EE382V: Principles in Computer Architecture Parallelism and Locality Fall 2008 Lecture 9 – Example of Using Parallel Constructs

Mattan Erez

The University of Texas at Austin

- Finish discussion of patterns
- Molecular dynamics example
 - Problem description
 - Steps to solution
 - Build data structures; Compute forces; Integrate for new; positions; Check global solution; Repeat
 - Finding concurrency
 - Scans; data decomposition; reductions
 - Algorithm structure
 - Supporting structures

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

- Finding Concurrency
 - Expose concurrent tasks
- Algorithm Structure
 - Map tasks to processes to exploit parallel architecture

EE382V: Pri

Software Construction

- Supporting Structures
 - Code and data structuring patterns
- Implementation Mechanisms
 - Low level mechanisms used to write parallel programs

ILP, DLP, and TLP in SW and HW

- ILP
 - 000
 - Dataflow
 - VLIW
- DLP
 - SIMD
 - Vector
- TLP
 - Essentially multiple cores with multiple sequencers

- ILP
 - Within straight-line code
- DLP
 - Parallel loops
 - Tasks operating on disjoint data
 - No dependencies within parallelism phase
- TLP
 - All of DLP +
 - Producer-consumer chains

ILP, DLP, and TLP and Supporting Patterns

	Task parallelism	Divide and conquer	Geometric decomposition	Recursive data	Pipeline	Event-based coordination
ILP						
DLP						
TLP						

ILP, DLP, and TLP and Supporting Patterns

	Task parallelism	Divide and conquer	Geometric decomposition	Recursive data	Pipeline	Event-based coordination
ILP	inline / unroll	inline	unroll	inline	inline / unroll	inline
DLP	natural or local- conditions	after enough divisions	natural	after enough branches	difficult	local- conditions
TLP	natural	natural	natural	natural	natural	natural

ST.

ILP, DLP, and TLP and Implementation Patterns

	SPMD	Loop Parallelism	Mater/Worker	Fork/Join
ILP				
DLP				
TLP				

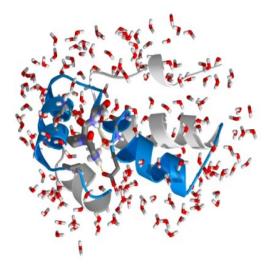
ILP, DLP, and TLP and Implementation Patterns

	SPMD	Loop Parallelism	Mater/Worker	Fork/Join
ILP	pipeline	unroll	inline	inline
DLP	natural or local- conditional	natural	local-conditional	after enough divisions + local-conditional
TLP	natural	natural	natural	natural

- Molecular dynamics example
 - Problem description
 - Steps to solution
 - Build data structures; Compute forces; Integrate for new; positions; Check global solution; Repeat
 - Finding concurrency
 - Scans; data decomposition; reductions
 - Algorithm structure
 - Supporting structures

- Parallel Scan slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
 - Taken from EE493-AI taught at UIUC in Sprig 2007
- Reduction slides courtesy Dr. Rodric Rabbah (IBM)
 - Taken from 6.189 IAP taught at MIT in 2007

- Highly optimized molecular-dynamics package
 - Popular code
 - Specifically tuned for protein folding
 - Hand optimized loops for SSE3 (and other extensions)

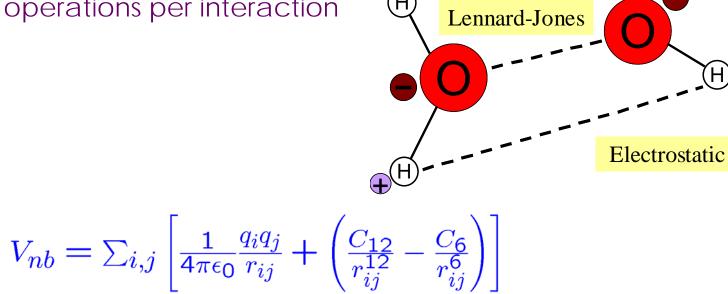


Gromacs Components

- Non-bonded forces
 - Water-water with cutoff
 - Protein-protein tabulated
 - Water-water tabulated
 - Protein-water tabulated
- Bonded forces
 - Angles
 - Dihedrals
- Boundary conditions
- Verlet integrator
- Constraints
 - SHAKE
 - SETTLE
- Other
 - Temperature-pressure coupling
 - Virial calculation

