EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008

Lecture 9 — Example of Using Parallel Constructs

Mattan Erez

The University of Texas at Austin

ILP, DLP, and TLP in SW and HW

- ILP - ILP
- 000 — Within straight-line code
- Dataflow
- Vlw
- DLP = DLP
- SIMD - Parallel loops
_ Vector - Lzstlgoperatmg on disjoint
= No dependencies within
parallelism phase
- TLP - TLP

- Allof DLP +
- Producer-consumer chains

— Essentially multiple cores with
multiple sequencers

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10
9/25/2008 (c) Mattan Erez 2008

Outline

]

Finish discussion of patterns

<« Molecular dynamics example
- Problem description

— Steps to solution

= Build data structures; Compute forces; Integrate for new; positions; Check
global solution; Repeat

- Finding concurrency

= Scans; data decomposition; reductions
— Algorithm structure
- Supporting structures

EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10

Patterns for Parallelizing Programs

4 Design Spaces

Software Construction

* Implementation
Mechanisms

- Low level mechanisms used to
write parallel programs

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill

EEas2v: Pri (PR cture, Fail 2008 - Lecture 10

o/25/2008) mattan ez, 2008 o/25/2008 ttan Erez 2006
ILP, DLP, and TLP and Supporting Patterns ILP, DLP, and TLP and Supporting Patterns
Task Divide and ‘Geometric Recursive Pipeline Event-based Task Divide and ‘Geometric Recursive Pipeline Event-based
parallelism conquer decomposition data coordination parallelism conquer decomposition data coordination
ILP ILP inline / unroll inline unroll inline jhine g
unroll
natural or after
DLP DLP local- enough alEieneL local- conditions
conditions divisions
TLP
EE382V: Prinicples in Computer Archieciure, Fall 2008 - Leciure 10 EE362V: Prinicples in Computer Archieciure, Fall 2008 - Lecture 10
o/25/2008 &) mattan ez, 2008 o/25/2008 &) mattan Eez, 2008

ILP, DLP, and TLP and Implementation Patterns

Loop Mater/Worker Fork/Join
SPMD Parallelism
ILP
DLP
TLP
EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10
9/25/2008 c) Mattan Erez, 2008 7
Credits

« Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei
Hwu (UIUC)

- Taken from EE493-Al taught at UIUC in Sprig 2007

= Reduction slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 IAP taught at MIT in 2007

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

9/25/2008) Mattan Erez 2008 ke |

ILP, DLP, and TLP and Implementation Patterns Outline
= Molecular dynamics example
Loop Mater/Worker Fork/Join - Problem description
SPMD Parallelism - Steps to solution
= Build data structures; Compute forces; Integrate for new; positions; Check
global solution; Repeat
ILP unroll - Finding concurrency
= Scans; data decomposition; reductions
— Algorithm structure
natural or .
DLP local- - Supporting structures
conditional
TP
EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10 EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10
9/25/2008 (©) Mattan Erez, 2008 8 9/25/2008 (©) Mattan Erez, 2008
GROMACS

= Highly optimized molecular-dynamics package
— Popular code
- Specifically tuned for protein folding
- Hand optimized loops for SSE3 (and other extensions)

EE382V: Prinicples in Computer Architecture, Fall 2008 -~ Lecture 10

9/25/2008 (¢) Mattan Erez 2008 11

Gromacs Components

Non-bonded forces
= Water-water with cutoff
= Protein-protein tabulated
= Water-water tabulated
= Protein-water tabulated
- Bonded forces
= Angles
= Dihedrals
Boundary conditions
Verlet integrator
- Constraints
= SHAKE
= SETTLE
- Other
= Temperature-pressure coupling
= Virial calculation

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

9/25/2008 (¢) Mattan Erez 2008 12

b
WGROMACS Water-Water Force Calculation

= Non-bonded long-range interactions
- Coulomb
- Lennard-Jones
— 234 operations per interaction

Lennard-Jones

. . 1 1 g
Vb = i | gmg oy, T (r.f_'f 1.6’)]

1 g

Water-water interaction ~75% of GROMACS run-time

ROMACS Uses Non-Trivial Neighbor-List
Algorithm

« Full non-bonded force calculation is o(n?)
= GROMACS approximates with a cutoff

- Molecules located more than r, apart
do not interact

- O(nrd)
al a2«
& | B8 &
val (OS]
2 S a0l /ot
central neighbor R ,,»‘ é ¥
molecules molecules

Efficient algorithm leads to variable rate input streams

ROMACS Uses Non-Trivial Neighbor-List
Algorithm

= Full non-bonded force calculation is o(n?)
= GROMACS approximates with a cutoff

