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Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming
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ILP/DLP/TLP in Software

• Does software also have ILP, DLP, and TLP?
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TLP or DLP?
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Converting Between ILP, TLP, and DLP?

• HW finally determines what parallelism 
mechanisms were used 

• Easy: DLP → TLP → ILP 

• Harder/inefficient: ILP→TLP→DLP 
– Requires significant analysis 
– Often need to speculate 
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Converting Between ILP, TLP, and DLP

• Examples for conversion: 

• SW: 

• HW: 
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Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming
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Credits

• Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
– Taken from 6.189 IAP taught at MIT in 2007.
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Parallel programming from scratch

• Start with an algorithm
– Formal representation of problem solution
– Sequence of steps

• Make sure there is parallelism
– In each algorithm step
– Minimize synchronization points

• Don’t forget locality
– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential 
code
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4 Common Steps to 
Creating a Parallel Program
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Reengineering for Parallelism
• Parallel programs often start as sequential programs

– Easier to write and debug
– Legacy codes

• How to reengineer a sequential program for parallelism:
– Survey the landscape
– Pattern provides a list of questions to help assess existing code
– Many are the same as in any reengineering project
– Is program numerically well-behaved?

• Define the scope and get users acceptance
– Required precision of results
– Input range
– Performance expectations
– Feasibility (back of envelope calculations)
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Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the 
time spent?
– Look at code
– Use profiling tools

• Parallelization
– Start with hot spots first
– Make sequences of small changes, each followed by testing
– Patterns provide guidance
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Decomposition

• Identify concurrency and decide at what level to 
exploit it

• Break up computation into tasks to be divided 
among processes
– Tasks may become available dynamically
– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on 

achievable speedup

Main consideration: coverage and Amdahl’s Law
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Coverage

• Amdahl's Law: The performance 
improvement to be gained from using some 
faster mode of execution is limited by the 
fraction of the time the faster mode can be 
used.
– Demonstration of the law of diminishing returns
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Amdahl’s Law

• Potential program speedup is defined by the 
fraction of code that can be parallelized
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Amdahl’s Law

• Speedup = old running time / new 
running time

= 100 seconds / 60 seconds
= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds
+

25 seconds
+

sequential

sequential25 seconds

10 seconds
+

25 seconds
+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7   

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 20

• p = fraction of work that can be parallelized
• n = the number of processor

Amdahl’s Law 

fraction of time to
complete sequential
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fraction of time to 
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Implications of Amdahl’s Law

• Speedup tends to        as number of 
processors tends to infinity

p−1
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Super linear speedups 
are possible due to 

registers and caches

Typical speedup is 
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Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication 

• Structured approaches usually work well
– Code inspection or understanding of application
– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?
– Complexity often affects decisions
– Architectural model affects decisions

Main considerations: granularity and locality
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Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to 

communication ratio
– Small amounts of 

computational work between 
communication stages 

– High communication 
overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to 

communication ratio 
– Large amounts of 

computational work between 
communication events 

– Harder to load balance 
efficiently 
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync coarse granularity
Few units of exec + time disparity fine granularity
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Orchestration and Mapping

• Computation and communication 
concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target 
system

Main considerations: locality, parallelism, 
mechanisms (efficiency and dangers) Dr. Rodric Rabbah, IBM
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Parallel Programming by Pattern
• Provides a cookbook to systematically guide programmers 

– Decompose, Assign, Orchestrate, Map
– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming 
community
– Each pattern has a name, providing a vocabulary for discussing 

solutions

• Helps with software reusability, malleability, and modularity
– Written in prescribed format to allow the reader to quickly 

understand the solution and its context

• Otherwise, too difficult for programmers, and software will not 
fully exploit parallel hardware



5

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7   

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 28

History

• Berkeley architecture 
professor Christopher 
Alexander

• In 1977, patterns for city 
planning, landscaping, and 
architecture in an attempt 
to capture principles for 
“living” design
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Example 167 (p. 783): 6ft Balcony
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Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable 
Object-Oriented Software (1995)
– Gang of Four (GOF): Gamma, Helm, Johnson, 

Vlissides
– Catalogue of patterns
– Creation, structural, behavioral
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Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 
architecture

Software Construction
• Supporting Structures

– Code and data structuring 
patterns

• Implementation 
Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 
Mattson, Sanders, and Massingill
(2005).
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Outline

• Parallelism in SW
– ILP/DLP/TLP?

