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Outline
• Cell programming challenges review
• Sequoia 

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Cell Software Challenges

• Separate code for PPE and SPEs
– Explicit synchronization

• SPEs can only access memory through DMAs
– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency
– SW responsible for alignment, granularity, and bank conflicts

• SPEs must be programmed with SIMD
– Alignment is up to SW 
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)
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Outline
• Cell programming challenges review
• Sequoia 

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Sequoia

Language:  stream programming for machines 
with deep memory hierarchies

Idea:  Expose abstract memory hierarchy to 
programmer

Implementation:  benchmarks run well on Cell 
processor based systems  and on cluster of PCs
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Key challenge in high performance 
programming is:

communication (not parallelism)

Latency
Bandwidth
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Avoiding latency stalls

1. Prefetch batch of data
2. Compute on data (avoiding stalls)
3. Initiate write of results

… Then compute on next batch (which should be 
loaded)

compute 1
write output 0

time
compute 2

compute 3

read input 2

write output 1

read input 3

write output 2

read input 4
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Exploit locality

Compute > bandwidth, else execution stalls

compute 1
Write output 0

time

compute 2

Read input 2

Write output 1

Read input 3

stall

stall

...

...
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Streaming

Streaming involves structuring algorithms as 
collections of independent [locality cognizant] 
computations with well-defined working sets.

This structuring may be done at any scale.
Keep temporaries in registers

Cache/scratchpad blocking
Message passing on a cluster

Out-of-core algorithms
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Streaming

Streaming involves structuring algorithms as 
collections of independent [locality cognizant] 
computations with well-defined working sets.

Efficient programs exhibit this 
structure at many scales.
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Sequoia’s goals

Facilitate development of hierarchy-aware 
stream programs …

… that remain portable across machines

Provide constructs that can be implemented 
efficiently without requiring advanced compiler 
technology
- Place computation and data in machine
- Explicit parallelism and communication
- Large bulk transfers
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Hierarchical memory in Sequoia
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Hierarchical memory

Virtual aggregate LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

Main memory



© Kayvon Fatahalian
15

Blocked matrix multiplication

void matmul_L1( int M, int N, int T,
float* A,
float* B,
float* C)

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

C += A x B

matmul_L1
32x32

matrix mult

A B C
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Blocked matrix multiplication

void matmul_L2( int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L1 matrix             
multiplications.

} matmul_L2
256x256

matrix mult

A B C

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult … 512 L1 calls …

C += A x B
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Blocked matrix multiplication

void matmul( int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L2 matrix             
multiplications.

}

matmul
large matrix mult

A B C

matmul_L1
32x32

matrix mult ...

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult ...
matmul_L1

32x32
matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

. . .. . .. . .

C += A x B
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Sequoia tasks
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Sequoia tasks

Special functions called tasks are the building 
blocks of Sequoia programs

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N]  )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Read-only parameters M, N, T give sizes of 
multidimensional arrays when task is 
called.
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Sequoia tasks

Task arguments and temporaries define a 
working set
Task working set resident at single location 
in abstract machine tree

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}
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Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

Recursively call matmul task on 
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}
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Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

matmul::inner

matmul::leaf

Variant call graph
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A B C

Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

task matmul::leaf( in    float A[M][T],
in    float B[T][N],
inout float C[M][N] )

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Callee task:  
matmul::leaf

Calling task:  matmul::inner

A B C

Located at level X

Located at level Y
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Task hierarchies
task matmul::inner( in    float A[M][T],

in    float B[T][N],
inout float C[M][N] )

{
tunable int P, Q, R;

mappar( int i=0 to M/P,
int j=0 to N/R ) {

mapseq( int k=0 to T/Q ) {

matmul( A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R] );

}
}

}

Tasks express multiple levels of parallelism
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Synchronization 

mapseq implies sync at end of every iteration
mappar implies sync at end of iteration space

No explicit synchronization
- Why?

