EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 18 – Stream Processors (II)

Mattan Erez

The University of Texas at Austin

• Summary of previous lecture:

- Parallelism
- Locality
- Hierarchical control and scheduling
- Throughput oriented I/O
- Compute cluster
- SRF
- Stream memory system
- Many slides courtesy Jung Ho Ahn (HP Labs)

- Hardware matches VLSI strengths
 - Throughput-oriented design
 - Parallelism, locality, and partitioning
 - Hierarchical control to simplify instruction sequencing
 - Minimalistic HW scheduling and allocation
- Software given more explicit control
 - Explicit hierarchical scheduling and latency hiding (*schedule*)
 - Explicit parallelism (*parallelize*)
 - Explicit locality management (*localize*)

Must reduce HW "waste" but no free lunch

- Hardware strengths and the stream execution model
- Stream Processor hardware
 - Parallelism
 - Locality
 - Hierarchical control and scheduling
 - Throughput oriented I/O
- Implications on the software system
 - Current status
- HW and SW tradeoffs and tuning options
 - Locality, parallelism, and scheduling
- Petascale implications

Effective Performance on Modern VLSI

- Parallelism
 - 10s of FPUs per chip
 - Efficient control
- Locality
 - Reuse reduces global BW
 - Locality lowers power
- Bandwidth
 - management
 - Maximize pin utilization
 - Throughput oriented I/O (latency terrant) 12mm

Parallelism, locality, bandwidth, and efficient control (and latency hiding)

Bulk Operations are Good for Hardware

- Parallelism
 - 10s of FPUs per chip
 - Efficient control
- Locality
 - Reuse reduces global BW
 - Locality lowers power
- Latency Tolerance
 - Throughput oriented I/O
 - Increasing on-/off-chip latencies
- Minimum control overhead

Hardware designed for throughput and not latency (memory BW, FLOPS, bulk exceptions, bulk coherency, ...)

Generalizing the Stream Model

- Medium granularity bulk operations
 - Kernels and stream-LD/ST
- Predictable sequence (of bulk operations)
 - Latency hiding, explicit communication
- Hierarchical control
 - Inter- and intra-bulk
- Throughput-oriented design
- Locality and parallelism
 - kernel locality + producer-consumer reuse
 - Parallelism within kernels

Generalized stream model matches VLSI requirements

Decoupling enables efficient static architecture Separate address spaces (MEM/SRF/LRF)

- Summary of previous lecture:
 - Parallelism
 - Locality
 - Hierarchical control and scheduling
 - Throughput oriented I/O
- Compute cluster
- SRF
- Stream memory system

- 3 types of parallelism
 - Data Level Parallelism
 - Instruction Level Parallelism
 - Thread (Task) Level Parallelism

Data-Level Parallelism in Stream Processors

- SIMD
- Independent indexing per FPU
- Full crossbar between FPUs
- No sub-word operation

Data- and Instruction-Level Parallelism in Stream Processors

- A group of FPUs = A Processing Element (PE) = A Cluster
- VLIW
- Hierarchical switch provides area efficiency

Data-, Instruction- and Thread-Level Parallelism in Stream Processors

- Sequencer group
 - Each instruction sequencer runs different kernels

Clusters Enable Locality, Use ILP and DLP for Efficient Instruction Supply

Compiler Optimizes VLIW Kernel Scheduling

Merrimac decouples memory and execution enables static optimization and reduces hardware

Parallelism Tradeoffs and Tuning Opportunities

- Applications
 - Throughput oriented ws. real-time constraint
 - Strong vs. weak scaling
 - Regular vs. imegular
 - Dynamic / (practically-))static datasets
- Hardware
 - DLP: SIMD, short vectors
 - ILP: VLIW / execution pipeline, OoO
 - TLP: MIMD, SMT (style)
 - Communication options
 - Partial switches, direct sequencer-sequencer switch

Hardware models for some options, active research on other options and performance models

Heat-map (Area per FPU) – 64 bit

Many reasonable hardware options for 64-bit

Small performance differences for "good streaming" applications

- Summary of previous lecture:
 - Parallelism
 - Locality
 - Hierarchical control and scheduling
 - Throughput oriented I/O
- Compute cluster
- SRF
- Stream memory system

SRF Decouples Execution from Memory

SRF Sequential Access

- Single ported memory
 - Efficient wide access of 4 contiguous words
- Implemented using sub arrays
 - Reduced access time Stream buffers
 - Reduced power
- Stream-buffers match bandwidth to compute needs
 - Time multiplex the SRF port

Wide single port time multiplexed by stream buffers

In-lane Indexing Almost Free

Row decoder per sub-array

- Summary of previous lecture:
 - Parallelism
 - Locality
 - Hierarchical control and scheduling
 - Throughput oriented I/O
- Compute cluster
- SRF
- Stream memory system

Streaming Memory Systems

DRAM systems are very sensitive to access pattern, Throughput-oriented memory system helps **Streaming Memory Systems Help**

Inorder Row Row+Col

Capable memory system even more important for applications **SRF Decouples Execution from Memory**

Streaming Memory Systems

- Bulk stream loads and stores
 - Hierarchical control
- Expressive and effective addressing modes
 - Can't afford to waste memory bandwidth
 - Use hardware when performance is non-deterministic

Stream memory system helps the programmer and maximizes I/O throughput

 Rest of memory system details delayed for another lecture

More Hardware Features

- Take advantage of bulk execution model
 - Cheap OOO scheduling of kernels and stream memory operations (more when we talk about software system)
 - High-throughput exception handling
 - Low-cost fault-tolerance