Outline

- Finish discussion of patterns
- Molecular dynamics example
 - Problem description
 - Steps to solution
 - Build data structures; Compute forces; Integrate for new position; Check global solution; Repeat
 - Finding concurrency
 - Data and data decomposition; reductions
 - Algorithm structure
 - Supporting structures

Patterns for Parallelizing Programs

4 Design Spaces

- Algorithm Expression
 - Finding Concurrency
 - Expose concurrent tasks
 - Algorithm Structure
 - Map tasks to processes to exploit parallel architecture
 - Supporting Structures
 - Code and data structuring patterns
 - Implementation Mechanisms
 - Low level mechanisms used to write parallel programs

ILP, DLP, and TLP in SW and HW

- ILP
 - OOO
 - Data Flow
 - VLIW
- DLP
 - SIMD
 - Vector
- TLP
 - Essentially multiple cores with multiple sequencers

ILP, DLP, and TLP and Supporting Patterns

<table>
<thead>
<tr>
<th>Task</th>
<th>Order and Parallel Composition</th>
<th>Dynamic Data Decomposition</th>
<th>Data Reduction</th>
<th>Pipelining</th>
<th>Load Balancing Schedules</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ILP, DLP, and TLP and Supporting Patterns

<table>
<thead>
<tr>
<th>Task</th>
<th>Order</th>
<th>Pipeline</th>
<th>Dynamic Scheduling</th>
<th>Dynamic Composition</th>
<th>Data Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILP</td>
<td>small</td>
<td>small</td>
<td>narrow</td>
<td>small</td>
<td>small</td>
</tr>
<tr>
<td>DLP</td>
<td>narrow</td>
<td>small</td>
<td>narrow</td>
<td>narrow</td>
<td>small</td>
</tr>
<tr>
<td>TLP</td>
<td>natural</td>
<td>natural</td>
<td>narrow</td>
<td>narrow</td>
<td>natural</td>
</tr>
</tbody>
</table>
Outline

• Molecular dynamics example
 - Problem description
 - Steps to solution
 • Build data structures; compute forces; integrate for new positions; check global solution; repeat
 - Finding concurrency
 • Scans; data decomposition; reductions
 - Algorithm structure
 - Supporting structures

Outline

• Molecular dynamics example
 - Problem description
 - Steps to solution
 • Build data structures; compute forces; integrate for new positions; check global solution; repeat
 - Finding concurrency
 • Scans; data decomposition; reductions
 - Algorithm structure
 - Supporting structures

Credits

• Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - Taken from ES493-AI taught at UIUC in Spring 2007
• Reduction slides courtesy Dr. Rodric Rabbah (IBM)
 - Taken from 6.189 IAP taught at MIT in 2007

GROMACS

• Highly optimized molecular-dynamics package
 - Popular code
 - Specifically tuned for protein folding
 - Hand optimized loops for SSE3 (and other extensions)

Gromacs Components

• Non-bonded forces
 - Water-water with cutoff
 - Protein-protein tabulated
 - Water-water tabulated
 - Protein-water tabulated
• Bonded forces
 - Angles
 - Dihedrals
 - Boundary conditions
 - Verlet integrator
 - Constraints
 • SHAKE
 • SPC
 - Other
 • Temperature-pressure coupling
 • Virial calculation
GROMACS Water-Water Force Calculation

- Non-bonded long-range interactions
 - Coulomb
 - Lennard-Jones
 - 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

GROMACS Uses Non-Trivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathcal{O}(n^2)$
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - $\mathcal{O}(n r_c^3)$

Efficient algorithm leads to variable rate input streams
Parallel Prefix Sum (Scan)

• Definition:
The all-prefix-sums operation takes a binary associative operator ⊕ with identity I, and an array of n elements \([a_0, a_1, ..., a_{n-1}]\) and returns the ordered set \([I, a_0, (a_0 ⊕ a_1), ..., (a_0 ⊕ a_1 ⊕ ... ⊕ a_{n-2})]\).

• Example:
 if ⊕ is addition, then scan on the set \([3, 1, 7, 0, 4, 1, 6, 3]\) returns the set \([0, 3, 4, 11, 11, 15, 16, 22]\).

Applications of Scan

• Scan is a simple and useful parallel building block
 – Convert recurrences from sequential:
 for (j = 1; j < n; j++)
 out[j] = out[j-1] + f(j);
 – into parallel:
 for all (j) { temp[j] = f(j); }
 scan(out, temp);

• Useful for many parallel algorithms:
 – radix sort
 – quicksort
 – String comparison
 – lexical analysis
 – Building data structures
 – Etc.

Building Data Structures with Scans

Scan on a serial CPU

```c
void scan ( float* scanned, float* input, int length )
{
    scanned[0] = 0; for (int i = 1; i < length; ++i)
    {
        scanned[i] = input[i-1] + scanned[i-1];
    }
}
```

• Just add each element to the sum of the elements before it.
 • Trivial, but sequential.
 • Exactly n adds optimal.

