

	Task parallelism	Divide and conquer	Geometric decomposition	Recursive data	Pipeline	Event-based coordination
ILP					·	
DLP						
TLP						

	Task parallelism	Divide and conquer	Geometric decomposition	Recursive data	Pipeline	Event-based coordination
ILP	inline / unroll	inline	unroll	inline	inline / unroll	inline
DLP	natural or local- conditions	after enough divisions	natural	after enough branches	difficult	local- condition
TLP	natural	natural	natural	natural	natural	natural

	SPMD	Loop Parallelism	Mater/Worker	Fork/Join
ILP				
DLP				
TLP				

	SPMD	Loop Parallelism	Mater/Worker	Fork/Join
ILP	pipeline	unroll	inline	inline
DLP	natural or local- conditional	natural	local-conditional	after enough divisions + local-conditional
TLP	natural	natural	natural	natural

Sec. Co	Outline
• M	Adecular dynamics example Problem description Steps to solution • Build data structures: Compute forces: Integrate for new: positions: Check global solution: Repeat = Finding concurrency • Scans: data decomposition; reductions = Algorithm structure = Supporting structures
9/25/2008	EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10 (c) Mattan Erez, 2008 9

58	Gromacs Components	
	Non-bonded forces • Water-water with cutoff • Protein-protein tabulated • Water-water tabulated Bonded forces • Angles • Dihedrals Boundary conditions Verlet integrator Constraints • SHAKE • SETLE Other • Temperature-pressure coupling • Virial calculation	
0/05/0000	EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10	10

Improving Efficiency

- A common parallel algorithm pattern:
 Balanced Trees
 - Build a balanced binary tree on the input data and sweep it to and from the root
 - Tree is not an actual data structure, but a concept to determine what each UE does at each step

For scan:

- Traverse down from leaves to root building partial sums at internal nodes in the tree
 Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

 Bavid KirkNVIDIA and Wen-mei W. Hav, 2007
 E2 4984L, livinestry of Illinois,
 EE 1822V: Prinicples in Computer Architecture, Fall 2008 -- Lecture 10
 ECE 4984L, livinest of Inc. 2009

	1 3	4	7 11	4	5 6	0		
_								

de 4	3	4	/	<u> </u>	4	5	6 (Iteration 1
T	3	4	7		4	5	6 1	1	1 UE
									Each correspo
									to a single OE.

• Many	to one
- Mon	
 iviany 	tomany
– Simj	oly multiple reductions
• /	Also known as scatter-add and subset of parallel prefix sums
 Use 	
– Histo	ograms
- Sup	erposition
• [Physical properties
	3
	EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10

