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Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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ECE 498AL, University of Illinois, 
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Make the Compute Core The Focus of the 
Architecture
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1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM 
(16 – 128 total concurrent blocks)

1 thread per SP
(in warps of 32 
across the SM)
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Thread Scheduling/Execution
• Each Thread Block is divided into 

32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM 
and each Block has 256 threads, 
how many Warps are there in an 
SM?
– Each Block is divided into 256/32 = 

8 Warps
– There are 8 * 3 = 24 Warps 
– At any point in time, only one of the 

24 Warps will be selected for 
instruction fetch and execution.
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Scoreboarding
• All register operands of all instructions in the 

Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until 

scoreboarding prevents issue
– allows Memory/Processor ops to proceed in shadow of 

Memory/Processor ops

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or 
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM can take 
up to 768 threads, it can take up to 12 Blocks. However, each 
SM can only take up to 8 Blocks, only 512 threads will go into 
each SM!

– For 16X16, we have 256 threads per Block. Since each SM can 
take up to 768 threads, it can take up to 3 Blocks and achieve 
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit 
into an SM!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy: 
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP 

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM 

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only 
– Managed by LD/ST ROP units

• Uncached – read/Write
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SM Register File

• Register File (RF)
– 32 KB (1 Kword per SP)
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also 
read/write RF
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Programmer View of Register File

• There are 8192 registers 
in each SM in G80
– This is an implementation 

decision, not part of CUDA
– Registers are dynamically 

partitioned across all Blocks 
assigned to the SM

– Once assigned to a Block, 
the register is NOT 
accessible by threads in 
other Blocks

– Each thread in the same 
Block only access registers 
assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Matrix Multiplication Example

• If each Block has 16X16 threads and each thread 
uses 10 registers, how many thread can run on 
each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are 

concerned
• How about if each thread increases the use of 

registers by 1?
– Each  Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of 

parallelism!!!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to 
compilers/programmers
– One can run a smaller number of threads that require many 

registers each or a large number of threads that require few 
registers each 

• This allows for finer grain threading than traditional CPU threading 
models.

– The compiler can tradeoff between instruction-level parallelism 
and thread level parallelism

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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ILP vs. TLP Example
• Assume that a kernel has 256-thread Blocks, 4 independent 

instructions for each global memory load in the thread 
program, and each thread uses 10 registers, global loads 
have 200 cycles 
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the 
dependence pattern so that 8 independent instructions exist 
for each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory 

latency
– Two Blocks have 16 Warps. The performance can actually be higher!

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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SM Memory Architecture
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• Registers in SP
– 1K total per SP 

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM 

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only 
– Managed by LD/ST ROP units

• Uncached – read/Write
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Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and 

cached on chip
– L1 per SM

• A constant value can be 
broadcast to all threads in a Warp
– Extremely efficient way of accessing a 

value that is common for all threads in a 
Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Textures

• Textures are 2D arrays of values stored in global 
DRAM

• Textures are cached in L1 and L2
• Read-only access
• Caches optimized for 2D access:

– Threads in a warp that follow 2D locality will achieve better 
memory performance
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SM Memory Architecture
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Shared Memory

• Each SM has 16 KB of Shared 
Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as 
shared storage visible to all 
threads in a thread block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺
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Multiply Using Several Blocks

• One block computes one square 
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one 
element of Psub

• Assume that the dimensions of M 
and N are multiples of BLOCK_SIZE 
and square shape
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Matrix Multiplication 
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared 
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks can fit 

into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only 

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix Multiplication of 

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Parallel Memory Architecture

• In a parallel machine, many threads access 
memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per
cycle
– A memory can service as many simultaneous 

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict 
– Conflicting accesses are serialized
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8
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How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock 
cycle

• Successive 32-bit words are assigned to 
successive banks

• G80 has 16 banks
– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a 
single half-warp

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank 
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no 

bank conflict
– If all threads of a half-warp access the identical address, there is 

no bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the 

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Linear Addressing

• Given:

__shared__ float shared[256];

float foo = 

shared[baseIndex + s * 
threadIdx.x];

• This is only bank-conflict-free if s 
shares no common factors with the 
number of banks 
– 16 on G80, so s must be odd
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];
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Structs and Bank Conflicts

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

• Struct assignments compile into as many memory accesses as 
there are struct members:

struct vector { float x, y, z; };

struct myType { 

float f; 

int c;

};

__shared__ struct vector vectors[64];

__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per 
thread)
struct myType m = myTypes[baseIndex + threadIdx.x];
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Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into 
shared mem:
– 2-way-interleaved loads result in 