Synchronization is the trickiest part of parallel 
programming and one of the least portable
- Help the user by structuring sync and allowing 

compiler to optimize the mechanism
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Synchronization Impacts Parallelism

Parallelism explicitly expressed using mappar
- DLP

What about ILP?
- Parallelism can exist within a leaf

- Ignored by Sequoia but potential for ILP and SIMD

What about TLP?
- Implicit in dependence of operations
- Allows pipeline parallelism within a mappar

- Compiler may not currently interchange loops

What about interacting thread?
- Not allowed!
- Why?
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Summary: Sequoia tasks

Single abstraction for
- Isolation / parallelism

- With help from programmer

- Explicit communication / working sets
- Expressing locality

Sequoia programs describe hierarchies of tasks
- Mapped onto memory hierarchy
- Parameterized for portability
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Mapping tasks to machines
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How mapping works

matmul::inner

matmul::leaf

Sequoia task 
definitions 

(parameterized)

matmul_node_inst
variant = inner

P=256 Q=256 R=256
node level

matmul_L2_inst
variant = inner
P=32 Q=32 R=32

L2 level

matmul_L1_inst
variant = leaf

L1 level

Task instances
(not parameterized)

instance {
name = matmul_node_inst
variant = inner
runs_at = main_memory
tunable P=256, Q=256, R=256

}

instance {
name = matmul_L2_inst
variant = inner
runs_at = L2_cache
tunable P=32, Q=32, R=32

}

instance {
name = matmul_L1_inst
variant = leaf
runs_at = L1_cache

}

Mapping specification

Sequoia
Compiler
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Task mapping specification

matmul_node_inst
variant = inner

P=256 Q=256 R=256
node level

matmul_L2_inst
variant = inner
P=32 Q=32 R=32

L2 level

matmul_L1_inst
variant = leaf

L1 level

PC task instances

instance {
name = matmul_node_inst
task = matmul
variant = inner
runs_at = main_memory
tunable P=256, Q=256, R=256
calls = matmul_L2_inst

}

instance {
name = matmul_L2_inst
task = matmul
variant = inner
runs_at = L2_cache
tunable P=32, Q=32, R=32
calls = matmul_L1_inst

}

instance {
name = matmul_L1_inst
task = matmul
variant = leaf
runs_at = L1_cache

}
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Specializing matmul

… 64 total
subtasks …

… 512 total
subtasks …

main 
memory

L2 cache

L1 
cache

Instances of tasks placed at each memory level

matmul::inner
M=N=T=1024
P=Q=R=256

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32
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Task instances: Cell

matmul::inner

matmul::leaf

Cell task instances
(not parameterized)

Cell mapping 
specification

matmul_node_inst
variant = inner

P=128 Q=64 R=128
node level

matmul_LS_inst
variant = leaf

LS level

Sequoia task 
definitions 

(parameterized)

Sequoia
Compiler

instance {
name = matmul_node_inst
variant = inner
runs_at = main_memory
tunable P=128, Q=64, R=128

}

instance {
name = matmul_LS_inst
variant = leaf
runs_at = LS_cache

}



© Kayvon Fatahalian
33

Results
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Early results

We have a Sequoia compiler + runtime systems 
ported to Cell and a cluster of PCs

Static compiler optimizations (bulk operation 
IR)
- Copy elimination
- DMA transfer coalescing
- Operation hoisting
- Array allocation / packing / padding
- Scheduling (tasks and DMAs)

“Compilation for Explicitly Managed Memories”
Knight et al. PPOPP ’07
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Early results

Scientific computing benchmarks

Linear Algebra Blas Level 1 SAXPY, Level 2 SGEMV, and Level 3 
SGEMM benchmarks

Iterative 2D convolution with 9x9 support (non-periodic 
boundary constraints)

2563 complex FFT

100 time steps of N-body stellar dynamics simulation

Fuzzy protein string matching using HMM evaluation

(ClawHMMer: Horn et al. SC2005)

IterConv2D

FFT3D
Gravity

HMMER
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Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation

Pe
rc

en
ta

ge
 o

f t
ot

al
 e

xe
cu

tio
n

Execution on a Cell blade (left bars) and 16 node cluster (right 
bars)



© Kayvon Fatahalian
37

Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation

Pe
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Execution on a Cell blade

