
1

EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 7 – Parallelism in SW and Parallel Patterns

Mattan Erez

The University of Texas at Austin

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 2

Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 3

ILP/DLP/TLP in Software

• Does software also have ILP, DLP, and TLP?

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 5

TLP or DLP?

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 7

Converting Between ILP, TLP, and DLP?

• HW finally determines what parallelism
mechanisms were used

• Easy: DLP → TLP → ILP

• Harder/inefficient: ILP→TLP→DLP
– Requires significant analysis
– Often need to speculate

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 8

Converting Between ILP, TLP, and DLP

• Examples for conversion:

• SW:

• HW:

2

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 10

Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming
Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 7 11

Credits

• Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
– Taken from 6.189 IAP taught at MIT in 2007.

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 7 12

Parallel programming from scratch

• Start with an algorithm
– Formal representation of problem solution
– Sequence of steps

• Make sure there is parallelism
– In each algorithm step
– Minimize synchronization points

• Don’t forget locality
– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential
code

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 13

4 Common Steps to
Creating a Parallel Program

Tasks Units of
Execution

Processors

Partitioning

Sequential
Computation

Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 14

Reengineering for Parallelism
• Parallel programs often start as sequential programs

– Easier to write and debug
– Legacy codes

• How to reengineer a sequential program for parallelism:
– Survey the landscape
– Pattern provides a list of questions to help assess existing code
– Many are the same as in any reengineering project
– Is program numerically well-behaved?

• Define the scope and get users acceptance
– Required precision of results
– Input range
– Performance expectations
– Feasibility (back of envelope calculations)

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 15

Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the
time spent?
– Look at code
– Use profiling tools

• Parallelization
– Start with hot spots first
– Make sequences of small changes, each followed by testing
– Patterns provide guidance

3

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 16

Decomposition

• Identify concurrency and decide at what level to
exploit it

• Break up computation into tasks to be divided
among processes
– Tasks may become available dynamically
– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on

achievable speedup

Main consideration: coverage and Amdahl’s Law
Dr. Rodric Rabbah, IBM

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 17

Coverage

• Amdahl's Law: The performance
improvement to be gained from using some
faster mode of execution is limited by the
fraction of the time the faster mode can be
used.
– Demonstration of the law of diminishing returns

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 18

Amdahl’s Law

• Potential program speedup is defined by the
fraction of code that can be parallelized

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 19

Amdahl’s Law

• Speedup = old running time / new
running time

= 100 seconds / 60 seconds
= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 20

• p = fraction of work that can be parallelized
• n = the number of processor

Amdahl’s Law

fraction of time to
complete sequential
work

fraction of time to
complete parallel work

n
pp

speedup

+−
=

=

)1(

1
 timerunning new
 timerunning old

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 21

Implications of Amdahl’s Law

• Speedup tends to as number of
processors tends to infinity

p−1
1

Super linear speedups
are possible due to

registers and caches

Typical speedup is
less than linear

lin
ea

r s
pee

dup (1
00

% ef
fic

ien
cy

)

number of processors

sp
ee

du
p

Parallelism only worthwhile
when it dominates execution

4

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 22

Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication

• Structured approaches usually work well
– Code inspection or understanding of application
– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?
– Complexity often affects decisions
– Architectural model affects decisions

Main considerations: granularity and locality
Dr. Rodric Rabbah, IBM

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 23

Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to

communication ratio
– Small amounts of

computational work between
communication stages

– High communication
overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to

communication ratio
– Large amounts of

computational work between
communication events

– Harder to load balance
efficiently

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 7 24

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 7 25

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync coarse granularity
Few units of exec + time disparity fine granularity

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 26

Orchestration and Mapping

• Computation and communication
concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target
system

Main considerations: locality, parallelism,
mechanisms (efficiency and dangers) Dr. Rodric Rabbah, IBM

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 27

Parallel Programming by Pattern
• Provides a cookbook to systematically guide programmers

