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Outline
• Summary of previous lecture:

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Compute cluster
• SRF
• Stream memory system

• Many slides courtesy Jung Ho Ahn (HP Labs)
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Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule) 
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch
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Outline
• Hardware strengths and the stream execution 

model
• Stream Processor hardware

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications
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Effective Performance on Modern VLSI
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces 

global BW
– Locality lowers power

• Bandwidth 
management
– Maximize pin utilization 
– Throughput oriented I/O (latency tolerant)

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

Increasing
power

Decreasing
BW

Parallelism, locality, bandwidth, 
and efficient control (and latency hiding)
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Bulk Operations are Good for Hardware
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces 

global BW
– Locality lowers power

• Latency Tolerance
– Throughput oriented I/O
– Increasing on-/off-chip 

latencies
• Minimum control overhead
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Generalizing the Stream Model

• Medium granularity bulk operations
– Kernels and stream-LD/ST

• Predictable sequence (of bulk operations)
– Latency hiding, explicit communication

• Hierarchical control
– Inter- and intra-bulk

• Throughput-oriented design
• Locality and parallelism

– kernel locality + producer-consumer reuse
– Parallelism within kernels

Generalized stream model matches VLSI 
requirements
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SRF Decouples Execution from Memory
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Decoupling enables efficient static architecture
Separate address spaces (MEM/SRF/LRF)

3,840 GB/s512 GB/s64 GB/s<64 GB/s
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Outline
• Summary of previous lecture:

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Compute cluster
• SRF
• Stream memory system
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Parallelism Tradeoffs 
and Tuning Opportunities

• 3 types of parallelism
– Data Level Parallelism
– Instruction Level Parallelism
– Thread (Task) Level Parallelism



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 18 11

Data-Level Parallelism in Stream Processors

Instruction Sequencer

FPUFPUFPUFPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

• SIMD
• Independent 

indexing per FPU
• Full crossbar 

between FPUs
• No sub-word 

operation
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Data- and Instruction-Level Parallelism in 
Stream Processors

• A group of FPUs = A 
Processing Element 
(PE) =       A Cluster

• VLIW
• Hierarchical switch 

provides area 
efficiency
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Data-, Instruction- and Thread-Level 
Parallelism in Stream Processors

• Sequencer group
– Each instruction 

sequencer runs different 
kernels

Instruction Sequencer
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Clusters Enable Locality, Use ILP and DLP for 
Efficient Instruction Supply
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Stream Architecture Exploits ILP and DLP for 
Efficient Instruction Supply
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Stream Architecture Exploits ILP and DLP for 
Efficient Instruction Supply
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Stream Architecture Exploits ILP and DLP for 
Efficient Instruction Supply
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Stream Architecture Exploits ILP and DLP for 
Efficient Instruction Supply
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Compiler Optimizes VLIW Kernel Scheduling

Optimized schedule

Merrimac decouples memory and execution
enables static optimization and reduces hardware
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• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Hardware
– DLP: SIMD, short vectors
– ILP: VLIW / execution pipeline, OoO
– TLP: MIMD, SMT (style)
– Communication options 

• Partial switches, direct sequencer-sequencer switch

Parallelism Tradeoffs 
and Tuning Opportunities

Hardware models for some options, active research 
on other options and performance models
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Heat-map (Area per FPU) – 64 bit
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Application Performance
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Outline
• Summary of previous lecture:

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Compute cluster
• SRF
• Stream memory system
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SRF Decouples Execution from Memory
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SRF Sequential Access

• Single ported 
memory
– Efficient wide access of 

4 contiguous words
• Implemented using 

sub arrays
– Reduced access time
– Reduced power

• Stream-buffers 
match bandwidth to 
compute needs
– Time multiplex the SRF 

port

Stream 
buffers
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SRF
bank 0

Sub array 1
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512 256

Wide single port time multiplexed by stream buffers
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In-lane Indexing Almost Free
• Single ported memory

– Efficient wide access of 4 
contiguous words

• Implemented using sub 
arrays
– Reduced access time
– Reduced power

• Stream-buffers match 
bandwidth to compute 
needs
– Time multiplex the SRF port

• Indexed SRF at low extra 
cost
– 8:1 MUX in sub-arrays
– Row decoder per sub-array

Stream 
buffers

Compute 
cluster 0

SRF
bank 0

Sub array 1

Sub array 0
512 256

Sub array 2

Sub array 3

P
re-decode

&
 row

 dec.
P

re-decode
&

 row
 dec.

P
re-decode

&
 row

 dec.
P

re-decode
&

 row
 dec.

8:1 mux

Addr.
FIFOs



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 18 27

Outline
• Summary of previous lecture:

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Compute cluster
• SRF
• Stream memory system
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Streaming Memory Systems
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Streaming Memory Systems Help 

DEPTH MPEG RTSL FEM MD QRD
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Inorder Row Row+Col

%
pe

ak
 B

W

Capable memory system even more important for 
applications
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SRF Decouples Execution from Memory
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Streaming Memory Systems
• Bulk stream loads and stores

– Hierarchical control

• Expressive and effective addressing modes
– Can’t afford to waste memory bandwidth
– Use hardware when performance is non-deterministic

• Automatic SIMD alignment 
– Makes SIMD trivial (SIMD ≠ short-vector)

ScatterGatherStrided access

Ox Oy Oz H1x H1y H1z H2x H2y H2z

SRF
MEM

Stream memory system helps the programmer and 
maximizes I/O throughput
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• Rest of memory system details delayed for another 
lecture
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More Hardware Features

• Take advantage of bulk execution model
– Cheap OOO scheduling of kernels and stream memory 

operations (more when we talk about software system)
– High-throughput exception handling
– Low-cost fault-tolerance 
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