
1

EE382: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 8 – Patterns for Parallel Programming

Mattan Erez

The University of Texas at Austin

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
– Taken from 6.189 IAP taught at MIT in 2007.

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 3

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks
– Tasks, pipelines, and data

decomposition

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 4

Outline

• Continue with Algorithm Structure
– Dependence analysis
– Algorithm structure patterns

• Supporting Structures

• Implementation Mechanisms

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 5

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 6

Dependence Analysis

• Given two tasks how to determine if they can
safely run in parallel?

2

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 7

Bernstein’s Condition

• Ri: set of memory locations read (input) by
task Ti

• Wj: set of memory locations written (output)
by task Tj

• Two tasks T1 and T2 are parallel if
– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 8

T1

a = x + y

T2

b = x + z

Example

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

φ
φ
φ

=
=
=

21

12

21

WW
WR
WR

I

I

I

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 9

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 10

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 11

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 12

Organize by Tasks?

Recursive?

Task
Parallelism

Divide and Conquer
yes

no

3

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 13

Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 14

Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

join join

join

split split

split

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 15

Organize by Data?

Recursive?

Geometric
Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

yes

no

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 16

Recursive Data

• Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to

sequentially move through the data structure

• There are however opportunities to reshape
the operations in a way that exposes
concurrency

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 17

Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7
Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s successor,

repeat until no changes
• O(log n) vs. O(n)

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 18

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

4

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 19

Organize by Flow of Data?

Regular?

Event-based
Coordination

Pipeline

• In some application domains, the flow of data
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

yes

no

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 20

Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by
the number of stages

• Works best if the time to fill and drain the pipeline is
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time

unit (e.g., frames per second)

• Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 21

Event-Based Coordination

• In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 22

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 23

Code Supporting Structures

• Loop parallelism
• Master/Worker
• Fork/Join
• SPMD
• Map/Reduce

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 24

Loop Parallelism Pattern

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units
– Especially good when code cannot be massively restructured

#pragma omp parallel for
for(i = 0; i < 12; i++)

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

5

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 25

Master/Worker Pattern

A
B D E

Independent Tasks

C

A B
C

E
D

worker worker worker worker

master

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 26

Master/Worker Pattern

• Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
– Embarrassingly parallel problems

• Main challenge in determining when the entire
problem is complete

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 27

Fork/Join Pattern

• Tasks are created dynamically
– Tasks can create more tasks

• Manages tasks according to their relationship

• Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 28

SPMD Pattern

• Single Program Multiple Data: create a single
source-code image that runs on each processor
– Initialize
– Obtain a unique identifier
– Run the same program each processor

• Identifier and input data differentiate behavior
– Distribute data
– Finalize

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 29

SPMD Challenges

• Split data correctly

• Correctly combine the results

• Achieve an even distribution of the work

• For programs that need dynamic load balancing,
an alternative pattern is more suitable

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 30

Map/Reduce Pattern

• Two phases in the program
• Map phase applies a single function to all

data
– Each result is a tuple of value and tag

• Reduce phase combines the results
– The values of elements with the same tag are

combined to a single value per tag -- reduction
– Semantics of combining function are associative
– Can be done in parallel
– Can be pipelined with map

• Google uses this for all their parallel programs

6

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 31

Communication and Synchronization Patterns

• Communication
– Point-to-point
– Broadcast
– Reduction
– Multicast

• Synchronization
– Locks (mutual exclusion)
– Monitors (events)
– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)
– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 32

Algorithm Structure and Organization
(from the Book)

Fork/
Join

Master/
Worker

Loop
Parallelism

SPMD

Event-based
coordination

PipelineRecursive
data

Geometric
decomposition

Divide
and
conquer

Task
parallelism

• Patterns can be hierarchically composed so
that a program uses more than one pattern

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 33

Algorithm Structure and Organization
(my view)

Fork/
Join

Master/
Worker

SWP to hide
comm.

when no
dependencies

Loop
Parallelism

SPMD

Event-based
coordination

PipelineRecursive
data

Geometric
decomposition

Divide
and
conquer

Task
parallelism

• Patterns can be hierarchically composed so
that a program uses more than one pattern

Dr. Rodric Rabbah, IBM
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 8

(c) Rodric Rabbah, 2007 and Mattan Erez, 2008 34

Algorithm Structure and Organization
(my view)

Fork/
Join

Master/
Worker

SWP to hide
comm.

when no
dependencies

Loop
Parallelism

SPMD

Event-based
coordination

PipelineRecursive
data

Geometric
decomposition

Divide
and
conquer

Task
parallelism

• Patterns can be hierarchically composed so
that a program uses more than one pattern