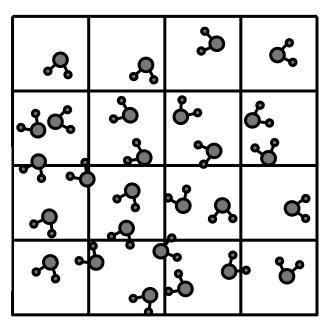
GROMACS Water-Water Force Calculation

- Non-bonded long-range interactions
 - Coulomb
 - Lennard-Jones
 - 234 operations per interaction

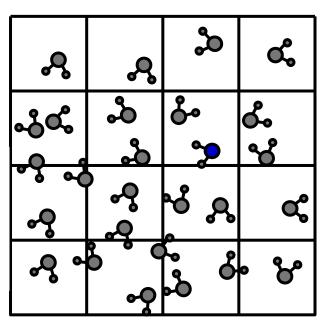


Water-water interaction ~75% of GROMACS run-time

- Full non-bonded force calculation is o(n²)
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - $O(nr_c^{3})$



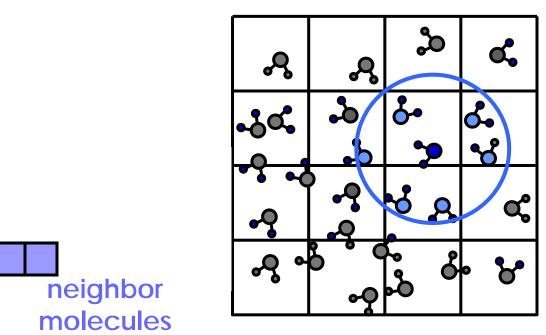
- Full non-bonded force calculation is *o(n²)*
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - $O(nr_c^{3})$



- Full non-bonded force calculation is o(n²)
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - $O(nr_c^{3})$

centra

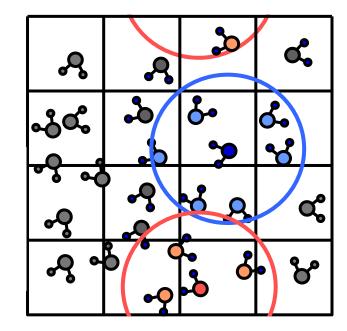
molecules



- Full non-bonded force calculation is o(n²)
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - O(nr_c³)

central

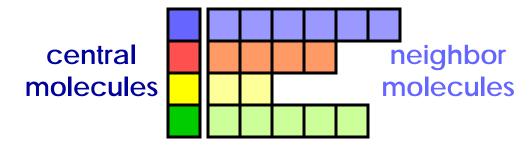
molecules

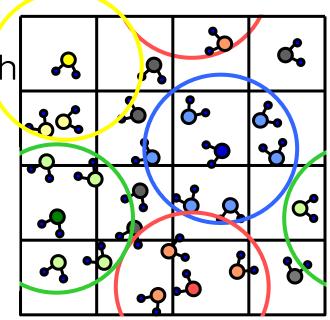


neighbor

molecules

- Full non-bonded force calculation is o(n²)
- GROMACS approximates with a cutoff
 - Molecules located more than r_c apart do not interact
 - $O(nr_c^{3})$
- Separate neighbor-list for each molecule
 - Neighbor-lists have variable number of elements





• Definition:

The all-prefix-sums operation takes a binary associative operator \oplus with identity *I*, and an array of n elements

```
[a_{0'}, a_{1'}, \dots, a_{\underline{n}}]
```

and returns the ordered set

 $[I, a_0, (a_0 \oplus a_1), \dots, (a_0 \oplus a_1 \oplus \dots \oplus a_{n-2})].$

• Example:

if \oplus is addition, then scan on the set

[3 1 7 0 4 1 6 3] returns the set [0 3 4 11 11 15 16 22] Exclusive scan: last input element is not included in the result

