
EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 10 – The Graphics Processing Unit

Mattan Erez

The University of Texas at Austin

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 2

Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable graphics pipeline

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Some slides courtesy Massimiliano Fatica (NVIDIA)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 3

A GPU Renders 3D Scenes

• A Graphics Processing Unit (GPU) accelerates
rendering of 3D scenes
– Input: description of scene
– Output: colored pixels to be displayed on a screen

• Input:
– Geometry (triangles), colors, lights, effects, textures

• Output:

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 4

State of the Art in 1985

• First movie from Pixar – Luxo Jr.
• 2 – 3 hours per frame on a Cray-1 supercomputer

• Today: 1/30th of a second on a PC
– Over 300,000x faster

• Still not even close to where we need to be… but
look how far we’ve come!

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 5

GPU Scene Complexity Defined by Standard
Interfaces (DirectX and OpenGL)

• DirectX and OpenGL define the interface between
applications and the GPU

• Geometry describes the objects and layout
– Triangles (vertices) describe all objects

• Can have millions of triangles per scene
– Can modify triangle surfaces

• Bumps, ripples, …
– Lights are part of the scene geometry

• Pixel Shaders describe how to add color
– Colors of triangle vertices
– Textures (patterns)
– How to determine color of pixels within a triangle
– …

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 6

GPUs in 1997 – DirectX 5

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 7

GPUs in 1998 – DirectX 6

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 8

GPUs in 2000 – DirectX 7

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 9

GPUs in 2001 – DirectX 8

• First programmable graphics (Shader Model 1)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 10

GPUs in 2003 – DirectX 9

• More programmability (Shader Model 2)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 11

GPUs in 2004 – DirectX 9.0c

• Yet more programmability (Shader Model 3)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 12

GPUs in 2007 – DirectX 10

• Full programs in pipeline (Shader Model 4)

DirectX 9

DirectX 10

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 13

Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable GPUs

• Many slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Other slides courtesy Massimiliano Fatics (NVIDIA)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 14

Complexity and Quality are Orders of
Magnitude Better

1997 2000

2003
2004

2007

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 15

GPU Performance is Increasing Much Faster
than CPUs

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 16

The GPU is Now a Fully Programmable General
Purpose Processor

• Programmability needed by graphics – can be
exploited for GP computation

Computational
Modeling

Computational
Chemistry

Computational
Medicine

Computational
Biology

Computational
Finance

Computational
Geoscience

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 17

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Speedup of Applications

• GeForce 8800 GTX vs. 2.2GHz Opteron 248
– 10x speedup in a kernel is typical, as long as the kernel can occupy

enough parallel threads
– 25x to 400x speedup if the function’s data requirements and control

flow suit the GPU and the application is optimized

• Keep in mind that the speedup also reflects how suitable the
CPU is for executing the kernel

0
10
20
30
40
50
60

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-
FHD

Kernel
Application

210 457
431

316
26379

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 18

GPU and CPU Architectures are Starting to
Converge

explicit vectors
explicit threading (>16)

explicit vectors
explicit threading (>16)2009?

explicit vectors
explicit threading (~16)

explicit short vectors
explicit threading (~4)2006

fully programmable
explicit “infinite” DP
no scatter

explicit short vectors
explicit threading (~2)2003

emerging programmability
(2001 – 2002), “infinite” DPexplicit short vectors2000

not programmableno explicit parallelism1997

GPUsCPUs

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 19

Outline
• What is a GPU?
• Why should we care about GPUs?
• 3D graphics pipeline
• Programmable GPUs

• Many slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• Other slides courtesy Massimiliano Fatics (NVIDIA)

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 20

The NVIDIA GeForce Graphics Pipeline

Host

Vertex Control
Vertex
Cache

VS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

Matt
20

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 21

Color Framebuffer (“Display”)
• 2D array of R,G,B color pixel

values

• 8 bits (256 levels) per color
component

• Three 8-bit components can
represent 16 million different
colors, including 256 shades of
gray

• 4th component: alpha; used for
blending

• Typical high end: 2048x1536
pixels

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 22

Describing an Object

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 23

Feeding the GPU
• GPU accepts a sequence of commands and data

– Vertex positions, colors, and other shader parameters
– Texture map images
– Commands like “draw triangles with the following vertices until you

get a command to stop drawing triangles”.
• Application pushes data using Direct3D or OpenGL
• GPU can pull commands and data from system memory

or from its local memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 24

Host Interface

• Bus Interface
• DMA Engines
• Class Interfaces

– This enables our Unified Driver Architecture

• How the CPU communicates to our GPU
• How our GPU communicates back to the CPU
• How we move data back and forth to the CPU

Host

Vertex Control
Vertex
CacheVS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 25

Transform Vertex Positions

• Why transform vertices?
– Rotate, translate and scale each object to place it correctly

among the other objects that make up the scene model.
– Rotate, translate, and scale the entire scene to correctly place it

relative to the camera’s position, view direction, and field of view.

• How?
– Multiply every floating point vertex position by a combined 4x4

model-view matrix to get a 4-D [x y z w] eye-space
position

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 26

Vertex Control

• Receives parameterized vertex data
• Inputs data to vertex cache
• Formats vertices for processing
• Data can come to our GPU in a variety of formats
• Vertex control organizes vertex data into a

consistent, hardware understandable format

Host

Vertex Control
Vertex
CacheVS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 27

What’s a Vertex?

