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Outline
• CUDA

– Development process
– Performance Optimization
– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)
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Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80 
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co- 

processor

Matches architecture features
Specific parameters not exposed
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CUDA Programming Model: 
A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are 
executed on the device as kernels which run in 
parallel on many threads

• Differences between GPU and CPU threads 
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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CUDA: C on the GPU
• A simple, explicit programming language solution

• Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

• Explicit GPU memory allocation
– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc. 
– cudaMemcpy(), cudaMemcpy2D(), ...

© NVIDIA Corp.
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Compilation

• Any source file containing CUDA language 
extensions must be compiled with nvcc

• NVCC is a compiler driver
– Works by invoking all the necessary tools and compilers like 

cudacc, g++, cl, ...
• NVCC can output:

– Either C code (CPU Code)
• That must then be compiled with the rest of the application 

using another tool
– Or PTX object code directly

• Any executable with CUDA code requires two 
dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

© NVIDIA Corp.
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Compiling CUDA

NVCC
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Application

PTX to Target
Compiler

G80 … GPU 

Target code

PTX Code

CPU Code
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Compiling CUDA
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Debugging Using the 
Device Emulation Mode

• An executable compiled in device emulation 
mode (nvcc -deviceemu) runs completely on 
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• When running in device emulation mode, one 
can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice- 

versa
– Call any host function from device code (e.g. printf) and 

vice-versa
– Detect deadlock situations caused by improper usage of 
__syncthreads

© NVIDIA Corp.
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Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially, 

so simultaneous accesses of the same memory 
location by multiple threads potentially produce 
different results

• Dereferencing device pointers on the host or 
host pointers on the device can produce correct 
results in device emulation mode, but will 
generate an error in device execution mode

• Results of floating-point computations will slightly 
differ because of:
– Different compiler outputs
– Different instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision on the 
host

© NVIDIA Corp.
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Outline
• CUDA

– Development process
– Performance Optimization

• Optimize Algorithms for the GPU
• Optimize Memory Access Pattern
• Take Advantage of On-Chip Shared Memory
• Use Parallelism Efficiently

– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)
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CUDA Optimization Priorities
• Memory coalescing is #1 priority

– Highest !/$ optimization
– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth
– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times
– High arithmetic / bandwidth ratio
– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding if 

avoiding them will cost more instructions
© NVIDIA Corp.
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Parameterize Your Application

• Parameterization helps adaptation to different 
GPUs

• GPUs vary in many ways
– # of multiprocessors
– Shared memory size
– Register file size
– Threads per block
– Memory bandwidth

• You can even make apps self-tuning (like FFTW)
– “Experiment” mode discovers and saves optimal config
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CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

• Use Parallelism Efficiently

• Use appropriate machanisms
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Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache
– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly 
data transfers
– Even low parallelism computations can sometimes be faster 

than transfering back and forth to host
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Modern DRAMs are Sensitive to Pattern
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Optimize Memory Pattern (“Coherence”)

• Coalesced vs. Non-coalesced = order of 
magnitude
– Global/Local device memory
– Sequential access by threads in a half-warp get coalesced

• Optimize for spatial locality in cached texture 
memory

• Constant memory provides broadcast within SM

• In shared memory, avoid high-degree bank 
conflicts
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Take Advantage of Shared Memory

• Hundreds of times faster than global memory
• Threads can cooperate via shared memory

• Use one / a few threads to load / compute data 
shared by all threads

• Use it to avoid non-coalesced access
– Stage loads and stores in shared memory to re-order non- 

coalesceable addressing
– See the transpose SDK sample for an example
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Use Parallelism Efficiently

• Partition your computation to keep the GPU 
multiprocessors equally busy
– Many threads, many thread blocks

• Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor
– Registers, shared memory
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Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
– Maximize use of shared memory
– Maximize coherence of cached accesses
– Minimize accesses to (uncached) global and local memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory 
accesses with HW computation
– High arithmetic intensity programs

• i.e. high ratio of math to memory transactions
– Many concurrent threads
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Data Transfers

• Device memory to host memory bandwidth much 
lower than device memory to device bandwidth
– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
– Intermediate data structures can be allocated, operated on, 

and deallocated without ever copying them to host memory

• Group transfers
– One large transfer much better than many small ones
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Page-Locked Memory Transfers

• cuMemAllocHost() allows allocation of page- 
locked host memory

• Enables highest cudaMemcpy performance
– 3.2 GB/s common on PCI-e x16
– ~4 GB/s measured on nForce 680i motherboards

• See the “bandwidthTest” CUDA SDK sample

• Use with caution
– Allocating too much page-locked memory can reduce overall 

system performance
– Test your systems and apps to learn their limits
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Optimizing threads per block

• Given: total threads in a grid
– Choose block size and number of blocks to maximize 

occupancy:

Occupancy: # of warps running concurrently on a 
multiprocessor divided by maximum # of warps that can run 
concurrently 

(Demonstrate CUDA Occupancy Calculator)
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Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
– So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
– Shared memory and registers
– Multiple blocks can run concurrently in a multiprocessor
– If multiple blocks coexist that aren’t all waiting at a 

__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
– Blocks stream through machine in pipeline fashion
– 1000 blocks per grid will scale across multiple generations
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Occupancy != Performance

• Increasing occupancy does not necessarily 
increase performance

BUT…

• Low-occupancy multiprocessors cannot 
adequately hide latency on memory-bound kernels
– (It all comes down to arithmetic intensity and available 

parallelism)
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Optimizing threads per block

• Choose threads per block as a multiple of warp size
– Avoid wasting computation on under-populated warps

• More threads per block == better memory latency 
hiding

• But, more threads per block == fewer regs per 
thread
– Kernel invocations can fail if too many registers are used

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks 
– 192 or 256 threads a better choice

• Usually still enough regs to compile and invoke successfully
– This all depends on your computation!

• Experiment!
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