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

(From Blelloch, 1990, "Prefix EE382V: Prinicples in Computer Architecture, Fall 2008 Sums rand Their Applications) (c) Mattan Erez, 2008

Applications of Scan

- Scan is a simple and useful parallel building block
 - Convert recurrences from sequential : for(j=1;j<n;j++) out[j] = out[j-1] + f(j);
 - into parallel:

```
forall(j) { temp[j] = f(j) };
scan(out, temp);
```

- Useful for many parallel algorithms:
 - radix sort
 - quicksort
 - String comparison
 - Lexical analysis
 - Stream compaction

- Polynomial evaluation
- Solving recurrences
- Tree operations
- Building data structures
- Etc.

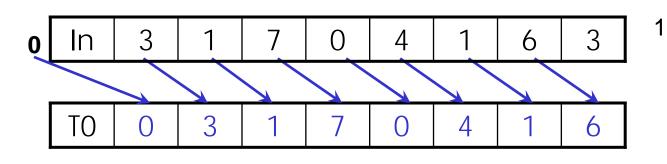
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

• Fun on the board

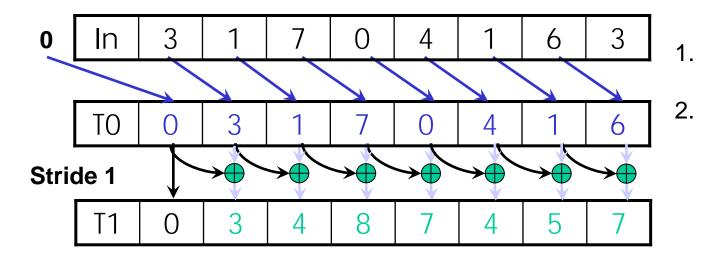
Scan on a serial CPU

```
void scan( float* scanned, float* input, int length)
{
    scanned[0] = 0;
    for(int i = 1; i < length; ++i)
    {
        scanned[i] = input[i-1] + scanned[i-1];
    }
}</pre>
```

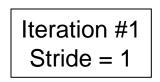
- Just add each element to the sum of the elements before it
- Trivial, but sequential
- Exactly *n* adds: optimal



Each UE reads one value from the input array in device memory into shared memory array T0. UE 0 writes 0 into shared memory array. Read input to shared memory. Set first element to zero and shift others right by one.

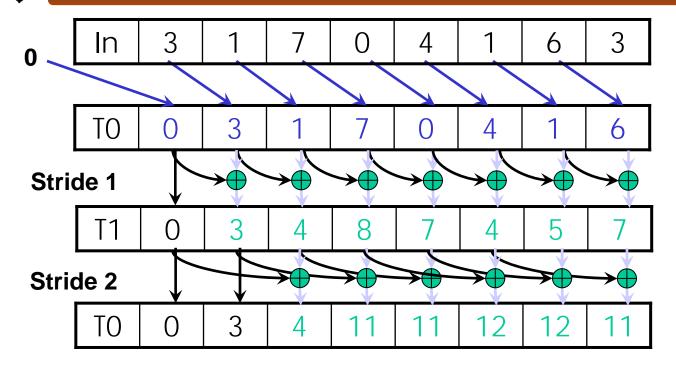


- 1. (previous slide)
 - Iterate log(n) times: UEs *stride* to *n:* Add pairs of elements s*tride* elements apart. Double *stride* at each iteration. (note must double buffer shared mem arrays)



Active UEs: stride to n-1 (n-stride UEs)
UE j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

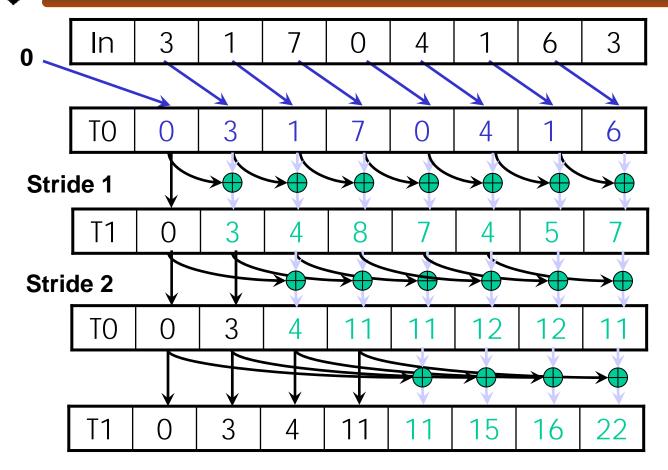
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign



