EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 7 — Parallelism in SW and Parallel Patterns

Mattan Erez

The University of Texas at Austin

ILP/DLP/TLP in Software

= Does software also have ILP, DLP, and TLP?

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah. [BM c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Converting Between ILP, TLP, and DLP?

= HW finally determines what parallelism
mechanisms were used

= Easy: DLP — TLP — ILP

= Harder/inefficient: ILP—-TLP—DLP
— Requires significant analysis
— Often need to speculate

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Outline

= Parallelism in SW
— ILP/DLP/TLP?
= Parallel programming
- Start from scratch
— Reengineering for parallelism
= Parallelizing a program
— Decomposition (finding concurrency)
— Assignment (algorithm structure)
— Orchestration (supporting structures)
— Mapping (implementation mechanisms)
= Patterns for Parallel Programming

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

TLP or DLP?

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah. 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Converting Between ILP, TLP, and DLP

= Examples for conversion:
- SW:
- HW:
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
Dr. Rodric Rabbah, IBM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Outline

= Parallelism in SW
— ILP/DLP/TLP?
= Parallel programming
- Start from scratch
- Reengineering for parallelism
= Parallelizing a program
— Decomposition (finding concurrency)
— Assignment (algorithm structure)
— Orchestration (supporting structures)
— Mapping (implementation mechanisms)
= Patterns for Parallel Programming

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Parallel programming from scratch

Start with an algorithm
— Formal representation of problem solution
- Sequence of steps
Make sure there is parallelism
- In each algorithm step
— Minimize synchronization points
Don’t forget locality
— Communication is costly
= Performance, Energy, System cost
More often start with existing sequential
code

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 - Lecture 7 12

Reengineering for Parallelism

= Parallel programs often start as sequential programs
— Easier to write and debug
- Legacy codes

— Survey the landscape

— Pattern provides a list of questions to help assess existing code
— Many are the same as in any reengineering project

— Is program numerically well-behaved?

« Define the scope and get users acceptance
— Required precision of results
— Inputrange
- Performance expectations
— Feasibility (back of envelope calculations)

EE382V: Prinicples in Computer Architecture, Fall 2008 -~ Lecture 7

Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

= How to reengineer a sequential program for parallelism:

Credits

= Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
— Taken from 6.189 IAP taught at MIT in 2007.

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 - Lecture 7 11

£¥ 4 Common Steps to
Creating a Parallel Program

Partitioning

d a o m
e [R r a
¢ o [S> I c P
o i h P
S N ¢ !
= VIR

—0 —_m t g
ST Te T N KL=
) n a
t (= t
oS ‘
o o

Sequential Tasks Units of Parallel Processors
Computation Execution program
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
Dr. Rodric Rabbah, [EM ©) Rodric Rabbah, 2007 and Mattan Erez, 2008 13

WReengineering for Parallelism

= Define a testing protocol

= |dentify program hot spots: where is most of the
time spent?
— Look at code
— Use profiling tools

= Parallelization
— Start with hot spots first
— Make sequences of small changes, each followed by testing
— Patterns provide guidance

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 15

Decomposition

= |dentify concurrency and decide at what level to
exploit it

= Break up computation into tasks to be divided
among processes
— Tasks may become available dynamically
— Number of tasks may vary with time

= Enough tasks to keep processors busy

— Number of tasks available at a time is upper bound on
achievable speedup

Main consideration: coverage and Amdahl’s Law

Amdahl’s Law

= Potential program speedup is defined by the
fraction of code that can be parallelized

time Use 5 processors for parallel work

+ +
poseeons - e - - - - -
+ +

100 seconds 60 seconds

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
c) Rodric Rabbah, 2007 and Mattan Erez, 2008 18

Dr. Rodric Rabbah. [BM

. Amdabhl’s Law

= p = fraction of work that can be parallelized
= n = the number of processor

old running time

speedup =

new running time
1

fraction of time to

fraction of time to | el K
complete sequential complete parallel wor

work

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 20

Coverage

= Amdahl's Law: The performance
improvement to be gained from using some
faster mode of execution is limited by the
fraction of the time the faster mode can be
used.
— Demonstration of the law of diminishing returns