- Molecules located more than r_ apart
do notinteract

- O(nrd) Aa)‘
& | o (& [
:: Bl %Pl
qldpal «
L K
Le'd

Efficient algorithm leads to variable rate input streams

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

= Full non-bonded force calculation is o(n?)
= GROMACS approximates with a cutoff

- Molecules located more than r_ apart
do notinteract

- o(r?)
al a ®| o
& | o (& [
:: Bl %9 [d
g |dpal «

o T G
central neighbor 2 -0 é L4
molecules molecules

Efficient algorithm leads to variable rate input streams

ROMACS Uses Non-Trivial Neighbor-List
Algorithm

« Full non-bonded force calculation is o(n?)
= GROMACS approximates with a cutoff

- Molecules located more than r, apart
do not interact

- O(nrd)
a }_}D’ &
& | B8 (&
3 Y B
2 2ﬂ %
central IE:‘;‘]elghbor R (,9»3 é ¥
molecules molecules

Efficient algorithm leads to variable rate input streams

#GROMACS Uses Non-Trivial Neighbor-List
Algorithm

« Full non-bonded force calculation is o(n?)

= GROMACS approximates with a cutoff

- Molecules located more than r, apart
do not interact

- O(nre?)
. . N b
= Separate neighbor-list foreach| &| & <
molecule R
- Neighbor-lists have variable ‘0

Jo
number of elements K
- g
<
-

[TT11 o
central I neighbor —
molecules molecules

Efficient algorithm leads to variable rate input streams

Parallel Prefix Sum (Scan)

= Definition:
The all-prefix-sums operation takes a binary associative operator
@ with identity |, and an array of n elements
[0, @y, -y @yl
and returns the ordered set
Lag (@a®a), .. (®a,®..8a,,)

< Example:
if ® is addition, then scan on the set

[31704163]
returns the set
[0341111151622

o Kolp and (From Blelloch, 1990, “ Prefix
ECE 498AL, Universy o linos, EE382V/: Prinicples in Computer Fall Their i)|
) Mattan Erez, 2008 i

Scan on a serial CPU

void scan(float* scanned, float* input, int length)

scanned[0] = O;
for(int i = 1;

i < length; ++i)
scanned[i] = input[i-1] + scanned[i-1];

3
= Just add each element to the sum of the elements before it
= Trivial, but sequential
= Exactly n adds: optimal

F———
coa oW B 07 | 3eav: prnicplesin Computer Archiecture, Fall 2008 - Lecture 10
Mattan Erez, 2008 22

Applications of Scan

= Scanis a simple and useful parallel building block

- Convert recurrences from sequential :
for(g=1;j<n;j++)
out[j] = out[j-1] + F(G):

- into parallel:

forall(G) { temp[i] = f(G) };

scan(out, temp);
= Useful for many parallel algorithms:

+ radix sort + Polynomial evaluation
* quicksort + Solving recurrences

+ String comparison + Tree operations

+ Lexical analysis * Building data structures

+ Stream compaction + Etc.

© David KitdNVIDIA and
Werkmel W. Huu, 2007
ECE 498AL, Universiy of lnois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

Urbana-Champaign (c) Mattan Erez, 2008 20

Building Data Structures with Scans

= Fun on the board

EE382V: Prinicples in Computer Architecture, Fall 2008 — Lecture 10

9/25/2008 (c) Mattan Erez, 2008 21

A First-Attempt Parallel Scan Algorithm

mEElrlollalela] * furmer, o,

first ele_ment to zero

|T0‘ 0 ‘ 3 ‘ 1 ‘ 7 ‘ 0 ‘ 4 ‘ 1 ‘ 6 | zndshlftothersrlght
y one.

Each UE reads one value from the input
array in device memory into shared memory array TO.
UE 0 writes 0 into shared memory array.

cce Mo 07 ey pnioplesin Computer Architecture, Fall 2008 - Lacture 10
(c) Mattan Erez, 2008 23

A First-Attempt Parallel Scan Algorithm

Olln‘s‘1‘7‘0‘4‘1‘6‘3|1_(previousslide)

|TO‘O‘3‘1‘7‘0‘4‘1‘6|2.Iteratelog(n)

times: UEs stride to n:
Stride 1 —~E > >0

Add pairs of elements

stride elements apart.
|T1‘0‘3‘4‘8‘7‘4‘5‘7| Double stride at each
iteration. (note must
double buffer shared
mem arrays)

« Active UEs: stride to n-1 (n-stride UEs)
« UE j adds elements j and j-stride from TO and writes
result into shared memory buffer T1 (ping-pong)

© David KirdNVIDIA and

‘Wen-mei W. Huu, 2007
£CE 498AL, Universiy of linois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

(c) Mattan Erez 2008 24

A First-Attempt Parallel Scan Algorithm

0 [n]s]1]7]o0]al1]6]3 l.gegdmpmfmm
evice memory to
shared memory. Set

olofafasl7lofalsle] Ioetomemran

Stride 1 I\’.\).\).\.\).\.\). by one.

