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Outline
• Finish discussion of patterns
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check 
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures
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Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel architecture

Software Construction
• Supporting Structures

– Code and data structuring 
patterns

• Implementation 
Mechanisms
– Low level mechanisms used to 

write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 
Mattson, Sanders, and Massingill
(2005).
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ILP, DLP, and TLP in SW and HW
• ILP

– OOO
– Dataflow
– VLIW

• DLP
– SIMD
– Vector

• TLP
– Essentially multiple cores with 

multiple sequencers

• ILP
– Within straight-line code

• DLP
– Parallel loops
– Tasks operating on disjoint 

data 
• No dependencies within 

parallelism phase

• TLP
– All of DLP +
– Producer-consumer chains
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ILP, DLP, and TLP and Supporting Patterns

naturalnaturalnaturalnaturalnaturalnaturalTLP

local- conditionsdifficultafter enough 
branchesnatural

after 
enough 
divisions

natural or
local-
conditions

DLP

inlineinline / 
unrollinlineunrollinlineinline / unrollILP

Event-based 
coordination

PipelineRecursive 
data

Geometric 
decomposition

Divide and 
conquer

Task 
parallelism
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ILP, DLP, and TLP and Implementation Patterns

naturalnaturalnaturalnaturalTLP

after enough divisions + 
local-conditionallocal-conditionalnatural

natural or
local-
conditional

DLP

inlineinlineunrollpipelineILP

Fork/JoinMater/WorkerLoop 
ParallelismSPMD
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Outline
• Molecular dynamics example

– Problem description
– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; Check 
global solution; Repeat

– Finding concurrency
• Scans; data decomposition; reductions

– Algorithm structure
– Supporting structures
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Credits
• Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei 

Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

• Reduction slides courtesy Dr. Rodric Rabbah (IBM)
– Taken from 6.189 IAP taught at MIT in 2007
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GROMACS

• Highly optimized molecular-dynamics package
– Popular code
– Specifically tuned for protein folding
– Hand optimized loops for SSE3 (and other extensions)
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Gromacs Components

– Non-bonded forces
• Water-water with cutoff
• Protein-protein tabulated
• Water-water tabulated
• Protein-water tabulated

– Bonded forces
• Angles
• Dihedrals

– Boundary conditions
– Verlet integrator
– Constraints

• SHAKE
• SETTLE

– Other
• Temperature–pressure coupling
• Virial calculation
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GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions
– Coulomb 
– Lennard-Jones
– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time
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GROMACS Uses Non-Trivial Neighbor-List 
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams 9/25/2008
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GROMACS Uses Non-Trivial Neighbor-List 
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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GROMACS Uses Non-Trivial Neighbor-List 
Algorithm

• Full non-bonded force calculation is o(n2)
• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each 
molecule
– Neighbor-lists have variable 

number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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Parallel Prefix Sum (Scan)
• Definition:

The all-prefix-sums operation takes a binary associative operator 
⊕ with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set
[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

• Example: 
if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]
returns the set 

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 
input element is not 
included in the result

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Applications of Scan
• Scan is a simple and useful parallel building block

– Convert recurrences from sequential :  
for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:
forall(j) { temp[j] = f(j) };
scan(out, temp);

• Useful for many parallel algorithms:

• radix sort
• quicksort
• String comparison
• Lexical analysis
• Stream compaction

• Polynomial evaluation
• Solving recurrences
• Tree operations
• Building data structures
• Etc.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Building Data Structures with Scans

• Fun on the board
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Scan on a serial CPU

• Just add each element to the sum of the elements before it
• Trivial, but sequential
• Exactly n adds: optimal

void scan( float* scanned, float* input, int length) 
{
scanned[0] = 0; 
for(int i = 1; i < length; ++i) 
{
scanned[i] = input[i-1] + scanned[i-1];

}
}

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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A First-Attempt Parallel Scan Algorithm

1. Read input to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

Each UE reads one value from the input
array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 61407130

In 361407130

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

• Active UEs: stride to n-1 (n-stride UEs)
• UE j adds elements j and j-stride from T0 and writes 
result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 75478430

Stride 1

T0 61407130

In 361407130

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 75478430

T0 1112121111430

Stride 1

Stride 2

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #2
Stride = 2

T0 61407130

In 361407130

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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A First-Attempt Parallel Scan Algorithm

T1 2216151111430

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

Iteration #3
Stride = 4

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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A First-Attempt Parallel Scan Algorithm

Out 2216151111430

1. Read input from 
device memory to 
shared memory. Set 
first element to zero 
and shift others right 
by one.

2. Iterate log(n) 
times: UEs stride to n: 
Add pairs of elements 
stride elements apart. 
Double stride at each 
iteration. (note must 
double buffer shared 
mem arrays) 

3. Write output. 

T1 2216151111430

In 361407130

T1 75478430

T0 1112121111430

Stride 1

Stride 2

T0 61407130

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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What is wrong with our first-attempt parallel scan?

• Work Efficient: 
– A parallel algorithm is work efficient if it does the same amount of work 

as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each
– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds
– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Improving Efficiency
• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it to and 

from the root
– Tree is not an actual data structure, but a concept to determine

what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at internal 

nodes in the tree
• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial sums

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build the Sum Tree

T 36140713

Assume array is already in shared memory

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build the Sum Tree

T 36140713

T 96547743

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build the Sum Tree

T 36140713

T 96547743

T 1465411743

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build the Sum Tree

T 36140713

T 96547743

T 1465411743

T 2565411743

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Zero the Last Element

T 065411743

We now have an array of partial sums.  Since this is an exclusive scan,
set the last element to zero.  It will propagate back to the first element.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build Scan From Partial Sums

T 065411743

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build Scan From Partial Sums

T 116540743

T 065411743

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 UE

Stride 4

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

Iterate log(n) times. Each UE adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2 
2 UEs

Stride 4

Stride 2

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign 9/25/2008
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Build Scan From Partial Sums

T 116540743

T 065411743

T 1661144703

T 2216151111430

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  
Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 
n/2 UEs

Stride 2

Stride 4

Stride 1

Each       corresponds 
to a single UE.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
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Reductions

• Many to one
• Many to many

– Simply multiple reductions
• Also known as scatter-add and subset of parallel prefix sums

• Use
– Histograms
– Superposition

• Physical properties
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Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction operator is 
not associative

• Usually followed by a 
broadcast of result
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Tree-based Reduction

• n steps for 2n units of execution
• When reduction operator is associative
• Especially attractive when only one task needs result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]
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Recursive-doubling Reduction

• n steps for 2n units of execution
• If all units of execution need the result of the reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]
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Recursive-doubling Reduction

• Better than tree-based approach with broadcast
– Each units of execution has a copy of the reduced value at the 

end of n steps
– In tree-based approach with broadcast

• Reduction takes n steps
• Broadcast cannot begin until reduction is complete
• Broadcast can take n steps (architecture dependent)
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Other Examples
• More patterns

– Reductions
– Scans

• Building a data structure

• More examples
– Search
– Sort
– FFT as divide and conquer
– Structured meshes and grids
– Sparse algebra
– Unstructured meshes and graphs
– Trees
– Collections 

• Particles
• Rays