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 17

Amdahl’s Law

time Use 5 processors for parallel work

:

¥
50 seconds - 10 seconds [FN] [T] (F] (]
+ +

100 seconds 60 seconds

= Speedup = old running time / new
running time
=100 seconds / 60 seconds

=167
(parallel version is 1.67 times faster)

E382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 19

Dr. Rodric Rabbah. 1BM

Implications of Amdahl’s Law

1
= Speedup tends to -, as number of
processors tends to infinity
Super linear speedups

are possible due to
registers and caches

speedup
2,
\

X4 Typical speedup is
&r less than linear

Parallelism only worthwhile
when it dominates execution

Assignment

= Specify mechanism to divide work among PEs
- Balance work and reduce communication

< Structured approaches usually work well
— Code inspection or understanding of application
— Well-known design patterns

= As programmers, we worry about partitioning first
— Independent of architecture or programming model?
— Complexity often affects decisions
— Architectural model affects decisions

Main considerations: granularity and locality

Load Balancing vs. Synchronization

|- i
- Fine Coarse I =
- -
PE, PE, | PE, PE

(|

]
— S—
— —

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 7 24

Orchestration and Mapping

= Computation and communication
concurrency

= Preserve locality of data
= Schedule tasks to satisfy dependences early

= Survey available mechanisms on target
system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

Fine vs. Coarse Granularity

« Fine-grain Parallelism * Coarse-grain Parallelism

— High computation to
communication ratio

— Large amounts of
computational work between

— Low computation to
communication ratio
— Small amounts of

computational work between xuon:
communication stages communication events

— High communication — Harder to load balance
overhead efficiently

« Potential HW assist

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 23

|- i
St Fine Coarse I =
-— -
PE, PE, | PE, PE

i
'

Expensive sync = coarse granularity
Few units of exec + time disparity = fine granularity

Parallel Programming by Pattern

< Provides a cookbook to systematically guide programmers
— Decompose, Assign, Orchestrate, Map
— Can lead to high quality solutions in some domains

= Provide common vocabulary to the programming
community

— Each pattern has a name, providing a vocabulary for discussing
solutions

= Helps with software reusability, malleability, and modularity

— Written in prescribed format to allow the reader to quickly
understand the solution and its context

= Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 27

Dr. Rodric Rabbah, 1BM

History

= Berkeley architecture
professor Christopher APottern Language
Alexander Toven-Balines Comtrcton

= In 1977, patterns for city
planning, landscaping, and
architecture in an attempt

Uhiropleer Alriasder

to capture principles for Sarbikawa - Marrny Siversci
“”Ving" design wu.-a--:hhi:l‘::\l-|.u King

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 28

Patterns in Object-Oriented Programming

= Design Patterns: Elements of Reusable
Object-Oriented Software (1995)

— Gang of Four (GOF): Gamma, Helm, Johnson,
Vlissides

— Catalogue of patterns Desion Patterns
— Creation, structural, behavioral

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah. [BM c) Rodric Rabbah, 2007 and Mattan Erez, 2008 30

Outline

= Parallelism in SW
— ILP/DLP/TLP?
= Parallel programming
- Start from scratch
- Reengineering for parallelism
= Parallelizing a program
— Decomposition (finding concurrency)
— Assignment (algorithm structure)
— Orchestration (supporting structures)
- Mapping (implementation mechanisms)
= Patterns for Parallel Programming

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 32

Example 167 (p. 783): 6ft Balcony

Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet decp. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a
simple line, and enclose it partially.

- six feet deep
,ﬁ’

-l lea

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
Dr. Rodric Rabbah, 1BM () Rodric Rabbah, 2007 and Mattan Erez, 2008

Patterns for Parallelizing Programs

Algorithm Expression

+ Finding Concurrency -
— Expose concurrent tasks

» Algorithm Structure .
— Map tasks to processes to
exploit parallel
architecture

EE382V: P

Dr. Rodric Rabbah. 1BM

4 Design Spaces

Software Construction

Supporting Structures
— Code and data structuring
patterns
Implementation
Mechanisms

- Low level mechanisms used
to write parallel programs

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill

(RA0B)ccture. Fall 2008 - Lecture 7

2007 and Mattan Erez, 2008

&7 Here’s my algorithm.

