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Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable graphics pipeline

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Some slides courtesy Massimiliano Fatica (NVIDIA)
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A GPU Renders 3D Scenes

• A Graphics Processing Unit (GPU) accelerates 
rendering of 3D scenes
– Input: description of scene 
– Output: colored pixels to be displayed on a screen

• Input:
– Geometry (triangles), colors, lights, effects, textures

• Output:
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State of the Art in 1985

• First movie from Pixar – Luxo Jr.
• 2 – 3 hours per frame on a Cray-1 supercomputer 

• Today: 1/30th of a second on a PC
– Over 300,000x faster

• Still not even close to where we need to be… but 
look how far we’ve come!
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GPU Scene Complexity Defined by Standard 
Interfaces (DirectX and OpenGL)

• DirectX and OpenGL define the interface between 
applications and the GPU

• Geometry describes the objects and layout 
– Triangles (vertices) describe all objects

• Can have millions of triangles per scene
– Can modify triangle surfaces

• Bumps, ripples, …
– Lights are part of the scene geometry

• Pixel Shaders describe how to add color
– Colors of triangle vertices
– Textures (patterns)
– How to determine color of pixels within a triangle
– …
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GPUs in 1997 – DirectX 5
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GPUs in 1998 – DirectX 6
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GPUs in 2000 – DirectX 7
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GPUs in 2001 – DirectX 8

• First programmable graphics (Shader Model 1) 
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GPUs in 2003 – DirectX 9

• More programmability (Shader Model 2) 
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GPUs in 2004 – DirectX 9.0c

• Yet more programmability (Shader Model 3) 
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GPUs in 2007 – DirectX 10

• Full programs in pipeline (Shader Model 4)

DirectX 9

DirectX 10
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Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable GPUs

• Many slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Other slides courtesy Massimiliano Fatics (NVIDIA)
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Complexity and Quality are Orders of 
Magnitude Better

1997 2000

2003
2004

2007
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GPU Performance is Increasing Much Faster 
than CPUs



Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 16

The GPU is Now a Fully Programmable General 
Purpose Processor

• Programmability needed by graphics – can be 
exploited for GP computation
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248
– 10x speedup in a kernel is typical, as long as the kernel can occupy 

enough parallel threads
– 25x to 400x speedup if the function’s data requirements and control 

flow suit the GPU and the application is optimized

• Keep in mind that the speedup also reflects how suitable the 
CPU is for executing the kernel
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GPU and CPU Architectures are Starting to 
Converge

explicit vectors
explicit threading (>16)

explicit vectors
explicit threading (>16)2009?

explicit vectors
explicit threading (~16)

explicit short vectors
explicit threading (~4)2006

fully programmable
explicit “infinite” DP
no scatter

explicit short vectors
explicit threading (~2)2003

emerging programmability 
(2001 – 2002), “infinite” DPexplicit short vectors2000

not programmableno explicit parallelism1997

GPUsCPUs
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Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable GPUs

• Many slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Other slides courtesy Massimiliano Fatics (NVIDIA)
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The NVIDIA GeForce Graphics Pipeline
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Color Framebuffer (“Display”)
• 2D array of R,G,B color pixel 

values

• 8 bits (256 levels) per color 
component

• Three 8-bit components can 
represent 16 million different 
colors, including 256 shades of 
gray

• 4th component: alpha; used for 
blending

• Typical high end: 2048x1536 
pixels

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Describing an Object

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Feeding the GPU
• GPU accepts a sequence of commands and data

– Vertex positions, colors, and other shader parameters
– Texture map images
– Commands like “draw triangles with the following vertices until you 

get a command to stop drawing triangles”.
• Application pushes data using Direct3D or OpenGL
• GPU can pull commands and data from system memory 

or from its local memory 

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Host Interface

• Bus Interface
• DMA Engines
• Class Interfaces

– This enables our Unified Driver Architecture

• How the CPU communicates to our GPU
• How our GPU communicates back to the CPU
• How we move data back and forth to the CPU
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Transform Vertex Positions

• Why transform vertices?
– Rotate, translate and scale each object to place it correctly 

among the other objects that make up the scene model.
– Rotate, translate, and scale the entire scene to correctly place it 

relative to the camera’s position, view direction, and field of view.

• How?
– Multiply every floating point vertex position by a combined 4x4 

model-view matrix to get a 4-D               [x y z w] eye-space
position

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign



Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 26

Vertex Control

• Receives parameterized vertex data
• Inputs data to vertex cache
• Formats vertices for processing
• Data can come to our GPU in a variety of formats
• Vertex control organizes vertex data into a 

consistent, hardware understandable format
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What’s a Vertex?

