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Cell Broadband Engine
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Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Cell Motivation – Part I

• Performance demanding applications have 
different characterisitics
– Parallelism
– Locality
– Realtime

• Games, graphics, multimedia …
• Requires redesign of HW and SW to provide efficient 

high performance
– Power, memory, frequency walls

• Cell designed specifically for these applications
– Requirements set by Sony and Toshiba
– Main design and architecture at IBM 
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Move to IBM Slides

• Rest of motivation and architecture slides taken 
directly from talks by Peter Hofstee, IBM
– Separate PDF file combined from:

• http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf
• http://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop3/ 

Slides/01_Hofstee_Cell.pdf



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 6

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 7

Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule) 
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch



Locality
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Storage/Bandwidth Hierarchy is Key to Efficient 
High Performance
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SRF/LS Comparison

• Serve as staging area for memory
• Capture locality as part of the storage hierarchy
• Single time multiplexed wide port

– kernel access
– DMA access
– instruction access

• Merrimac uses word granularity vs. Cell’s 4-word
• Merrimac’s SRF has efficient auto-increment access 

mode
• Cell uses one memory for both code and data 

– Why?
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Inter-Cluster Communication Comparison

• Merrimac allows 16 + 8 words per cycle
– 1 word per cluster using full cross bar

• Cell allows 3x8 words per cycle peak
– 4 uni-directional rings
– sustained performance may be somewhat lower
– scalable architecture requiring little to no re-design



Parallelism
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Three Types of Parallelism in Applications

• Instruction level parallelism (ILP)
– multiple instructions from the same instruction basic-block (loop 

body) that can execute together
– true ILP is usually quite limited (~5 - ~20 instructions)

• Task level Parallelism (TLP)
– separate high-level tasks (different code) that can be run at the 

same time
– True TLP very limited (only a few concurrent tasks)

• Data level parallelism (DLP)
– multiple iterations of a “loop” that can execute concurrently
– DLP is plentiful in scientific applications



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 19 14

Taking Advantage of ILP

• Multiple FUs (VLIW or superscalar)
– Cell has limited superscalar (not for FP)
– Merrimac has 4-wide VLIW FP ops

• Latency tolerance (pipeline parallelism)
– Cell has 7 FP instructions in flight
– Merrimac expected to have ~24 FP
– Merrimac uses VLIW to avoid interlocks and bypass networks
– Cell also emphasizes static scheduling 

• not clear to what extent dynamic variations are allowed 
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Taking Advantage of TLP

• Multiple FUs (MIMD)
– Cell can run a different task (thread) on each SPE + 

asynchronous DMA on each SPE
• DMA must be controlled by the SPE  kernel

– Merrimac can run a kernel and DMA concurrently
• DMAs fully independent of the kernels

• Latency tolerance 
– concurrent execution of different kernels and their associated 

stream memory operations
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Taking Advantage of DLP
• Multiple FUs

– SIMD
• very (most?) efficient way of utilizing parallelism
• Cell has 4-wide SIMD
• Merrimac 16-wide

– MIMD
• convert DLP to TLP and use MIMD for different “tasks”

– VLIW
• convert DLP to ILP and use VLIW (unrolling, SWP)

• Latency tolerance
– Overlap memory operations and kernel execution (SWP and 

unrolling)
– Take advantage of pipeline parallelism in memory



Memory System
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High Bandwidth Asynchronous DMA 

• Very high bandwidth memory system
– need to keep FUs busy even with storage hierarchy
– Cell has ~2 words/cycle (25.6GB/s )
– Merrimac designed for 4 words/cycle

• Sophisticated DMA
– stride (with records)
– gather/scatter (with records)

• Differences in granularity of DMA control
– Merrimac treats DMA as stream level operations
– Cell treats DMA as kernel level operations



Design Choices Discussion
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Is VLIW a Good Idea?
• Want to take advantage of all available ILP

– Merrimac has a shallower pipeline than Cell

• Efficiency
– allows exposed communication at the kernel level
– no need for interlocks (or at least cheaper)
– no bypass network

• Manage a larger register space
– distributed/clustered register file
– allows relaxing SIMD restrictions with communication

• VLIW code expansion can be a problem
– especially for MIMD
– requires recompilation

• interlocks allow correct (possibly inefficient) execution
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Is MIMD a Good Idea?

• Probably yes for limited parallelism
– true for PS3, probably not for scientific applications

• May help irregular applications
– work well on Merrimac with relaxed-SIMD but there are 

overheads
• padding, extra node copies, SIMD conditionals overhead

• Multiple sequencers and extra instruction storage
– instructions storage might be saved by pipelining kernels

• not always applicable, might increase bandwidth
– Cell sequencer seems to be ~12% of SPE
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Is Kernel-Level DMA Control a Good Idea? 

• MIMD (almost) dictates kernel level control
• Consumes issue slots
• Works well for fixed-rate streams
• Requires multi-threading for irregular stream access

– stream-level DMA lets hardware handle synchronization more 
efficiently

• May allow pointer-chasing?
– only real advantage is making the way-too-long memory 

latency loop a little shorter by localizing control
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Cell Software Challenges
• Separate code for PPE and SPEs

– Explicit synchronization
• SPEs can only access memory through DMAs

– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency

• SPEs must be programmed with SIMD 
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

• Most common programming system is just low-level 
API and intrinsics – Cell SDK
– Luckily, other options exist
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