
EE382V (17325): Principles in Computer Architecture
Parallelism and Locality
Fall 2007
Lecture 21 – Programming the Cell BE (II)

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 2

Outline
• Cell programming challenges review
• Sequoia

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 3

Cell Software Challenges

• Separate code for PPE and SPEs
– Explicit synchronization

• SPEs can only access memory through DMAs
– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency
– SW responsible for alignment, granularity, and bank conflicts

• SPEs must be programmed with SIMD
– Alignment is up to SW
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 4

Outline
• Cell programming challenges review
• Sequoia

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

Sequoia
Programming the Memory Hierarchy

Kayvon Fatahalian
Daniel Reiter Horn

Alex Aiken

Timothy J. Knight
Larkhoon Leem
William J. Dally

Mike Houston
Ji Young Park
Pat Hanrahan

Mattan Erez
Manman Ren

Stanford University

© Kayvon Fatahalian
6

Sequoia

Language: stream programming for machines
with deep memory hierarchies

Idea: Expose abstract memory hierarchy to
programmer

Implementation: benchmarks run well on Cell
processor based systems and on cluster of PCs

© Kayvon Fatahalian
7

Key challenge in high performance
programming is:

communication (not parallelism)

Latency
Bandwidth

© Kayvon Fatahalian
8

Avoiding latency stalls

1. Prefetch batch of data
2. Compute on data (avoiding stalls)
3. Initiate write of results

… Then compute on next batch (which should be
loaded)

compute 1
write output 0

time
compute 2

compute 3

read input 2

write output 1

read input 3

write output 2

read input 4

© Kayvon Fatahalian
9

Exploit locality

Compute > bandwidth, else execution stalls

compute 1
Write output 0

time

compute 2

Read input 2

Write output 1

Read input 3

stall

stall

...

...

© Kayvon Fatahalian
10

Streaming

Streaming involves structuring algorithms as
collections of independent [locality cognizant]
computations with well-defined working sets.

This structuring may be done at any scale.
Keep temporaries in registers

Cache/scratchpad blocking
Message passing on a cluster

Out-of-core algorithms

© Kayvon Fatahalian
11

Streaming

Streaming involves structuring algorithms as
collections of independent [locality cognizant]
computations with well-defined working sets.

Efficient programs exhibit this
structure at many scales.

© Kayvon Fatahalian
12

Sequoia’s goals

Facilitate development of hierarchy-aware
stream programs …

… that remain portable across machines

Provide constructs that can be implemented
efficiently without requiring advanced compiler
technology
- Place computation and data in machine
- Explicit parallelism and communication
- Large bulk transfers

© Kayvon Fatahalian
13

Hierarchical memory in Sequoia

© Kayvon Fatahalian
14

Hierarchical memory

Virtual aggregate LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

Main memory

© Kayvon Fatahalian
15

Blocked matrix multiplication

void matmul_L1(int M, int N, int T,
float* A,
float* B,
float* C)

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

C += A x B

matmul_L1
32x32

matrix mult

A B C

© Kayvon Fatahalian
16

Blocked matrix multiplication

void matmul_L2(int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L1 matrix
multiplications.

} matmul_L2
256x256

matrix mult

A B C

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult … 512 L1 calls …

C += A x B

© Kayvon Fatahalian
17

Blocked matrix multiplication

void matmul(int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L2 matrix
multiplications.

}

matmul
large matrix mult

A B C

matmul_L1
32x32

matrix mult ...

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult ...
matmul_L1

32x32
matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

.

C += A x B

© Kayvon Fatahalian
18

Sequoia tasks

© Kayvon Fatahalian
19

Sequoia tasks

Special functions called tasks are the building
blocks of Sequoia programs

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Read-only parameters M, N, T give sizes of
multidimensional arrays when task is
called.

