
EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 13 – GPU Architecture of NVIDIA GeForce 8&9

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 2

Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 3

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Make the Compute Core The Focus of the
Architecture

Load/store

Global Memory

Thread Execution Manager

Input Assembler

Host

Texture Texture Texture Texture Texture Texture Texture TextureTexture

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Parallel Data
Cache

Load/store Load/store Load/store Load/store Load/store

1 Grid (kernel) at a time

1 – 8 Thread Blocks per SM
(16 – 128 total concurrent blocks)

1 thread per SP
(in warps of 32
across the SM)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 4

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Thread Scheduling/Execution
• Each Thread Block is divided into

32-thread Warps
– This is an implementation decision

• Warps are scheduling units in SM

• If 3 blocks are assigned to an SM
and each Block has 256 threads,
how many Warps are there in an
SM?
– Each Block is divided into 256/32 =

8 Warps
– There are 8 * 3 = 24 Warps
– At any point in time, only one of the

24 Warps will be selected for
instruction fetch and execution.

…
t0 t1 t2 … t31

…

…
t0 t1 t2 … t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 5

Scoreboarding
• All register operands of all instructions in the

Instruction Buffer are scoreboarded
– Status becomes ready after the needed values are deposited
– prevents hazards
– cleared instructions are eligible for issue

• Decoupled Memory/Processor pipelines
– any thread can continue to issue instructions until

scoreboarding prevents issue
– allows Memory/Processor ops to proceed in shadow of

Memory/Processor ops

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 6

Granularity and Resource Considerations

• For Matrix Multiplication, should I use 8X8, 16X16 or
32X32 tiles (1 thread per tile element)?

– For 8X8, we have 64 threads per Block. Since each SM can take
up to 768 threads, it can take up to 12 Blocks. However, each
SM can only take up to 8 Blocks, only 512 threads will go into
each SM!

– For 16X16, we have 256 threads per Block. Since each SM can
take up to 768 threads, it can take up to 3 Blocks and achieve
full capacity unless other resource considerations overrule.

– For 32X32, we have 1024 threads per Block. Not even one can fit
into an SM!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 7

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 8

SM Register File

• Register File (RF)
– 32 KB (1 Kword per SP)
– Provides 4 operands/clock

• TEX pipe can also read/write RF
– 2 SMs share 1 TEX

• Load/Store pipe can also
read/write RF

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 9

Programmer View of Register File

• There are 8192 registers
in each SM in G80
– This is an implementation

decision, not part of CUDA
– Registers are dynamically

partitioned across all Blocks
assigned to the SM

– Once assigned to a Block,
the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access registers
assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 10

Matrix Multiplication Example

• If each Block has 16X16 threads and each thread
uses 10 registers, how many thread can run on
each SM?
– Each Block requires 10*256 = 2560 registers
– 8192 = 3 * 2560 + change
– So, three blocks can run on an SM as far as registers are

concerned
• How about if each thread increases the use of

registers by 1?
– Each Block now requires 11*256 = 2816 registers
– 8192 < 2816 *3
– Only two Blocks can run on an SM, 1/3 reduction of

parallelism!!!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 11

More on Dynamic Partitioning

• Dynamic partitioning gives more flexibility to
compilers/programmers
– One can run a smaller number of threads that require many

registers each or a large number of threads that require few
registers each

• This allows for finer grain threading than traditional CPU threading
models.

– The compiler can tradeoff between instruction-level parallelism
and thread level parallelism

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 12

ILP vs. TLP Example
• Assume that a kernel has 256-thread Blocks, 4 independent

instructions for each global memory load in the thread
program, and each thread uses 10 registers, global loads
have 200 cycles
– 3 Blocks can run on each SM

• If a Compiler can use one more register to change the
dependence pattern so that 8 independent instructions exist
for each global memory load
– Only two can run on each SM
– However, one only needs 200/(8*4) = 7 Warps to tolerate the memory

latency
– Two Blocks have 16 Warps. The performance can actually be higher!

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 13

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 14

Constants

• Immediate address constants
• Indexed address constants
• Constants stored in DRAM, and

cached on chip
– L1 per SM

• A constant value can be
broadcast to all threads in a Warp
– Extremely efficient way of accessing a

value that is common for all threads in a
Block!