[ftfolzTalsl7]4]5]7] 2 teratelogn

> times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Stride 2
[toTo3]alufuu]2]i2]u1]

© David Kir an
Wen-mei W. Hwy, 2007
ECE 495aL Universiy of Ninois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

c) Mattan Erez, 2008 25

A First-Attempt Parallel Scan Algorithm

olnl3[sl7olafslela]™ femimaion
\ \ s_hared memory. Set
[ofofalaf7zlolalale] Crsioneson
Stride 1 I\>0 by one.

[1Jol3Tals[7[a]5]7]2 reraelogm
. 3 times: UEs stride to n:
Stride 2 Add pairs of elements
| T0 ‘ 0 ‘ 3 ‘ 4 ‘ 11 ‘ 11 ‘ 12 ‘ 12 ‘ 11' stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

[iJo3]aluafuu]i5]16]22]

Iteration #3
Stride = 4

© David KikINVIDIA and
‘Wen-mei W. Huu, 2007
ECE 498AL, University o linois,

EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10

(c) Mattan Erez, 2008 26

A First-Attempt Parallel Scan Algorithm

olm[3[1]7]ofal1]e]3]"

NN
[rofofslaf7]ofaf1]6]
Stride 1
[i]ofsTale]7]a]s5]7]=
Stride 2 E
[foTol3Tau[u]uo]a2 1]

[iJo3Taluafuu]i5]16]22]
111 |
l[ouf o[3TaT1a]1a]15]16]22]

© David KikINVIDIA and
‘Wen-mei W. Huu, 2007

(c) Mattan Erez, 2008

£CE 496AL, Universiyof linois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

Iterate log(n)

times: UEs stride to n:
Add pairs of elements
stride elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Write output.

'.ll
What is wrong with our first-attempt parallel scan?

= Work Efficient:

— A parallel algorithm is work efficient if it does the same amount of work
as an optimal sequential complexity

= Scan executes log(n) parallel iterations
- The steps do n-1, n-2, n-4,... n/2 adds each
- Total adds: n * (log(n) - 1) + 1 & O(n*log(n)) work

= This scan algorithm is NOT work efficient
- Sequential scan algorithm does n adds
- Afactor of log(n) hurts: 20x for 10"6 elements!

F———
coa oW B 07 | 3eav: prnicplesin Computer Archiecture, Fall 2008 - Lecture 10
Mattan Erez, 2008 28

Improving Efficiency

= A common parallel algorithm pattern:
Balanced Trees
— Build a balanced binary tree on the input data and sweep it to and
from the root

- Treeis not an actual data structure, but a concept to determine
what each UE does at each step

= Forscan:
- Traverse down from leaves to root building partial sums at internal
nodes in the tree
= Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

© David KirdNVIDIA and
‘Wen-mei W. Huu, 2007 o 0
ECE 498AL, Universiy of linois, EE382V: Prinicples in Computer Archit ure Fall 2008 - Lecture 10

(c) Mattan Ere:

Build the Sum Tree

[rlsfaf7fofaf1]6]3]

‘ Assume array is already in shared memory ‘

© David KirdNVIDIA and

‘Wen-mei W. Huu, 2007
ECE 498AL, Universiy of linois, EE382V: Prinicples in Computer Arch
(o) Mattan Erez,

ure, Fall 2008 -~ Lecture 10
08

Build the Sum Tree

[rlsfsf7ofals]e[3]
Stride 1 \é \3 \§ \é Iteration 1, n/2 UEs

[rlslalz][7]afs5][6]0]

Iterate log(n) times. Each UE adds value stride elements away to its own value ‘

© David KItNVIDIA and
Wen-mei W. Hwy, 2007
ECE 495aL Universiy of Ninois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

) Mattan Erez, 2008

""-,'f-"
Build the Sum Tree

[1[s[s1]7]ofa]1]6]3]
Stride 1 \é \? \? \é
Lrlsfalzlzfalslelo]
Stride 2 \—»t \é Iteration 2, n/4 UEs
[t Ts3]al7]ulals]e]14]