2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU 
threads, locality in cache line usage 
and reduced sharing traffice.
– Not in shared memory usage where 

there is no cache line effects but 
banking effects
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A Better Array Access Pattern

• Each thread loads one element 
in every consecutive group of 
bockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] = 
global[tid + blockDim.x];
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Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11
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© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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No Bank Conflicts
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Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared 
memory
– e.g. image processing

• Example: 16x16 block
– Each thread processes a row
– So threads in a block access the elements in 

each column simultaneously (example: row 1 
in purple)

– 16-way bank conflicts: rows all start at bank 0

• Solution 1) pad the rows
– Add one float to the end of each row

• Solution 2) transpose before processing
– Suffer bank conflicts during transpose
– But possibly save them later
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ECE 498AL, University of Illinois, 
Urbana-Champaign

Load/Store (Memory read/write) 
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math
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Bandwidths of GeForce 9800 GTX

• Frequency
– 600 MHz with ALUs running at 1.2 GHz

• ALU bandwidth (GFLOPs)
– (1.2 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~400 GFLOPs

• Register BW
– (1.2 GHz) X (16 SM) X (8 SP) X (4 words) = 2.5 TB/s

• Shared Memory BW
– (600 MHz) X (16 SM) X (16 Banks) X (1 word) = 600 GB/s

• Device memory BW
– 2 GHz GDDR3 with 256 bit bus: 64 GB/s

• Host memory BW 
– PCI-express: 1.5GB/s or 3GB/s with page locking
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Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices, 

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability
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Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel
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Atomic Operations

• Exception to communication between blocks
• Atomic read-modify-write

– Shared memory
– Global memory

• Simple ALU operations
– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations
– Compare-and-swap, exchange
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Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)
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Control

• Each SM has its own warp scheduler
• Schedules warps OoO based on hazards and 

resources
• Warps can be issued in any order within and across 

blocks
• Within a warp, all threads always have the same 

position
– Current implementation has warps of 32 threads
– Can change with no notice from NVIDIA
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Conditionals within a Thread
• What happens if there is a conditional statement 

within a thread?

• No problem if all threads in a warp follow same 
path

• Divergence: threads in a warp  follow different 
paths
– HW will ensure correct behavior by (partially) serializing 

execution
– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…}   If(TID / warp_size > 2) {…}
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Control Flow

• Recap:
– 32 threads in a warm are executed in SIMD (share one 

instruction sequencer)
– Threads within a warp can be disabled (masked)

• For example, handling bank conflicts
– Threads contain arbitrary code including conditional branches

• How do we handle different conditions in different 
threads?
– No problem if the threads are in different warps
– Control divergence
– Predication
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Control Flow Divergence

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack
IP
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack
9
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 1 1 1 1 1 1 1

stack
9
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 1 1 1 1 1 1 1

stack
9
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask

1 0 1 0 1 0 1 0

stack

6

1 1 1 1 1 1 1 19

1 0 1 0 1 0 1 0
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
8

1 1 1 1 1 1 1 19
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

0 0 1 0 0 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
8

1 1 1 1 1 1 1 19
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Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask

1 0 1 0 1 0 1 0

stack

8

1 1 1 1 1 1 1 19



© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13   (c) Mattan Erez 2008 56

Mask Stack Enables Divergence 

1: if (TID % 2 == 0) {
2: f2();
3:  if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP enable mask stack
1 1 1 1 1 1 1 19

1 1 1 1 1 1 1 11 1 1 1 1 1 1 19

DirectX 10 specifies 4-deep stack
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Predication Eliminates Branches 
(and Divergence)

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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Predication Eliminates Branches 
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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Predication Eliminates Branches 
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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Predication Eliminates Branches 
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

p1 p3 = !p2
p3 f2’();

p4 = !p1
p4 f(1);
p4 p5 = (TID % 3 == 0)
p5 f3();

p4 p6 = !p5
p6 f1’();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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Equivalence of Divergence and Predication

0
0

1

2

3

3

4
4

5

6

7

7

2 6

1 5

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

p1 p3 = !p2
p3 f2’();

p4 = !p1
p4 f(1);
p4 p5 = (TID % 3 == 0)
p5 f3();

p4 p6 = !p5
p6 f1’();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}
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When to Predicate and When to Diverge?
• Divergence

– No performance penalty if all warp branches the same way
– Some extra HW cost
– Static partitioning of stack resources (to warps)

• Predication
– Always excecute all paths
– Expose more ILP
– Add predication registers to instruction encoding

• Selects – software predication
– Simpler HW and just as flexible mode
– Simple instruction encoding
– Need to use more registers and insert select instructions
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