• The defining “corners” of a primitive
• For GeForce that means a triangle

A
Triangle

Vertices

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 28

Vertex Cache

• Temporary store for vertices, used to
gain higher efficiency

• Re-using vertices between primitives
saves AGP/PCI-E bus bandwidth

• Re-using vertices between primitives
saves GPU computational resources

• A vertex cache attempts to exploit
“commonality” between triangles to
generate vertex reuse

• Unfortunately, many applications do not
use efficient triangular ordering

Host

Vertex Control
Vertex
CacheVS/T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 29

Geometry/Vertex Processing

• Transform & Lighting
– Fixed set of transformations and

effects

Host

Vertex Control
Vertex
CacheVS/ T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 30

Vertex Processing Examples

Animation
Morphing
Interpolation

Lens Effects

Range-based Fog
Elevation-based Fog

Deformation
Warping
Procedural
Animation

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 31

Geometry/Vertex Processing

• Transform & Lighting
– Fixed set of transformations and

effects
• Today: “Vertex Shading”

– Programmable programs run on a
per vertex basis

– One vertex in One vertex out:
DP “stream” processing

– “Flow-through” programming
architecture

Host

Vertex Control
Vertex
CacheVS/ T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 32

Vertex Lighting

• Vertex lighting generates a color value at
each vertex.

• Simplest GPU “lighting”: application
calculates and delivers an (R,G,B) triplet for
every vertex.

• A more typical GPU lighting equation models
the physics of light transport. We sum
contributions of:
– Ambient – uniform light from all directions
– Emissive – light given off by the object itself
– Specular – glossy, mirror-like reflections
– Diffuse – dull, matte-finish reflections

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 33

Triangle Setup

• Each vertex of each polygon
contains parameters used by
Triangle Setup – typically 4 or
more

• In Setup, this vertex data is
used to create a map relating
pixel coordinates with the
variables that will ultimately
determine their color

V2

V0

V1

X,Y

Host

Vertex Control
Vertex
CacheT&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 34

Rasterization

• Rasterization is the process of
determining which pixels are contained
in each triangle

• For each of these pixels, the rasterizer
creates the necessary information for
pixel shading

• It includes information like
– Position
– Color
– Texture coordinates for each pixel
– Pattern for rasterization (which helps fill texture

cache ahead of time)

• In GeForce, it also includes Z-Occlusion
Culling

Host

Vertex Control
Vertex
CacheT&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 35

Rasterization

• Given a triangle, identify every pixel that belongs
to that triangle

• Point Sampling
– A pixel belongs to a triangle if and only if the center of the

pixel is located in the interior of the triangle
– Evaluate 3 edge equations of the form E=Ax+By+C, where E=0

is exactly on the line, and positive E is towards the interior of
the triangle.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 36

Rasterization

E0=A0x+B0y+C0

E1=A1x+B1y+C1

E2=A2x+B2y+C2

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 37

Shading

• Shading is assigning color values to
pixels

• Color values can be determined by:
– Interpolated shading (ex. Gouraud or Phong)
– Texture mapping
– Per pixel lighting mathematics
– Reflections
– Complex pixel shader programs

• Shading includes Texture Mapping
• A color value can now be

procedurally generated...

Tony
50Host

Vertex Control
Vertex
Cache

T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 38

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Gouraud Interpolation

• Also called “smooth shading”
• Linearly vary color values across the triangle interior.
• More realistic than flat shading because the facets in the

model are less obvious.

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 39

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Texture Mapping

• Associate points in an image to
points in a geometric object

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 40

Mip Mapping

64x64128x128256x256512x5121024x1024

Mip Mapping is a technique to manage pixel
level of detail (LOD).
Scaled versions of the original texture are
generated and stored. These smaller stored
textures are used for the texture samples as
objects appear smaller with greater distance.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 41

Bilinear Filtering

Random Sized Texture Needed
in a Given Frame of an Applicaiton

Stored Mip Map Texture

Individual texel colors are
interpolated from the four
nearest texels of the closest
stored mip map.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 42

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Texture Filtering - Good

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 43

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Texture Filtering - Better

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 44

Trilinear Filtering

Stored Mip Map Texture

Individual texel colors are
interpoloated from bilinear
interpolations of nearest adjacent
mip maps.

Random Sized Texture Needed
in a Given Frame of an Application

Stored Mip
Map Texture

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 45

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Trilinear Filtering

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 46

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Anisotropic Filtering

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 47

Filtering techniques

• Point sampling:
– pixel values are calculated by choosing one texture pixel (texel) color

• Bilinear filtering:
– interpolating colors from 4 neighboring texels. This gives a smoothing (if

somewhat blurry) effect and makes the scene look more natural and
prevents abrupt transitions between neighboring texels.

• Trilinear filtering:
– interpolating bilinearly filtered samples from two mip-maps. Trilinear

mip-mapping prevents moving objects from displaying a distracting
“sparkle” caused by abrupt transitions between mipmaps.

• Anisotropic filtering:
– interpolating and filtering multiple samples from one or more mip-

maps to better approximate very distorted textures. Gives a sharper
effect when severe perspective correction is used. Trilinear
mipmapping blurs textures more.

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 48

Texture Cache

• Stores temporally local texel values to
reduce bandwidth requirements

• Due to nature of texture filtering high
degrees of efficiency are possible

• Efficient texture caches can achieve 75%
or better hit rates

• Reduces texture (memory) bandwidth by
a factor of four for bilinear filtering

Host

Vertex Control
Vertex
Cache

T&L

Triangle Setup

Raster

Shader

ROP

FBI

Texture
Cache Frame

Buffer
Memory

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 49

Pixel Shading
• 1999 (DirectX 7)

– Application could select from a few simple
combinations of texture and interpolated
color

• Add
• Decal
• Modulate

• Next (DirectX 9)
– Write a general program that executes for

every pixel with a nearly unlimited number of
interpolated inputs, texture lookups and
math operations

– Can afford to perform sophisticated lighting
calculations at every pixel

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2007 -- Lecture 11 50

GeForce FX Fragment/Pixel
Program Examples

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