– Decompose, Assign, Orchestrate, Map
– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming
community
– Each pattern has a name, providing a vocabulary for discussing

solutions

• Helps with software reusability, malleability, and modularity
– Written in prescribed format to allow the reader to quickly

understand the solution and its context

• Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

5

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 28

History

• Berkeley architecture
professor Christopher
Alexander

• In 1977, patterns for city
planning, landscaping, and
architecture in an attempt
to capture principles for
“living” design

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 29

Example 167 (p. 783): 6ft Balcony

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 30

Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable
Object-Oriented Software (1995)
– Gang of Four (GOF): Gamma, Helm, Johnson,

Vlissides
– Catalogue of patterns
– Creation, structural, behavioral

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 31

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 32

Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming
Dr. Rodric Rabbah, IBM

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 33

Picture Reorder

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion
Compensation

Display

Here’s my algorithm.
Where’s the concurrency?

6

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 34

• Task decomposition
– Independent coarse-grained

computation
– Inherent to algorithm

• Sequence of statements
(instructions) that operate
together as a group

– Corresponds to some logical part
of program

– Usually follows from the way
programmer thinks about a
problem

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion
Compensation

Here’s my algorithm.
Where’s the concurrency?

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 35

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines
– Producer-consumer chains

Motion
Compensation

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 36

join

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines
– Producer-consumer chains

• Data decomposition
– Same computation is applied to

small data chunks derived from
large data set

IDCT

IQuantization

ZigZag

Saturation

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 37

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and
• Distinct loop iterations

• Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 38

Guidelines for Task Decomposition
• Flexibility

– Program design should afford flexibility in the number and
size of tasks generated

• Tasks should not tied to a specific architecture
• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them
– Tasks should be sufficiently independent so that

managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 39

Case for Pipeline Decomposition
• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in
computer architecture?
– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?
– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples
– Signal processing
– Graphics

IDCT

IQuantization

ZigZag

Saturation

7

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 40

Guidelines for Data Decomposition
• Data decomposition is often implied by task

decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large

data structure
– Similar operations are applied to different parts of the data

structure

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 41

Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 42

Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

• Recursive data structures
– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 43

Guidelines for Data Decomposition

• Flexibility
– Size and number of data chunks should support a

wide range of executions

• Efficiency
– Data chunks should generate comparable amounts

of work (for load balancing)

• Simplicity
– Complex data compositions can get difficult to

manage and debug

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 44

Data Decomposition Examples

• Molecular dynamics
– Compute forces
– Update accelerations and

velocities
– Update positions

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 45

Data Decomposition Examples

• Molecular dynamics
– Geometric decomposition

• Merge sort
– Recursive decomposition problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

8

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 46

Dependence Analysis

• Given two tasks how to determine if they can
safely run in parallel?

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 47

Bernstein’s Condition

• Ri: set of memory locations read (input) by
task Ti

• Wj: set of memory locations written (output)
by task Tj

• Two tasks T1 and T2 are parallel if
– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 48

T1

a = x + y

T2

b = x + z

Example

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

φ
φ
φ

=
=
=

21

12

21

WW
WR
WR

I

I

I

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 49

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 50

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 51

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data

9

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 52

Organize by Tasks?

Recursive?

Task
Parallelism

Divide and Conquer
yes

no

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 53

Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 54

Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

join join

join

split split

split

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 55

Organize by Data?

Recursive?

Geometric
Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

yes

no

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 56

Recursive Data

• Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to

sequentially move through the data structure

• There are however opportunities to reshape
the operations in a way that exposes
concurrency

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 57

Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7
Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s successor,

repeat until no changes
• O(log n) vs. O(n)

10

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 58

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 59

Organize by Flow of Data?

Regular?

Event-based
Coordination

Pipeline

• In some application domains, the flow of data
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

yes

no

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 60

Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by
the number of stages

• Works best if the time to fill and drain the pipeline is
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time

unit (e.g., frames per second)

• Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 61

Event-Based Coordination

• In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