'.ll
Zero the Last Element

s

Build the Sum Tree

[1]sf1[7]0faf1]6]3]
Stride 1 \é \? \? \é
Lrlsfalzlzfalslelo]
Stride 2 \93 \é
[vT3]al7]ula]s]e]14]

[rlsfafz[ufafs][6]o]

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

TR AOT e prncples in Computer Architecture, Fll 2008 Lecture 10
(c) Mattan Erez, 2008

Stride 4 7 Iteration log(n), 1 UE
ach @ corresponds |T‘3‘4‘7‘11‘4‘5‘6‘25| ach @ correspol
to asingle UE. i fo a single UE. i)

Iterate log(n) times. Each UE adds value stride elements away to its own value ‘ Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering
© David KirkNVIDIA and © David KirkNVIDIA and

ECE HoBAL Unverany o nois, EE382V: Prinicples in Computer Architecture, Fall 2008 — Lecture 10 ECE HomAL Unverany o inois, EE382V: Prinicples in Computer Architecture, Fall 2008 — Lecture 10
Mattan Erez, 2008 32 Mattan Erez, 2008 ks |
-
Build Scan From Partial Sums Build Scan From Partial Sums
[rlsfafz[ufafs[6]o] [rlsfafz[ufafs][6]o]
4 .
Stride 4 _ =0 Iteration 1
S ¥ 1UE
[r[s[af7rfofals5[efu]
corres;
a single UE.

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.
© David KirdNVIDIA and © David KirdNVIDIA and

EcE somL Unveraty o wincis, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10 EcE somL Unveraty o incis, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10
; . (c) Mattan Erez, 2008 35 L i (c) Mattan Erez, 2008 Ea |

]

Build Scan From Partial Sums

[TT3]4a]7nafa]s]s
Stride 4

Iteration 2
2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

© David KItNVIDIA and
Wen-mei W. Hwy, 2007
ECE 495aL Universiy of Ninois, EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10

c) Mattan Erez, 2008

Build Scan From Partial Sums

[[s[af7[ulals][e]o]
Stride 4 \.—_,

-~ ¥
[F1slel7lolaTl5 e 1]
Stride 2 //‘ &‘

¢ v ¢ v
[TT3]o]7]afafu1]e]u6]

Stidel S Sw® Sw® Sw@ lterationlog(n)
Y ¥ v n/2 UEs

vy
[1Tof3]aJu]11]15]16]22]

HomsingletBanning

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!
© David KIkINVIDIA and

et W, K, 2007
ECE HoBAL Unverany o nois, EE382V: Prinicples in Computer Architecture, Fall 2008 — Lecture 10

Serial Reduction

Reductions

= Many to one

= Many to many
- Simply multiple reductions
= Also known as scatter-add and subset of parallel prefix sums
= Use
- Histograms
- Superposition
= Physical properties

EE382V: Prinicples in Computer Architecture, Fall 2008 — Lecture 10

=

not associative

= Usually followed by a
broadcast of result

EE382V: Prinicples in Computer Architecture, Fall 2008 - Lecture 10
9/25/2008 (c) Mattan Erez, 2008

= When reduction operator is

(©) Mattan Erez, 2008 3 9/25/2008 (©) Matan Erez, 2008 i |
=5
Tree-based Reduction Recursive-doubling Reduction
= n steps for 2" units of execution : .
P . . L = n steps for 2" units of execution
= When reduction operator is associative .] .
:) = [f all units of execution need the result of the reduction
= Especially attractive when only one task needs result
EE382V: Prinioples in Computer Architecture, Fall 2008 - Lecture 10 EE382V: Prinioples in Computer Architecture, Fal 2008 - Lecture 10

9125/2008 () Mattan Erez, 2008 a1 9125/2008 () Mattan Erez, 2008 |

]

Recursive-doubling Reduction

= Better than tree-based approach with broadcast
- Each units of execution has a copy of the reduced value at the
end of n steps
- In tree-based approach with broadcast
= Reduction takes n steps
= Broadcast cannot begin until reduction is complete
= Broadcast can take n steps (architecture dependent)

EE382V: Prinicples in Computer Architecture, Fall 2008 ~ Lecture 10

9/25/2008 c) Mattan Erez, 2008 a3

Other Examples

= More patterns

Reductions
Scans
= Building a data structure

= More examples

9/25/2008

Search
Sort
FFT as divide and conquer
Structured meshes and grids
Sparse algebra
Unstructured meshes and graphs
Trees
Collections

= Particles

= Rays

EE382V: Prinicples in Computer Architecture, Fall 2008 Lecture 10
(c) Mattan Erez, 2008

44