• The defining “corners” of a primitive
• For GeForce that means a triangle

A
Triangle

Vertices

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007
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Vertex Cache

• Temporary store for vertices, used to 
gain higher efficiency

• Re-using vertices between primitives 
saves AGP/PCI-E bus bandwidth

• Re-using vertices between primitives 
saves GPU computational resources

• A vertex cache attempts to exploit 
“commonality” between triangles to 
generate vertex reuse

• Unfortunately, many applications do not 
use efficient triangular ordering
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Geometry/Vertex Processing

• Transform & Lighting
– Fixed set of transformations and 

effects
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Vertex Processing Examples

Animation
Morphing
Interpolation

Lens Effects 

Range-based Fog
Elevation-based Fog 

Deformation
Warping
Procedural 
Animation

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Geometry/Vertex Processing

• Transform & Lighting
– Fixed set of transformations and 

effects
• Today: “Vertex Shading”

– Programmable programs run on a 
per vertex basis

– One vertex in One vertex out: 
DP “stream” processing

– “Flow-through” programming 
architecture
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Vertex Lighting

• Vertex lighting generates a color value at 
each vertex.

• Simplest GPU “lighting”: application 
calculates and delivers an (R,G,B) triplet for 
every vertex.

• A more typical GPU lighting equation models 
the physics of light transport.  We sum 
contributions of: 
– Ambient – uniform light from all directions
– Emissive – light given off by the object itself
– Specular – glossy, mirror-like reflections
– Diffuse – dull, matte-finish reflections

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Triangle Setup

• Each vertex of each polygon 
contains parameters used by 
Triangle Setup – typically 4 or 
more

• In Setup, this vertex data is 
used to create a map relating 
pixel coordinates with the 
variables that will ultimately 
determine their color
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Rasterization

• Rasterization is the process of 
determining which pixels are contained 
in each triangle

• For each of these pixels, the rasterizer
creates the necessary information for 
pixel shading

• It includes information like
– Position
– Color
– Texture coordinates for each pixel
– Pattern for rasterization (which helps fill texture 

cache ahead of time)

• In GeForce, it also includes Z-Occlusion 
Culling
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Rasterization

• Given a triangle, identify every pixel that belongs 
to that triangle

• Point Sampling
– A pixel belongs to a triangle if and only if the center of the 

pixel is located in the interior of the triangle
– Evaluate 3 edge equations of the form E=Ax+By+C, where E=0 

is exactly on the line, and positive E is towards the interior of 
the triangle.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Rasterization

E0=A0x+B0y+C0

E1=A1x+B1y+C1

E2=A2x+B2y+C2

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Shading

• Shading is assigning color values to 
pixels

• Color values can be determined by:
– Interpolated shading (ex. Gouraud or Phong)
– Texture mapping
– Per pixel lighting mathematics
– Reflections
– Complex pixel shader programs

• Shading includes Texture Mapping
• A color value can now be 

procedurally generated...
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© David Kirk/NVIDIA and 
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Gouraud Interpolation

• Also called “smooth shading”
• Linearly vary color values across the triangle interior.
• More realistic than flat shading because the facets in the 

model are less obvious.
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
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Texture Mapping

• Associate points in an image to 
points in a geometric object
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Mip Mapping 

64x64128x128256x256512x5121024x1024

Mip Mapping is a technique to manage pixel 
level of detail (LOD).
Scaled versions of the original texture are 
generated and stored.  These smaller stored 
textures are used for the texture samples as 
objects appear smaller with greater distance.

© David Kirk/NVIDIA and 
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Bilinear Filtering

Random Sized Texture Needed 
in a Given Frame of an Applicaiton

Stored Mip Map Texture

Individual texel colors are
interpolated from the four
nearest texels of the closest
stored mip map.

© David Kirk/NVIDIA and 
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Texture Filtering - Good
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Texture Filtering - Better
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Trilinear Filtering

Stored Mip Map Texture

Individual texel colors are
interpoloated from bilinear 
interpolations of nearest adjacent
mip maps.

Random Sized Texture Needed 
in a Given Frame of an Application 

Stored Mip
Map Texture
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Trilinear Filtering
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Anisotropic Filtering
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Filtering techniques

• Point sampling: 
– pixel values are calculated by choosing one texture pixel (texel) color

• Bilinear filtering: 
– interpolating colors from 4 neighboring texels. This gives a smoothing (if 

somewhat blurry) effect and makes the scene look more natural and 
prevents abrupt transitions between neighboring texels. 

• Trilinear filtering:  
– interpolating bilinearly filtered samples from two mip-maps.  Trilinear

mip-mapping prevents moving objects from displaying a distracting 
“sparkle” caused by abrupt transitions between mipmaps.

• Anisotropic filtering: 
– interpolating and filtering multiple samples from one or more mip-

maps to better approximate very distorted textures.  Gives a sharper 
effect when severe perspective correction is used.  Trilinear
mipmapping blurs textures more.

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007
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Texture Cache

• Stores temporally local texel values to 
reduce bandwidth requirements

• Due to nature of texture filtering high 
degrees of efficiency are possible

• Efficient texture caches can achieve 75% 
or better hit rates

• Reduces texture (memory) bandwidth by 
a factor of four for bilinear filtering
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Pixel Shading
• 1999 (DirectX 7)

– Application could select from a few simple 
combinations of texture and interpolated 
color 

• Add
• Decal
• Modulate

• Next (DirectX 9)
– Write a general program that executes for 

every pixel with a nearly unlimited number of 
interpolated inputs, texture lookups and 
math operations

– Can afford to perform sophisticated lighting 
calculations at every pixel
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GeForce FX Fragment/Pixel 
Program Examples

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign


