
1

EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 9 – Example of Using Parallel Constructs

Mattan Erez

The University of Texas at Austin

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 2

Outline
• Finish discussion of patterns
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 3

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used to

write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 4

ILP, DLP, and TLP in SW and HW
• ILP

– OOO
– Dataflow
– VLIW

• DLP
– SIMD
– Vector

• TLP
– Essentially multiple cores with

multiple sequencers

• ILP
– Within straight-line code

• DLP
– Parallel loops
– Tasks operating on disjoint

data
• No dependencies within

parallelism phase

• TLP
– All of DLP +
– Producer-consumer chains

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 5

ILP, DLP, and TLP and Supporting Patterns

naturalnaturalnaturalnaturalnaturalnaturalTLP

local- conditionsdifficultafter enough
branchesnatural

after
enough
divisions

natural or
local-
conditions

DLP

inlineinline /
unrollinlineunrollinlineinline / unrollILP

Event-based
coordination

PipelineRecursive
data

Geometric
decomposition

Divide and
conquer

Task
parallelism

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 6

ILP, DLP, and TLP and Supporting Patterns

naturalnaturalnaturalnaturalnaturalnaturalTLP

local- conditionsdifficultafter enough
branchesnatural

after
enough
divisions

natural or
local-
conditions

DLP

inlineinline /
unrollinlineunrollinlineinline / unrollILP

Event-based
coordination

PipelineRecursive
data

Geometric
decomposition

Divide and
conquer

Task
parallelism

2

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 7

ILP, DLP, and TLP and Implementation Patterns

naturalnaturalnaturalnaturalTLP

after enough divisions +
local-conditionallocal-conditionalnatural

natural or
local-
conditional

DLP

inlineinlineunrollpipelineILP

Fork/JoinMater/WorkerLoop
ParallelismSPMD

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 8

ILP, DLP, and TLP and Implementation Patterns

naturalnaturalnaturalnaturalTLP

after enough divisions +
local-conditionallocal-conditionalnatural

natural or
local-
conditional

DLP

inlineinlineunrollpipelineILP

Fork/JoinMater/WorkerLoop
ParallelismSPMD

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 9

Outline
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 10

Credits
• Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei

Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

• Reduction slides courtesy Dr. Rodric Rabbah (IBM)
– Taken from 6.189 IAP taught at MIT in 2007

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 11

GROMACS

• Highly optimized molecular-dynamics package
– Popular code
– Specifically tuned for protein folding
– Hand optimized loops for SSE3 (and other extensions)

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 12

Gromacs Components

– Non-bonded forces
• Water-water with cutoff
• Protein-protein tabulated
• Water-water tabulated
• Protein-water tabulated

– Bonded forces
• Angles
• Dihedrals

– Boundary conditions
– Verlet integrator
– Constraints

• SHAKE
• SETTLE

– Other
• Temperature–pressure coupling
• Virial calculation

3

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 13

GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions
– Coulomb
– Lennard-Jones
– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 14

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams 9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 15

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 16

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 17

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 18

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each
molecule
– Neighbor-lists have variable

number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

4

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 19

Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative operator
⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example:
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last
input element is not
included in the result

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 20

Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:

• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Building data structures
• Etc.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 21

Building Data Structures with Scans

• Fun on the board

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 22

Scan on a serial CPU

• Just add each element to the sum of the elements before it
• Trivial, but sequential
• Exactly n adds: optimal

void scan(float* scanned, float* input, int length)
{
scanned[0] = 0;
for(int i = 1; i < length; ++i)
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 23

A First-Attempt Parallel Scan Algorithm

1. Read input to
shared memory. Set
first element to zero
and shift others right
by one.

Each UE reads one value from the input
array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 61407130

In 361407130

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 24

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

• Active UEs: stride to n-1 (n-stride UEs)
• UE j adds elements j and j-stride from T0 and writes
result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 75478430

Stride 1

T0 61407130

In 361407130

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

5

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 25

A First-Attempt Parallel Scan Algorithm

T1 75478430

T0 1112121111430

Stride 1

Stride 2

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 61407130

In 361407130

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 26

A First-Attempt Parallel Scan Algorithm

T1 2216151111430

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #3
Stride = 4

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 27

A First-Attempt Parallel Scan Algorithm

Out 2216151111430

1. Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2. Iterate log(n)
times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

3. Write output.

T1 2216151111430

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 28

What is wrong with our first-attempt parallel scan?

• Work Efficient:
– A parallel algorithm is work efficient if it does the same amount of work

as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 29

Improving Efficiency
• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it to and

from the root
– Tree is not an actual data structure, but a concept to determine

what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 30

Build the Sum Tree

T 36140713

Assume array is already in shared memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

6

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 31

Build the Sum Tree

T 36140713

T 96547743

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 32

Build the Sum Tree

T 36140713

T 96547743

T 1465411743

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 33

Build the Sum Tree

T 36140713

T 96547743

T 1465411743

T 2565411743

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 34

Zero the Last Element

T 065411743

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 35

Build Scan From Partial Sums

T 065411743

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 36

Build Scan From Partial Sums

T 116540743

T 065411743

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 UE

Stride 4

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

7

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 37

Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 UEs

Stride 4

Stride 2

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 38

Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

T 2216151111430

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 UEs

Stride 2

Stride 4

Stride 1

Each corresponds
to a single UE.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign 9/25/2008

EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
(c) Mattan Erez, 2008 39

Reductions

• Many to one
• Many to many

– Simply multiple reductions
• Also known as scatter-add and subset of parallel prefix sums

• Use
– Histograms
– Superposition

• Physical properties

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 40

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction operator is
not associative

• Usually followed by a
broadcast of result

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 41

Tree-based Reduction

• n steps for 2n units of execution
• When reduction operator is associative
• Especially attractive when only one task needs result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 42

Recursive-doubling Reduction

• n steps for 2n units of execution
• If all units of execution need the result of the reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

8

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 43

Recursive-doubling Reduction

• Better than tree-based approach with broadcast
– Each units of execution has a copy of the reduced value at the

end of n steps
– In tree-based approach with broadcast

• Reduction takes n steps
• Broadcast cannot begin until reduction is complete
• Broadcast can take n steps (architecture dependent)

9/25/2008
EE382V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10

(c) Mattan Erez, 2008 44

Other Examples
• More patterns

– Reductions
– Scans

• Building a data structure

• More examples
– Search
– Sort
– FFT as divide and conquer
– Structured meshes and grids
– Sparse algebra
– Unstructured meshes and graphs
– Trees
– Collections

• Particles
• Rays