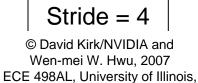
- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: UEs stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration #2 Stride = 2

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

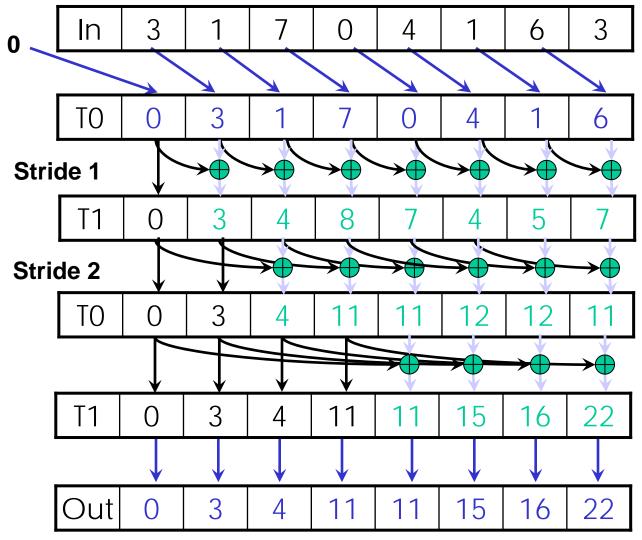


- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: UEs stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)



Iteration #3

CE 498AL, University of Illi Urbana-Champaign



- Read input from device memory to shared memory. Set first element to zero and shift others right by one.
- Iterate log(n) times: UEs stride to n: Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
- 3. Write output.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

What is wrong with our first-attempt parallel scan?

- Work Efficient:
 - A parallel algorithm is work efficient if it does the same amount of work as an optimal sequential complexity
- Scan executes log(n) parallel iterations
 - The steps do n-1, n-2, n-4,... n/2 adds each
 - Total adds: $n * (log(n) 1) + 1 \rightarrow O(n*log(n))$ work
- This scan algorithm is NOT work efficient
 - Sequential scan algorithm does *n* adds
 - A factor of log(n) hurts: 20x for 10^6 elements!

• A common parallel algorithm pattern:

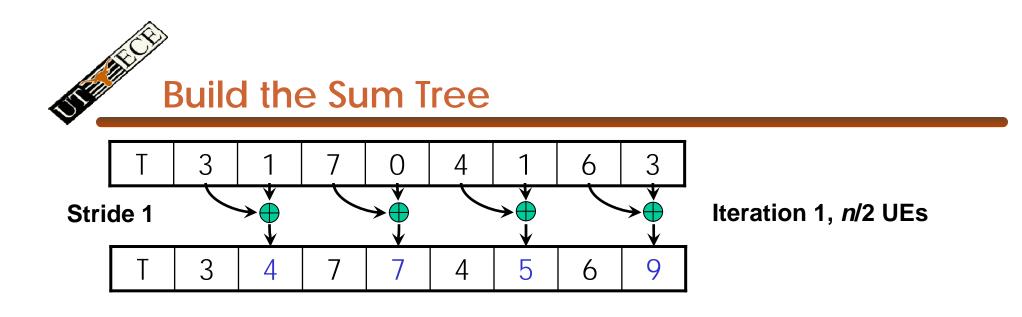
Balanced Trees

- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each UE does at each step
- For scan:
 - Traverse down from leaves to root building partial sums at internal nodes in the tree
 - Root holds sum of all leaves
 - Traverse back up the tree building the scan from the partial sums