A First-Attempt Parallel Scan Algorithm

1. Read input to shared memory. Set first element to zero and shift others right by one.

2. Iterate log(n) times: UEs stride to n:
 - Add pairs of elements stride elements apart.
 - Double stride at each iteration. (note must double buffer shared memory arrays)

Each UE reads one value from the input array in device memory into shared memory array T0. UE 0 writes 0 into shared memory array.

Iteration #1

Stride = 1

UE 0

<table>
<thead>
<tr>
<th>In</th>
<th>3</th>
<th>1</th>
<th>7</th>
<th>0</th>
<th>4</th>
<th>1</th>
<th>6</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Active UEs: stride to n-1 (n-stride UEs)

- UE i adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong).
A First-Attempt Parallel Scan Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.

2. Iterate log(n) times: UEs stride to n:
 - Add pairs of elements stride elements apart.
 - Double stride at each iteration. (note must double buffer shared mem arrays)

3. Write output.

What is wrong with our first-attempt parallel scan?

- **Work Efficient**: A parallel algorithm is work efficient if it does the same amount of work as an optimal sequential complexity.
- **Scan executes log(n) parallel iterations**
 - The steps do n, n/2, n/4, ..., n/2 adds each
 - Total adds n * (log(n) - 1) + 1 = O(n log(n)) work
- **This scan algorithm is NOT work efficient**
 - Sequential scan algorithm does n adds
 - A factor of log(n) hurts 20x for 10^6 elements!

Improving Efficiency

- A common parallel algorithm pattern: Balanced Trees
 - Build a balanced binary tree on the input data and sweep it to and from the root.
 - Tree is not an actual data structure, but a concept to determine what each UE does at each step.

 - For scan:
 - Traverse down from leaves to root building partial sums at internal nodes in the tree.
 - Root holds sum of all leaves.
 - Traverse back up the tree building the scan from the partial sums.

Build the Sum Tree

- Assume array is already in shared memory.

Build the Sum Tree

Stride 1

- Iteration 1, n/2 UEs

 \[T \begin{array}{cccccccc}
 3 & 1 & 7 & 0 & 4 & 1 & 6 & 3
 \end{array} \]

- Each corresponds to a single UE.

Stride 2

- Iteration 2, n/4 UEs

 \[T \begin{array}{cccccccc}
 3 & 4 & 7 & 1 & 1 & 1 & 4 & 5 & 6 \end{array} \]

- Each corresponds to a single UE.

Build the Sum Tree

Stride 1

- Iteration 1, n/2 UEs

 \[T \begin{array}{cccccccc}
 3 & 1 & 7 & 0 & 4 & 1 & 6 & 3
 \end{array} \]

- Each corresponds to a single UE.

Stride 2

- Iteration 2, n/4 UEs

 \[T \begin{array}{cccccccc}
 3 & 4 & 7 & 1 & 1 & 4 & 5 & 6 \end{array} \]

- Each corresponds to a single UE.

Build Scan From Partial Sums

- Iteration 1

 \[T \begin{array}{cccc}
 3 & 4 & 7 & 11
 \end{array} \]

- Iteration 2

 \[T \begin{array}{cccc}
 3 & 4 & 7 & 11
 \end{array} \]

- Iteration 3

 \[T \begin{array}{cccc}
 3 & 4 & 7 & 11
 \end{array} \]

Zero the Last Element

- We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

- Iteration 1

 \[T \begin{array}{cccc}
 3 & 4 & 7 & 11
 \end{array} \]

Build Scan From Partial Sums

- Iteration 1

 \[T \begin{array}{cccc}
 3 & 4 & 7 & 11
 \end{array} \]
Build Scan From Partial Sums

Done! We now have a completed scan that we can write out to device memory.

Serial Reduction

- When reduction operator is not associative
- Usually followed by a broadcast of result

Tree-based Reduction

- n steps for 2^n units of execution
- When reduction operator is associative
- Especially attractive when only one task needs result

Reductions

- Many to one
- Many to many
 - Simply multiple reductions
 - Also known as scatter-add and subset of parallel prefix sums
- Use
 - Histograms
 - Superposition
 - Physical properties

Recursive-doubling Reduction

- n steps for 2^n units of execution
- If all units of execution need the result of the reduction
Recursive-doubling Reduction

- Better than tree-based approach with broadcast
 - Each unit of execution has a copy of the reduced value at the end of n steps
 - In tree-based approach with broadcast:
 - Reduction takes n steps
 - Broadcast cannot begin until reduction is complete
 - Broadcast can take n steps (architecture dependent)

Other Examples

- More patterns
 - Reductions
 - Scans
 - Building a data structure
- More examples
 - Search
 - Sort
 - FFT as divide and conquer
 - Structured meshes and grids
 - Sparse algebra
 - Unstructured meshes and graphs
 - Trees
 - Collections
 - Particles
 - Rays