Where’s the concurrency?

MPEG Decoder MPEG B sieam

5
macroblocks, motion vectors

frequency encoded

matroblocks. diferentialy coded

motion vecars

Spatally encoded macroblocks. Trotion vectors

s
P

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

ere’s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder

» Task decomposition

— Independent coarse-grained
computation
— Inherent to algorithm

)
macroblocks, motion vectors

requency encoded

macroblocks. diferentilly coded

movor veciors
\Quantization

« Sequence of statements
(instructions) that operate
together as a group

— Corresponds to some logical part|
of program

— Usually follows from the way
programmer thinks about a

Saturation

spatially encoded macroblocks

recovered picture

problem
EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah, IBM c) Rodric Rabbah, 2007 and Mattan Erez, 2008 34

&7 Here’s my algorithm.
Where’s the concurrency?

MPEG Decoder MPEG bit stream

+ Task decomposition
— Parallelism in the application

£\

« Pipeline task decomposition
— Data assembly lines
— Producer-consumer chains

(W

+ Data decomposition

— Same computation is applied to
small data chunks derived from

large data set N
ﬁ

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

frequency encoded
Matioblocks.

Dr. Rodric Rabbah. [BM c) Rodric Rabbah, 2007 and Mattan Erez, 2008 36

Guidelines for Task Decomposition

~ Flexibility
- Program design should afford flexibility in the number and
size of tasks generated
= Tasks should not tied to a specific architecture
= Fixed tasks vs. Parameterized tasks

= Efficiency
— Tasks should have enough work to amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that
managing dependencies doesn’t become the
bottleneck

= Simplicity
- The code has to remain readable and easy to
understand, and debug

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 38

Dr. Rodric Rabbah, [BM

_&SPHere’s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder

» Task decomposition
— Parallelism in the application

/\
=

frequency encoded

matroblocks. diferentialy coded

moton veciors

Motion Vector Decode

— Data assembly lines

— Producer-consumer chains

recovered picure

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Dr. Rodric Rabbah, 1BM

» Pipeline task decomposition

Guidelines for Task Decomposition

= Algorithms start with a good understanding of the
problem being solved

= Programs often naturally decompose into tasks
— Two common decompositions are
= Function calls and
= Distinct loop iterations

= Easier to start with many tasks and later fuse them,

rather than too few tasks and later try to split them

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Dr. Rodric Rabbah. 1BM

37

Case for Pipeline Decomposition

= Data is flowing through a sequence of stages
— Assembly line is a good analogy

IQuantization

< What’s a prime example of pipeline decomposition in
computer architecture?

— Instruction pipeline in modern CPUs

= What’s an example pipeline you may use in your UNIX shell?
— Pipesin UNIX: cat foobar.c | grep bar | wc

= Other examples
— Signal processing
— Graphics

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Guidelines for Data Decomposition

= Data decomposition is often implied by task
decomposition

= Programmers need to address task and data
decomposition to create a parallel program
— Which decomposition to start with?

= Data decomposition is a good starting point when

— Main computation is organized around manipulation of a large
data structure

— Similar operations are applied to different parts of the data
structure

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 40

Common Data Decompositions

= Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes into domains

= Recursive data structures
- Example: decomposition of trees into sub-trees

subproblem subproblem

X

subproblem

subproblem

EE382V: Prinicples in Computer Architecture,
c) Rodric Rabbah, 2007 and Mattan Ere:

Dr. Rodric Rabbah. [BM

Data Decomposition Examples

= Molecular dynamics
— Compute forces

- Update accelerations and
velocities

- Update positions

ecture, Fall 2008 - Lecture 7

icpl
Dr. Rodric Rabbabh, IBM Rodric Rabbah, 2007 and Mattan Erez, 2008 44

Common Data Decompositions

= Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes into domains

EE382V: Prinicples in Compu
Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 41

Guidelines for Data Decomposition

- Flexibility

— Size and number of data chunks should support a
wide range of executions

= Efficiency
— Data chunks should generate comparable amounts
of work (for load balancing)

= Simplicity
— Complex data compositions can get difficult to
manage and debug

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 43

Dr. Rodric Rabbah. 1BM

Data Decomposition Examples

= Molecular dynamics ’
— Geometric decomposition 243
e,
= Merge sort
- Recursive decomposition

subproblem

subproblem subproblem

EE382V: Prinicples in Computer Architecture, Fer Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 45

Dependence Analysis

= Given two tasks how to determine if they can
safely run in parallel?