Assume array is already in shared memory

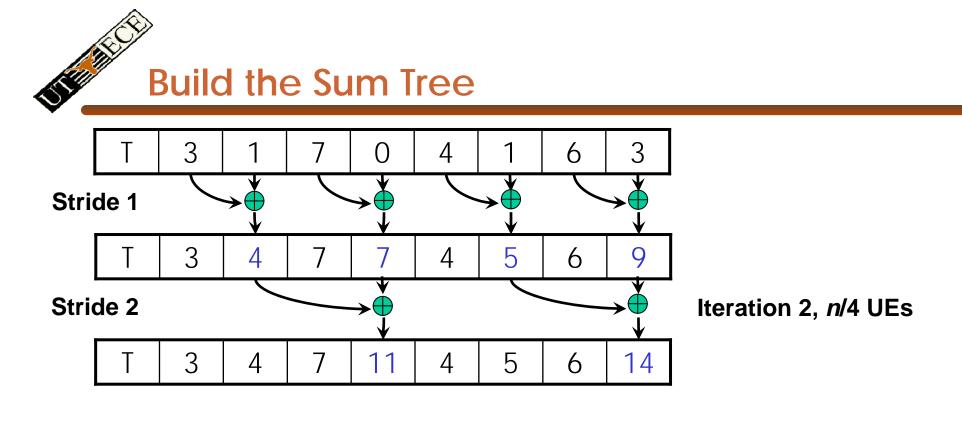
3

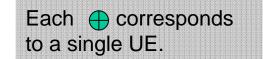
6



Iterate log(n) times. Each UE adds value *stride* elements away to its own value

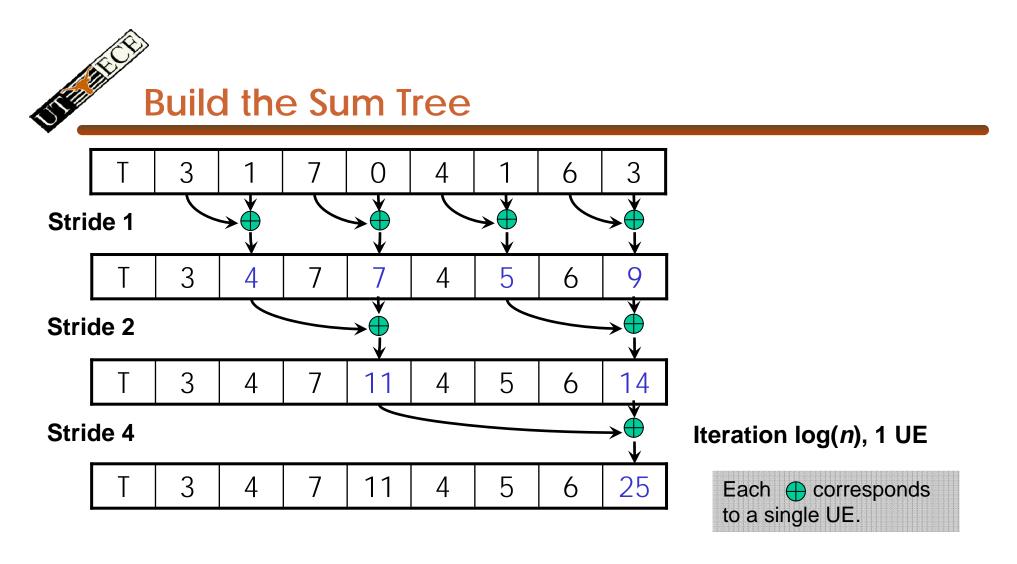
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign





Iterate log(n) times. Each UE adds value *stride* elements away to its own value

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign



Iterate log(n) times. Each UE adds value *stride* elements away to its own value.