© Kayvon Fatahalian
20

Sequoia tasks

Task arguments and temporaries define a
working set
Task working set resident at single location
in abstract machine tree

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

© Kayvon Fatahalian
21

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

Recursively call matmul task on
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

© Kayvon Fatahalian
22

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

matmul::inner

matmul::leaf

Variant call graph

© Kayvon Fatahalian
23

A B C

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Callee task:
matmul::leaf

Calling task: matmul::inner

A B C

Located at level X

Located at level Y

© Kayvon Fatahalian
24

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

Tasks express multiple levels of parallelism

© Kayvon Fatahalian
25

Synchronization

mapseq implies sync at end of every iteration
mappar implies sync at end of iteration space

No explicit synchronization
- Why?

Synchronization is the trickiest part of parallel
programming and one of the least portable
- Help the user by structuring sync and allowing

compiler to optimize the mechanism

© Kayvon Fatahalian
26

Synchronization Impacts Parallelism

Parallelism explicitly expressed using mappar
- DLP

What about ILP?
- Parallelism can exist within a leaf

- Ignored by Sequoia but potential for ILP and SIMD

What about TLP?
- Implicit in dependence of operations
- Allows pipeline parallelism within a mappar

- Compiler may not currently interchange loops

What about interacting thread?
- Not allowed!
- Why?

© Kayvon Fatahalian
27

Summary: Sequoia tasks

Single abstraction for
- Isolation / parallelism

- With help from programmer

- Explicit communication / working sets
- Expressing locality

Sequoia programs describe hierarchies of tasks
- Mapped onto memory hierarchy
- Parameterized for portability

© Kayvon Fatahalian
28

Mapping tasks to machines

© Kayvon Fatahalian
29

How mapping works

matmul::inner

matmul::leaf

Sequoia task
definitions

(parameterized)

matmul_node_inst
variant = inner

P=256 Q=256 R=256
node level

matmul_L2_inst
variant = inner
P=32 Q=32 R=32

L2 level

matmul_L1_inst
variant = leaf

L1 level

Task instances
(not parameterized)

instance {
name = matmul_node_inst
variant = inner
runs_at = main_memory
tunable P=256, Q=256, R=256

}

instance {
name = matmul_L2_inst
variant = inner
runs_at = L2_cache
tunable P=32, Q=32, R=32

}

instance {
name = matmul_L1_inst
variant = leaf
runs_at = L1_cache

}

Mapping specification

Sequoia
Compiler

© Kayvon Fatahalian
30

Task mapping specification

matmul_node_inst
variant = inner

P=256 Q=256 R=256
node level

matmul_L2_inst
variant = inner
P=32 Q=32 R=32

L2 level

matmul_L1_inst
variant = leaf

L1 level

PC task instances

instance {
name = matmul_node_inst
task = matmul
variant = inner
runs_at = main_memory
tunable P=256, Q=256, R=256
calls = matmul_L2_inst

}

instance {
name = matmul_L2_inst
task = matmul
variant = inner
runs_at = L2_cache
tunable P=32, Q=32, R=32
calls = matmul_L1_inst

}

instance {
name = matmul_L1_inst
task = matmul
variant = leaf
runs_at = L1_cache

}

© Kayvon Fatahalian
31

Specializing matmul

… 64 total
subtasks …

… 512 total
subtasks …

main
memory

L2 cache

L1
cache

Instances of tasks placed at each memory level

matmul::inner
M=N=T=1024
P=Q=R=256

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32

© Kayvon Fatahalian
32

Task instances: Cell

matmul::inner

matmul::leaf

Cell task instances
(not parameterized)

Cell mapping
specification

matmul_node_inst
variant = inner

P=128 Q=64 R=128
node level

matmul_LS_inst
variant = leaf

LS level

Sequoia task
definitions

(parameterized)

Sequoia
Compiler

instance {
name = matmul_node_inst
variant = inner
runs_at = main_memory
tunable P=128, Q=64, R=128

