattan Erez

The University of Texas at Austin



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 2

Outline
• CUDA

– Development process
– Performance Optimization
– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 3

Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80 
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co- 

processor

Matches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 4

CUDA Programming Model: 
A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are 
executed on the device as kernels which run in 
parallel on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 5

CUDA: C on the GPU
• A simple, explicit programming language solution

• Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

• Explicit GPU memory allocation
– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc. 
– cudaMemcpy(), cudaMemcpy2D(), ...

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 6

Compilation

• Any source file containing CUDA language 
extensions must be compiled with nvcc

• NVCC is a compiler driver
– Works by invoking all the necessary tools and compilers like 

cudacc, g++, cl, ...
• NVCC can output:

– Either C code (CPU Code)
• That must then be compiled with the rest of the application 

using another tool
– Or PTX object code directly

• Any executable with CUDA code requires two 
dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 7

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU 

Target code

PTX Code

CPU Code

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 8

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU 

Target code

PTX Code Virtual

Physical

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 9

Debugging Using the 
Device Emulation Mode

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs completely on 
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• When running in device emulation mode, one 
can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice- 

versa
– Call any host function from device code (e.g. printf) and 

vice-versa
– Detect deadlock situations caused by improper usage of 
__syncthreads

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 10

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, 

so simultaneous accesses of the same memory 
location by multiple threads potentially produce 
different results

• Dereferencing device pointers on the host or 
host pointers on the device can produce correct 
results in device emulation mode, but will 
generate an error in device execution mode

• Results of floating-point computations will slightly 
differ because of:
– Different compiler outputs
– Different instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision on the 
host

© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 11

Outline
• CUDA

– Development process
– Performance Optimization

• Optimize Algorithms for the GPU
• Optimize Memory Access Pattern
• Take Advantage of On-Chip Shared Memory
• Use Parallelism Efficiently

– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 12

CUDA Optimization Priorities
• Memory coalescing is #1 priority

– Highest !/$ optimization
– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth
– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times
– High arithmetic / bandwidth ratio
– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding if 

avoiding them will cost more instructions
© NVIDIA Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 13

Parameterize Your Application

• Parameterization helps adaptation to different 
GPUs

• GPUs vary in many ways
– # of multiprocessors
– Shared memory size
– Register file size
– Threads per block
– Memory bandwidth

• You can even make apps self-tuning (like FFTW)
– “Experiment” mode discovers and saves optimal config



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 14

CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

• Use Parallelism Efficiently

• Use appropriate machanisms



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 15

Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache
– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly 
data transfers
– Even low parallelism computations can sometimes be faster 

than transfering back and forth to host



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 16

Modern DRAMs are Sensitive to Pattern

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1x
1rd

1x
1rd

cf
1x

1rw
1x

1rw
cf

1x
40

rd
48

x4
8rw cr1

rd
cr1

rw r1r
d

r1r
w

r4r
d

r4r
w

Inorder Row Row+Col

%
pe

ak
 B

W



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 17

Optimize Memory Pattern (“Coherence”)

• Coalesced vs. Non-coalesced = order of 
magnitude
– Global/Local device memory
– Sequential access by threads in a half-warp get coalesced

• Optimize for spatial locality in cached texture 
memory

• Constant memory provides broadcast within SM

• In shared memory, avoid high-degree bank 
conflicts



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 18

Take Advantage of Shared Memory

• Hundreds of times faster than global memory
• Threads can cooperate via shared memory

• Use one / a few threads to load / compute data 
shared by all threads

• Use it to avoid non-coalesced access
– Stage loads and stores in shared memory to re-order non- 

coalesceable addressing
– See the transpose SDK sample for an example



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 19

Use Parallelism Efficiently

• Partition your computation to keep the GPU 
multiprocessors equally busy
– Many threads, many thread blocks

• Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor
– Registers, shared memory



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 20

Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
– Maximize use of shared memory
– Maximize coherence of cached accesses
– Minimize accesses to (uncached) global and local memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory 
accesses with HW computation
– High arithmetic intensity programs

• i.e. high ratio of math to memory transactions
– Many concurrent threads



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 21

Data Transfers

• Device memory to host memory bandwidth much 
lower than device memory to device bandwidth
– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
– Intermediate data structures can be allocated, operated on, 

and deallocated without ever copying them to host memory

• Group transfers
– One large transfer much better than many small ones



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 22

Page-Locked Memory Transfers

• cuMemAllocHost() allows allocation of page- 
locked host memory

• Enables highest cudaMemcpy performance
– 3.2 GB/s common on PCI-e x16
– ~4 GB/s measured on nForce 680i motherboards

• See the “bandwidthTest” CUDA SDK sample

• Use with caution
– Allocating too much page-locked memory can reduce overall 

system performance
– Test your systems and apps to learn their limits



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 23

Optimizing threads per block

• Given: total threads in a grid
– Choose block size and number of blocks to maximize 

occupancy:

Occupancy: # of warps running concurrently on a 
multiprocessor divided by maximum # of warps that can run 
concurrently 

(Demonstrate CUDA Occupancy Calculator)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 24

Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
– So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
– Shared memory and registers
– Multiple blocks can run concurrently in a multiprocessor
– If multiple blocks coexist that aren’t all waiting at a 

__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
– Blocks stream through machine in pipeline fashion
– 1000 blocks per grid will scale across multiple generations



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 25

Occupancy != Performance

• Increasing occupancy does not necessarily 
increase performance

BUT…

• Low-occupancy multiprocessors cannot 
adequately hide latency on memory-bound kernels
– (It all comes down to arithmetic intensity and available 

parallelism)



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 16 26

Optimizing threads per block

• Choose threads per block as a multiple of warp size
– Avoid wasting computation on under-populated warps

• More threads per block == better memory latency 
hiding

• But, more threads per block == fewer regs per 
thread
– Kernel invocations can fail if too many registers are used

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks 
– 192 or 256 threads a better choice

• Usually still enough regs to compile and invoke successfully
– This all depends on your computation!

• Experiment!


	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 16 – CUDA Optimization Strategies
	Outline
	Compute Unified Device Architecture
	CUDA Programming Model:�A Highly Multithreaded Coprocessor
	CUDA: C on the GPU
	Compilation
	Compiling CUDA
	Compiling CUDA
	Debugging Using the�Device Emulation Mode
	Device Emulation Mode Pitfalls
	Outline
	CUDA Optimization Priorities
	Parameterize Your Application
	CUDA Optimization Strategies
	Optimize Algorithms for the GPU
	Modern DRAMs are Sensitive to Pattern
	Optimize Memory Pattern (“Coherence”)
	Take Advantage of Shared Memory
	Use Parallelism Efficiently
	Maximizing Instruction Throughput
	Data Transfers
	Page-Locked Memory Transfers
	Optimizing threads per block
	Grid/Block Size Heuristics
	Occupancy != Performance
	Optimizing threads per block