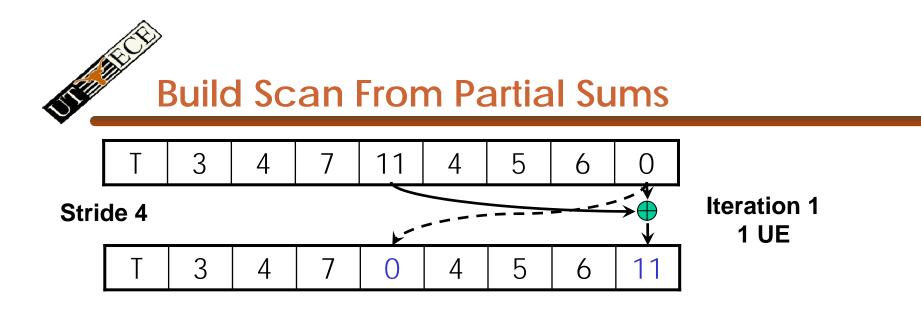
Note that this algorithm operates in-place: no need for double buffering

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

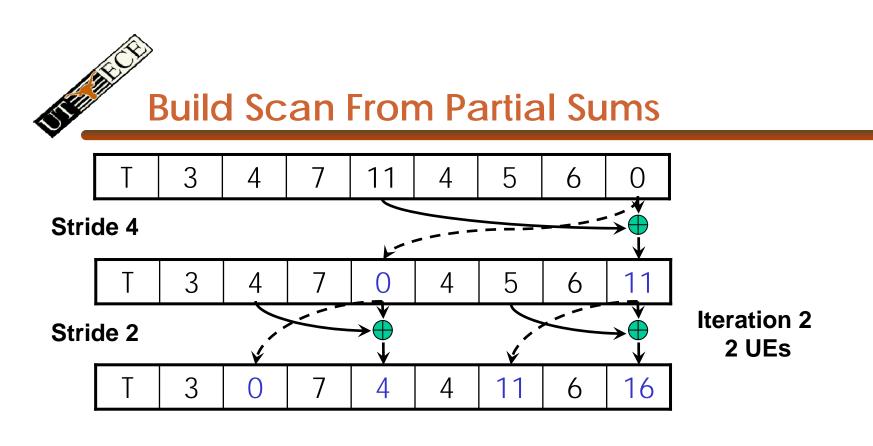
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign



Each \bigoplus corresponds to a single UE.

Iterate log(n) times. Each UE adds value *stride* elements away to its own value, and sets the value *stride* elements away to its own *previous* value.

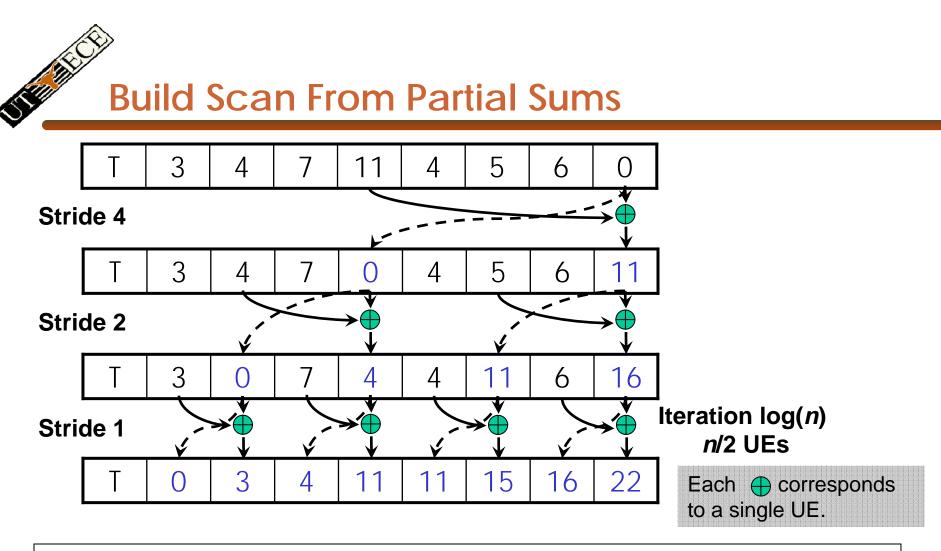
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign





Iterate log(n) times. Each UE adds value *stride* elements away to its own value, and sets the value *stride* elements away to its own *previous* value.