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Example
TI TZ
a=x+y b=x+2z
}
RMW, =¢
R,NW, = ¢
W,NW, =¢
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
Dr. Rodric Rabbah, IBM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 48

Algorithm Structure Design Space

« Given a collection of concurrent tasks, what’s the
next step?

= Map tasks to units of execution (e.g., threads)

= Important considerations

— Magnitude of number of execution units platform will support
— Cost of sharing information among execution units
- Avoid tendency to over constrain the implementation

= Work well on the intended platform

= Flexible enough to easily adapt to different architectures

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Bernstein’s Condition

= R;: set of memory locations read (input) by
task T;

= W;: set of memory locations written (output)
by task T;

= Two tasks T, and T, are parallel if
- input to T, is not part of output from T,
- input to T, is not part of output from T,
- outputs from T, and T, do not overlap

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7
Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

» Algorithm Structure

— Map tasks to processes to
exploit parallel
architecture

Patterns for Parallel Programming.
| Mattson, Sanders, and Massingill

(RA0B)ccture. Fall 2008 - Lecture 7

... 2007 and Mattan Erez, 2008

EE382V: P

(M

Dr. Rodric Rabbah. 1BM

Major Organizing Principle

= How to determine the algorithm structure that

represents the mapping of tasks to units of
execution?

Concurrency usually implies major organizing
principle

— Organize by tasks

— Organize by data decomposition

— Organize by flow of data

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7
Dr. Rodric Rabbah, 1BM

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Organize by Tasks?

Divide and Conquer

Task
Parallelism

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Divide and Conquer

< For recursive programs: divide and conquer
— Subproblems may not be uniform
— May require dynamic load balancing

subproblem subproblem

subproblem subproblem

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM c) Rodric Rabbah, 2007 and Mattan Erez, 2008

54

Recursive Data

= Computation on a list, tree, or graph

— Often appears the only way to solve a problem is to
sequentially move through the data structure

= There are however opportunities to reshape
the operations in a way that exposes
concurrency

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Task Parallelism

= Molecular dynamics
— Non-bonded force calculations, some dependencies

= Common factors
— Tasks are associated with iterations of a loop
— Tasks largely known at the start of the computation
— All tasks may not need to complete to arrive at a solution

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 53

Organize by Data?

= Operations on a central data structure
— Arrays and linear data structures
- Recursive data structures

Recursive Data

Geometric
Decomposition

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 55

Recursive Data Example: Find the Root

« Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node

— Parallel approach: for each node, find its successor’s successor,
repeat until no changes
<= O(log n) vs. O(n)

£ 2%
O Ao oa:o y
& o ® @

Step 1 Step 2

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah, 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 57

Work vs. Concurrency Tradeoff

= Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential
approach

< Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008 58

Pipeline Throughput vs. Latency

< Amount of concurrency in a pipeline is limited by
the number of stages

= Works best if the time to fill and drain the pipeline is
small compared to overall running time

= Performance metric is usually the throughput

- Rate at which data appear at the end of the pipeline per time
unit (e.g., frames per second)

= Pipeline latency is important for real-time
applications
— Time interval from data input to pipeline, to data output

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. [BM c) Rodric Rabbah, 2007 and Mattan Erez, 2008 60

Organize by Flow of Data?

= In some application domains, the flow of data
imposes ordering on the tasks
— Regular, one-way, mostly stable data flow
— Irregular, dynamic, or unpredictable data flow

Regular? Pipeline

Event-based
Coordination

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

Event-Based Coordination

= In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

= Deadlocks are a danger for applications that use
this pattern

— Dynamic scheduling has overhead and may be inefficient
< Granularity a major concern

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 7

Dr. Rodric Rabbah. 1BM (c) Rodric Rabbah, 2007 and Mattan Erez, 2008