}

instance {
name = matmul_LS_inst
variant = leaf
runs_at = LS_cache

}

© Kayvon Fatahalian
33

Results

© Kayvon Fatahalian
34

Early results

We have a Sequoia compiler + runtime systems
ported to Cell and a cluster of PCs

Static compiler optimizations (bulk operation
IR)
- Copy elimination
- DMA transfer coalescing
- Operation hoisting
- Array allocation / packing / padding
- Scheduling (tasks and DMAs)

“Compilation for Explicitly Managed Memories”
Knight et al. PPOPP ’07

© Kayvon Fatahalian
35

Early results

Scientific computing benchmarks

Linear Algebra Blas Level 1 SAXPY, Level 2 SGEMV, and Level 3
SGEMM benchmarks

Iterative 2D convolution with 9x9 support (non-periodic
boundary constraints)

2563 complex FFT

100 time steps of N-body stellar dynamics simulation

Fuzzy protein string matching using HMM evaluation

(ClawHMMer: Horn et al. SC2005)

IterConv2D

FFT3D
Gravity

HMMER

© Kayvon Fatahalian
36

Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation

Pe
rc

en
ta

ge
 o

f t
ot

al
 e

xe
cu

tio
n

Execution on a Cell blade (left bars) and 16 node cluster (right
bars)

© Kayvon Fatahalian
37

Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation

Pe
rc

en
ta

ge
 o

f t
ot

al
 e

xe
cu

tio
n

Execution on a Cell blade

Bandwidth bound apps
achieve over 90% of
peak DRAM bandwidth

© Kayvon Fatahalian
38

Utilization Idle waiting on memory/network
Sequoia overhead
Leaf task computation

Pe
rc

en
ta

ge
 o

f t
ot

al
 e

xe
cu

tio
n

Execution on a Cell blade (left bars) and 16 node cluster (right
bars)

© Kayvon Fatahalian
39

Performance

SPE scaling on 2.4Ghz
Dual-Cell blade

Scaling on P4 cluster with
Infiniband interconnect

Number of SPEs Number of nodes

SAXPY
SGEMV
SGEMM
IterConv2D
FFT3D
Gravity
HMMER

SAXPY
SGEMV
SGEMM
IterConv2D
FFT3D
Gravity
HMMER

Sp
ee

du
p

Sp
ee

du
p

© Kayvon Fatahalian
40

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

© Kayvon Fatahalian
41

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

Single Cell >= 16 node cluster of P4’s

© Kayvon Fatahalian
42

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

Results on Cell on-par or better than best-known
implementations on any architecture

© Kayvon Fatahalian
43

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

FFT3D on par with best-known Cell
implementation

© Kayvon Fatahalian
44

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

Gravity outperforms custom ASICs

© Kayvon Fatahalian
45

Performance: GFLOP/sec

Single Cell
*

(8 SPE)

Dual Cell *

(16 SPE)
Cluster **

(16 nodes)

SAXPY 3.2 4.0 3.6
SGEMV 9.8 11.0 11.1
SGEMM 96.3 174.0 97.9
IterConv2D 62.8 119.0 27.2
FFT3D 43.5 45.2 6.8
Gravity 83.3 142.0 50.6
HMMER 9.9 19.1 13.4

(single precision floating point)

* 2.4 GHz Cell processor,
DD2

** 2.4 GHz Pentium 4 per node

HMMER outperforms Horn et al.’s GPU
implementation from SC05

© Kayvon Fatahalian
46

Sequoia portability

No Sequoia source level modifications
except for FFT3D*
- Changed task parameters
- Ported leaf task implementations

Cluster Cell port (or vice-versa) took 1-2
days

* FFT3D used a different variant on Cell

© Kayvon Fatahalian
47

Sequoia limitations

Require explicit declaration of working sets
- Programmer must know what to transfer
- Some irregular applications present problems

Manual task mapping
- Understand which parts can be automated
- Some progress in automated search for

parameters (auto-tuning style)

© Kayvon Fatahalian
48

Sequoia summary

Enforce structuring already required for
performance as integral part of programming
model

Make these hand optimizations portable and
easier to perform

© Kayvon Fatahalian
49

Sequoia summary
Problem:
- Deep memory hierarchies pose perf. programming

challenge
- Memory hierarchy different for different machines

Solution: Abstract hierarchical memory in programming
model
- Program the memory hierarchy explicitly
- Expose properties that effect performance

Approach: Express hierarchies of tasks
- Execute in local address space
- Call-by-value-result semantics exposes

communication
- Parameterized for portability

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 50

Sequoia and Cell Programming Challenges
• Sequoia manages threading and synchronization
• Sequoia manages communication and all DMAs

– Including padding and performance, but not alignment

• Sequoia manages LS
– Allocation and packing

• Sequoia manages scheduling
– SWP of mappar to hide communication latency

• Sequoia doesn’t help with SPE code
– Use low-level compiler tools such as XLC

• Sequoia doesn’t currently help with some memory restrictions
– Alignment
– Banks

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 51

Outline
• Cell programming challenges review
• Sequoia

– Review + mapping
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 52

Tools From IBM
• Cell SDK 3.0

– API calls for handling communication, synchronization, and DMA
– LIBSPU and SPUFS for getting the SPEs to do something and setting up

threads and memory
– Intrinsics for programming the SPE pipeline directly
– GCC port for PPE and SPE part (separate compilers)

• Only handles non-SPE specific optimizations + intrinsics
– XLC port for PPE and SPE part (separate compilers)

• XLC supposed to optimize for SPE pipeline with branch hints, scheduling,
instruction prefetch, …

• Automatic SIMD-ization?

• Accelerated Library Framework (ALF)
– APIs for work queue based model to program control-plane

• “Octopiler” – single-source XLC for Cell
– OpenMP directives
– Relies on SW cache to get the OpenMP working
– Automatic SIMD-ization

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 53

Tools from Industry

• Mercury Systems
– Array based language
– Highly-tuned BLAS and FFT

• RapidMind
– Dynamically compiled program
– Relies on array data types
– Builds up kernels and DMAs

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 21 54

Tools From Academia

• Sequoia

• Cell Superscalar (CellSs)
– Program with OpenMP like directives to identify kernels
– Uses SW cache intensively
– Runtime applies superscalar style optimization and scheduling to

coarse-grained kernels (identified above)

• Charm++
– Runtime based approach
– Objects with explicit communication and “entry points” for

synchronization
– Uses a work queue and peaks into it to do the DMAs

	EE382V (17325): Principles in Computer Architecture�Parallelism and Locality�Fall 2007�Lecture 21 – Programming the Cell BE (II)
	Outline
	Cell Software Challenges
	Outline
	Sequoia�Programming the Memory Hierarchy
	Sequoia
	Slide Number 7
	Avoiding latency stalls
	Exploit locality
	Streaming
	Streaming
	Sequoia’s goals
	Hierarchical memory in Sequoia
	Hierarchical memory
	Blocked matrix multiplication
	Blocked matrix multiplication
	Blocked matrix multiplication
	Sequoia tasks
	Sequoia tasks
	Sequoia tasks
	Task hierarchies
	Task hierarchies
	Task hierarchies
	Task hierarchies
	Synchronization
	Synchronization Impacts Parallelism
	Summary: Sequoia tasks
	Mapping tasks to machines
	How mapping works
	Task mapping specification
	Specializing matmul
	Task instances: Cell
	Results
	Early results
	Early results
	Utilization
	Utilization
	Utilization
	Performance
	Performance: GFLOP/sec
	Performance: GFLOP/sec
	Performance: GFLOP/sec
	Performance: GFLOP/sec
	Performance: GFLOP/sec
	Performance: GFLOP/sec
	Sequoia portability
	Sequoia limitations
	Sequoia summary
	Sequoia summary
	Sequoia and Cell Programming Challenges
	Outline
	Tools From IBM
	Tools from Industry
	Tools From Academia