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

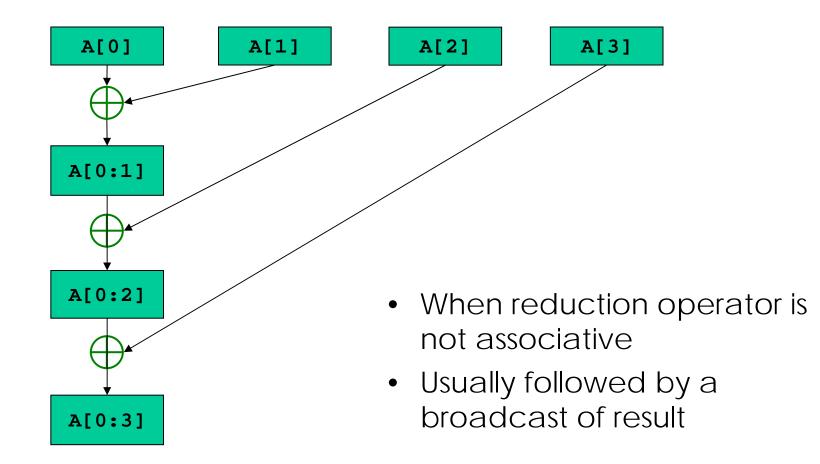


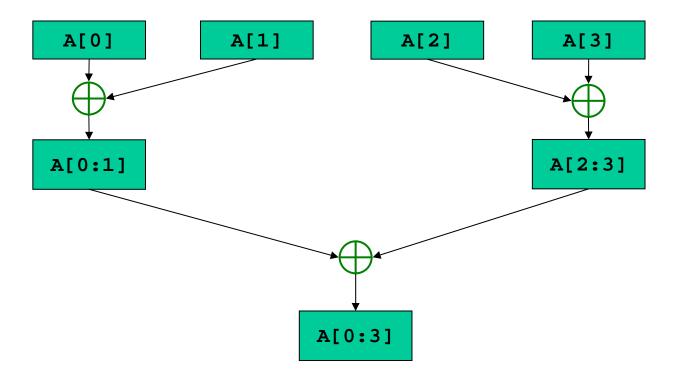
Done! We now have a completed scan that we can write out to device memory.

Total steps: $2 * \log(n)$. Total work: 2 * (n-1) adds = O(n) Work Efficient!

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

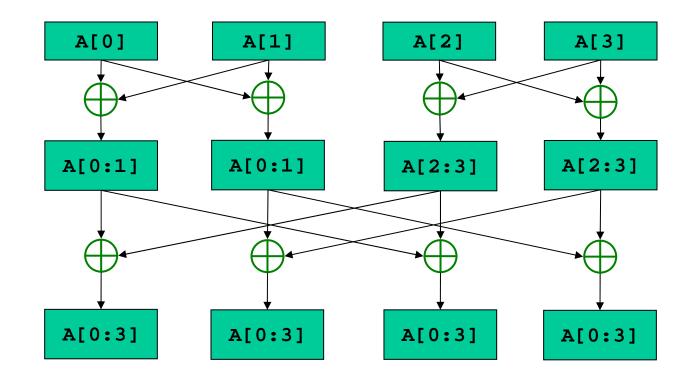
- Many to one
- Many to many
 - Simply multiple reductions
 - Also known as scatter-add and subset of parallel prefix sums
- Use
 - Histograms
 - Superposition
 - Physical properties





- n steps for 2ⁿ units of execution
- When reduction operator is associative
- Especially attractive when only one task needs result

Recursive-doubling Reduction



- n steps for 2ⁿ units of execution
- If all units of execution need the result of the reduction

Recursive-doubling Reduction

- Better than tree-based approach with broadcast
 - Each units of execution has a copy of the reduced value at the end of n steps
 - In tree-based approach with broadcast
 - Reduction takes *n* steps
 - Broadcast cannot begin until reduction is complete
 - Broadcast can take *n* steps (architecture dependent)

- More patterns
 - Reductions
 - Scans
 - Building a data structure
- More examples
 - Search
 - Sort
 - FFT as divide and conquer
 - Structured meshes and grids
 - Sparse algebra
 - Unstructured meshes and graphs
 - Trees
 - Collections
 - Particles
 - Rays

