
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 19 – Sony (/Toshiba/IBM) Cell Broadband Engine

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 2

Cell Broadband Engine

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 3

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 4

Cell Motivation – Part I

• Performance demanding applications have
different characterisitics
– Parallelism
– Locality
– Realtime

• Games, graphics, multimedia …
• Requires redesign of HW and SW to provide efficient

high performance
– Power, memory, frequency walls

• Cell designed specifically for these applications
– Requirements set by Sony and Toshiba
– Main design and architecture at IBM

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 5

Move to IBM Slides

• Rest of motivation and architecture slides taken
directly from talks by Peter Hofstee, IBM
– Separate PDF file combined from:

• http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf
• http://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop3/

Slides/01_Hofstee_Cell.pdf

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 6

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 7

Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule)
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch

Locality

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 9

Storage/Bandwidth Hierarchy is Key to Efficient
High Performance

~61 KB

64
64-bit

MADDs
(16 clusters

cluster sw
itch

cluster sw
itch

SRF la
ne

SRF la
ne

1 MB

3,840 GB/s512 GB/s

Inter-cluster a
nd

 m
em

ory sw
itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

512 KB2 GB

64 GB/s<64 GB/s

from: “Unleashing the power: A programming example of
large FFTs on Cell” given by Alex Chow at power.org on 6/9/2005

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 10

SRF/LS Comparison

• Serve as staging area for memory
• Capture locality as part of the storage hierarchy
• Single time multiplexed wide port

– kernel access
– DMA access
– instruction access

• Merrimac uses word granularity vs. Cell’s 4-word
• Merrimac’s SRF has efficient auto-increment access

mode
• Cell uses one memory for both code and data

– Why?

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 11

Inter-Cluster Communication Comparison

• Merrimac allows 16 + 8 words per cycle
– 1 word per cluster using full cross bar

• Cell allows 3x8 words per cycle peak
– 4 uni-directional rings
– sustained performance may be somewhat lower
– scalable architecture requiring little to no re-design

Parallelism

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 13

Three Types of Parallelism in Applications

• Instruction level parallelism (ILP)
– multiple instructions from the same instruction basic-block (loop

body) that can execute together
– true ILP is usually quite limited (~5 - ~20 instructions)

• Task level Parallelism (TLP)
– separate high-level tasks (different code) that can be run at the

same time
– True TLP very limited (only a few concurrent tasks)

• Data level parallelism (DLP)
– multiple iterations of a “loop” that can execute concurrently
– DLP is plentiful in scientific applications

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 14

Taking Advantage of ILP

• Multiple FUs (VLIW or superscalar)
– Cell has limited superscalar (not for FP)
– Merrimac has 4-wide VLIW FP ops

• Latency tolerance (pipeline parallelism)
– Cell has 7 FP instructions in flight
– Merrimac expected to have ~24 FP
– Merrimac uses VLIW to avoid interlocks and bypass networks
– Cell also emphasizes static scheduling

• not clear to what extent dynamic variations are allowed

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 15

Taking Advantage of TLP

• Multiple FUs (MIMD)
– Cell can run a different task (thread) on each SPE +

asynchronous DMA on each SPE
• DMA must be controlled by the SPE kernel

– Merrimac can run a kernel and DMA concurrently
• DMAs fully independent of the kernels

• Latency tolerance
– concurrent execution of different kernels and their associated

stream memory operations

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 16

Taking Advantage of DLP
• Multiple FUs

– SIMD
• very (most?) efficient way of utilizing parallelism
• Cell has 4-wide SIMD
• Merrimac 16-wide

– MIMD
• convert DLP to TLP and use MIMD for different “tasks”

– VLIW
• convert DLP to ILP and use VLIW (unrolling, SWP)

• Latency tolerance
– Overlap memory operations and kernel execution (SWP and

unrolling)
– Take advantage of pipeline parallelism in memory

Memory System

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 18

High Bandwidth Asynchronous DMA

• Very high bandwidth memory system
– need to keep FUs busy even with storage hierarchy
– Cell has ~2 words/cycle (25.6GB/s)
– Merrimac designed for 4 words/cycle

• Sophisticated DMA
– stride (with records)
– gather/scatter (with records)

• Differences in granularity of DMA control
– Merrimac treats DMA as stream level operations
– Cell treats DMA as kernel level operations

Design Choices Discussion

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 20

Is VLIW a Good Idea?
• Want to take advantage of all available ILP

– Merrimac has a shallower pipeline than Cell

• Efficiency
– allows exposed communication at the kernel level
– no need for interlocks (or at least cheaper)
– no bypass network

• Manage a larger register space
– distributed/clustered register file
– allows relaxing SIMD restrictions with communication

• VLIW code expansion can be a problem
– especially for MIMD
– requires recompilation

• interlocks allow correct (possibly inefficient) execution

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 21

Is MIMD a Good Idea?

• Probably yes for limited parallelism
– true for PS3, probably not for scientific applications

• May help irregular applications
– work well on Merrimac with relaxed-SIMD but there are

overheads
• padding, extra node copies, SIMD conditionals overhead

• Multiple sequencers and extra instruction storage
– instructions storage might be saved by pipelining kernels

• not always applicable, might increase bandwidth
– Cell sequencer seems to be ~12% of SPE

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 22

Is Kernel-Level DMA Control a Good Idea?

• MIMD (almost) dictates kernel level control
• Consumes issue slots
• Works well for fixed-rate streams
• Requires multi-threading for irregular stream access

– stream-level DMA lets hardware handle synchronization more
efficiently

• May allow pointer-chasing?
– only real advantage is making the way-too-long memory

latency loop a little shorter by localizing control

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 23

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 24

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 25

Cell Software Challenges
• Separate code for PPE and SPEs

– Explicit synchronization
• SPEs can only access memory through DMAs

– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency

• SPEs must be programmed with SIMD
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

• Most common programming system is just low-level
API and intrinsics – Cell SDK
– Luckily, other options exist

	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 19 – Sony (/Toshiba/IBM) Cell Broadband Engine
	Cell Broadband Engine
	Outline
	Cell Motivation – Part I
	Move to IBM Slides
	Outline
	Hardware Efficiency �Greater Software Responsibility
	Locality
	Storage/Bandwidth Hierarchy is Key to Efficient High Performance
	SRF/LS Comparison
	Inter-Cluster Communication Comparison
	Parallelism
	Three Types of Parallelism in Applications
	Taking Advantage of ILP
	Taking Advantage of TLP
	Taking Advantage of DLP
	Memory System
	High Bandwidth Asynchronous DMA
	Design Choices Discussion
	Is VLIW a Good Idea?
	Is MIMD a Good Idea?
	Is Kernel-Level DMA Control a Good Idea?
	Outline
	Slide Number 24
	Cell Software Challenges