• Parallel programming
– Start from scratch
– Reengineering for parallelism

• Parallelizing a program
– Decomposition (finding concurrency)
– Assignment (algorithm structure)
– Orchestration (supporting structures)
– Mapping (implementation mechanisms)

• Patterns for Parallel Programming
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• Task decomposition
– Independent coarse-grained 

computation
– Inherent to algorithm

• Sequence of statements 
(instructions) that operate 
together as a group

– Corresponds to some logical part 
of program

– Usually follows from the way 
programmer thinks about a 
problem
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• Task decomposition
– Parallelism in the application 

• Pipeline task decomposition
– Data assembly lines 
– Producer-consumer chains

Motion 
Compensation
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• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines 
– Producer-consumer chains

• Data decomposition
– Same computation is applied to 

small data chunks derived from 
large data set

IDCT

IQuantization

ZigZag

Saturation

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7   

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 37

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the 
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and 
• Distinct loop iterations

• Easier to start with many tasks and later fuse them, 
rather than too few tasks and later try to split them
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Guidelines for Task Decomposition
• Flexibility

– Program design should afford flexibility in the number and 
size of tasks generated

• Tasks should not tied to a specific architecture
• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of 

creating and managing them
– Tasks should be sufficiently independent so that 

managing dependencies doesn’t become the 
bottleneck

• Simplicity
– The code has to remain readable and easy to 

understand, and debug
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Case for Pipeline Decomposition
• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in 
computer architecture? 
– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?
– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples
– Signal processing
– Graphics

IDCT

IQuantization

ZigZag

Saturation



7

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7   

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 40

Guidelines for Data Decomposition
• Data decomposition is often implied by task 

decomposition 

• Programmers need to address task and data 
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large 

data structure
– Similar operations are applied to different parts of the data 

structure
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Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains
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Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

• Recursive data structures
– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Guidelines for Data Decomposition

• Flexibility
– Size and number of data chunks should support a 

wide range of executions

• Efficiency
– Data chunks should generate comparable amounts 

of work (for load balancing)

• Simplicity
– Complex data compositions can get difficult to 

manage and debug
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Data Decomposition Examples

• Molecular dynamics
– Compute forces
– Update accelerations and

velocities
– Update positions
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Data Decomposition Examples

• Molecular dynamics
– Geometric decomposition

• Merge sort
– Recursive decomposition problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Dependence Analysis

• Given two tasks how to determine if they can 
safely run in parallel?
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Bernstein’s Condition

• Ri: set of memory locations read (input) by 
task Ti

• Wj: set of memory locations written (output) 
by task Tj

• Two tasks T1 and T2 are parallel if 
– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap
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T1

a = x + y 

T2

b = x + z

Example

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

φ
φ
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=
=
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Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 
architecture

Software Construction
• Supporting Structures

– Code and data structuring 
patterns

• Implementation 
Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 
Mattson, Sanders, and Massingill
(2005).
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Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the 
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures
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Major Organizing Principle

• How to determine the algorithm structure that 
represents the mapping of tasks to units of 
execution?

• Concurrency usually implies major organizing 
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data
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Organize by Tasks?

Recursive?

Task 
Parallelism

Divide and Conquer
yes

no
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Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution
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Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

join join

join

split split

split

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 7   

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 55

Organize by Data?

Recursive?

Geometric
Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

yes

no
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Recursive Data

• Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to 

sequentially move through the data structure

• There are however opportunities to reshape 
the operations in a way that exposes 
concurrency
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Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7
Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each 
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s successor, 

repeat until no changes
• O(log n) vs. O(n)
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Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm leads 
to O(n log n) work vs. O(n) with sequential 
approach

• Most strategies based on this pattern similarly trade 
off increase in total work for decrease in execution 
time due to concurrency
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Organize by Flow of Data?

Regular?

Event-based 
Coordination

Pipeline

• In some application domains, the flow of data 
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

yes

no
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Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by 
the number of stages

• Works best if the time to fill and drain the pipeline is 
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time 

unit (e.g., frames per second)

• Pipeline latency is important for real-time 
applications
– Time interval from data input to pipeline, to data output
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Event-Based Coordination

• In this pattern, interaction of tasks to process data 
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use 
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern


