EE382V (17325): Principles in Computer Architecture Parallelism and Locality Fall 2007 Lecture 24 – Lab 2 Review + Increasing Locality

Mattan Erez

The University of Texas at Austin

- Lab 2 Review
- Overview of locality increasing tools
 - Data partitioning / domain decomposition
- Examples
 - From many sources on the web (quoted on relevant pages)

Sparse Matrix Example

© http://www.math.tuberlin.de/ilupack/doc/ilup ack.html

Locality in PDEs

- Smallest: data for single stencil
- Largest: data for entire subdomain

2002

Intermediate: data for a \bullet neighborhood collection of stencils, reused as possible

 As successive workingsets "drop" into a level of memory, capacity (and with effort conflict) misses disappear, leaving only compulsory, reducing demand on main memory bandwidth

© Dineh Kaushik and David Keys 2002

Reordering of Water Molecules

© Mattan Erez

UTE AFCE

Space Filling Curves

© Danny Thorne 2002

EE382V: Principles of Computer Architecture, F

Space Filling Curves

- Optimal load balance.
- Subdomain boundaries are sub-optimal.
- Recall: Optimizing load and comm is NP-hard.

Space Filling Curves

The main advantages of this partition method are:

- It is fast compared to graph partitioning heuristics,
- It runs in parallel,
- It requires no administration and no storage of processor neighborhoods.
- The knowledge of the separators is enough to compute where to find a node and which processor to ask for it.

• Various reorderings for a mesh for streaming

Figure 6: The dragon mesh reordered by (a) a depth-first compressor, (b) a breadth-first compressor, (c) z-order curve, (d) spatial sort, and (e) spectral sequencing.

From: Martin Isenburg and Peter Lindstrum, "Streaming Meshes", 2005 EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 24

	original layout					spectral sequencing		
name genus	skip v-width		inter- v-o leaved pa	com- acted	t-com- pacted			
# comp. # vertices	t-width v-span	layout diagram	width w span s	vidth pan	width span	snapshots	width span	snapshots
# triangles	t-span							

From: Martin Isenburg and Peter Lindstrum, "Streaming Meshes", 2005