Bandwidth bound apps
achieve over 90% of
peak DRAM bandwidth
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Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation
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Execution on a Cell blade (left bars) and 16 node cluster (right 
bars)
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Performance

SPE scaling on 2.4Ghz
Dual-Cell blade

Scaling on P4 cluster with
Infiniband interconnect

Number of SPEs Number of nodes

SAXPY
SGEMV
SGEMM
IterConv2D
FFT3D
Gravity
HMMER

SAXPY
SGEMV
SGEMM
IterConv2D
FFT3D
Gravity
HMMER

Sp
ee

du
p

Sp
ee

du
p
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 

Single Cell >= 16 node cluster of P4’s
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 

Results on Cell on-par or better than best-known 
implementations on any architecture
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 

FFT3D on par with best-known Cell 
implementation
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 

Gravity outperforms custom ASICs
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Performance:  GFLOP/sec

Single Cell 
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

*      2.4 GHz Cell processor, 
DD2 

**    2.4 GHz Pentium 4 per node 

HMMER outperforms Horn et al.’s GPU 
implementation from SC05
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Sequoia portability

No Sequoia source level modifications 
except for FFT3D*
- Changed task parameters
- Ported leaf task implementations

Cluster Cell port (or vice-versa) took 1-2 
days

* FFT3D used a different variant on Cell



© Kayvon Fatahalian
47

Sequoia limitations

Require explicit declaration of working sets
- Programmer must know what to transfer
- Some irregular applications present problems

Manual task mapping
- Understand which parts can be automated
- Some progress in automated search for 

parameters (auto-tuning style)
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Sequoia summary

Enforce structuring already required for 
performance as integral part of programming 
model

Make these hand optimizations portable and 
easier to perform
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Sequoia summary
Problem:
- Deep memory hierarchies pose perf. programming 

challenge 
- Memory hierarchy different for different machines

Solution:  Abstract hierarchical memory in programming 
model
- Program the memory hierarchy explicitly
- Expose properties that effect performance

Approach: Express hierarchies of tasks
- Execute in local address space
- Call-by-value-result semantics exposes 

communication
- Parameterized for portability
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Sequoia and Cell Programming Challenges
• Sequoia manages threading and synchronization
• Sequoia manages communication and all DMAs

– Including padding and performance, but not alignment

• Sequoia manages LS
– Allocation and packing

• Sequoia manages scheduling
– SWP of mappar to hide communication latency

• Sequoia doesn’t help with SPE code
– Use low-level compiler tools such as XLC

• Sequoia doesn’t currently help with some memory restrictions
– Alignment 
– Banks
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Outline
• Cell programming challenges review
• Sequoia 

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 52

Tools From IBM
• Cell SDK 3.0

– API calls for handling communication, synchronization, and DMA
– LIBSPU and SPUFS for getting the SPEs to do something and setting up 

threads and memory
– Intrinsics for programming the SPE pipeline directly
– GCC port for PPE and SPE part (separate compilers)

• Only handles non-SPE specific optimizations + intrinsics
– XLC port for PPE and SPE part (separate compilers)

• XLC supposed to optimize for SPE pipeline with branch hints, scheduling, 
instruction prefetch, …

• Automatic SIMD-ization?

• Accelerated Library Framework (ALF)
– APIs for work queue based model to program control-plane

• “Octopiler” – single-source XLC for Cell
– OpenMP directives
– Relies on SW cache to  get the OpenMP working
– Automatic SIMD-ization
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Tools from Industry

• Mercury Systems
– Array based language
– Highly-tuned BLAS and FFT

• RapidMind
– Dynamically compiled program
– Relies on array data types
– Builds up kernels and DMAs
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Tools From Academia

• Sequoia

• Cell Superscalar (CellSs)
– Program with OpenMP like directives to identify kernels
– Uses SW cache intensively
– Runtime applies superscalar style optimization and scheduling to 

coarse-grained kernels (identified above)

• Charm++
– Runtime based approach
– Objects with explicit communication and “entry points” for 

synchronization
– Uses a work queue and peaks into it to do the DMAs
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