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 15

Textures

• Textures are 2D arrays of values stored in global
DRAM

• Textures are cached in L1 and L2
• Read-only access
• Caches optimized for 2D access:

– Threads in a warp that follow 2D locality will achieve better
memory performance

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 16

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

SM Memory Architecture

t0 t1 t2 … tm

Blocks

Texture L1

SP

Shared
Memory

MT IU

SP

Shared
Memory

MT IU

TF

L2

Memory

t0 t1 t2 … tm

Blocks

SM 1SM 0

Courtesy:
John Nicols, NVIDIA

• Registers in SP
– 1K total per SP

• shared between thread
• same per thread in a block)

• Shared memory in SM
– 16KB total per SM

• shared between blocks

• Global memory
– Managed by Texture Units

• Cache – read only
– Managed by LD/ST ROP units

• Uncached – read/Write

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 17

Shared Memory

• Each SM has 16 KB of Shared
Memory
– 16 banks of 32bit words

• CUDA uses Shared Memory as
shared storage visible to all
threads in a thread block
– read and write access

• Not used explicitly for pixel shader
programs
– we dislike pixels talking to each other ☺

I$
L1

Multithreaded
Instruction Buffer

R
F

C$
L1

Shared
Mem

Operand Select

MAD SFU

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 18

Multiply Using Several Blocks

• One block computes one square
sub-matrix Psub of size BLOCK_SIZE

• One thread computes one
element of Psub

• Assume that the dimensions of M
and N are multiples of BLOCK_SIZE
and square shape

M

N

P

Psub

BLOCK_SIZE

N.widthM.width

BLOCK_SIZEBLOCK_SIZE

bx

tx
01 bsize-12

0 1 2

by
ty

2
1
0

bsize-1

2

1

0

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

M
.h

ei
gh

t
N

.h
ei

gh
t

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 19

Matrix Multiplication
Shared Memory Usage

• Each Block requires 2* WIDTH2 * 4 bytes of shared
memory storage
– For WIDTH = 16, each BLOCK requires 2KB, up to 8 Blocks can fit

into the Shared Memory of an SM
– Since each SM can only take 768 threads, each SM can only

take 3 Blocks of 256 threads each
– Shared memory size is not a limitation for Matrix Multiplication of

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 20

Parallel Memory Architecture

• In a parallel machine, many threads access
memory
– Therefore, memory is divided into banks
– Essential to achieve high bandwidth

• Each bank can service one address per
cycle
– A memory can service as many simultaneous

accesses as it has banks

• Multiple simultaneous accesses to a bank
result in a bank conflict
– Conflicting accesses are serialized

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 21

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 22

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 23

How addresses map to banks on G80

• Each bank has a bandwidth of 32 bits per clock
cycle

• Successive 32-bit words are assigned to
successive banks

• G80 has 16 banks
– So bank = address % 16
– Same as the size of a half-warp

• No bank conflicts between different half-warps, only within a
single half-warp

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 24

Shared memory bank conflicts

• Shared memory is as fast as registers if there are no bank
conflicts

• The fast case:
– If all threads of a half-warp access different banks, there is no

bank conflict
– If all threads of a half-warp access the identical address, there is

no bank conflict (broadcast)

• The slow case:
– Bank Conflict: multiple threads in the same half-warp access the

same bank
– Must serialize the accesses
– Cost = max # of simultaneous accesses to a single bank

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 25

Linear Addressing

• Given:

__shared__ float shared[256];

float foo =

shared[baseIndex + s *
threadIdx.x];

• This is only bank-conflict-free if s
shares no common factors with the
number of banks
– 16 on G80, so s must be odd

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

s=3

s=1

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 26

Data types and bank conflicts

• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 27

Structs and Bank Conflicts

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

• Struct assignments compile into as many memory accesses as
there are struct members:

struct vector { float x, y, z; };

struct myType {

float f;

int c;

};

__shared__ struct vector vectors[64];

__shared__ struct myType myTypes[64];

• This has no bank conflicts for vector; struct size is 3 words
– 3 accesses per thread, contiguous banks (no common factor with 16)

struct vector v = vectors[baseIndex + threadIdx.x];

• This has 2-way bank conflicts for my Type; (2 accesses per
thread)
struct myType m = myTypes[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 28

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Common Array Bank Conflict Patterns
1D

• Each thread loads 2 elements into
shared mem:
– 2-way-interleaved loads result in

2-way bank conflicts:

int tid = threadIdx.x;

shared[2*tid] = global[2*tid];

shared[2*tid+1] = global[2*tid+1];

• This makes sense for traditional CPU
threads, locality in cache line usage
and reduced sharing traffice.
– Not in shared memory usage where

there is no cache line effects but
banking effects

Thread 11

Thread 10

Thread 9

Thread 8

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 29

A Better Array Access Pattern

• Each thread loads one element
in every consecutive group of
bockDim elements.

shared[tid] = global[tid];

shared[tid + blockDim.x] =
global[tid + blockDim.x];

Bank 15

Bank 7

Bank 6

Bank 5

Bank 4

Bank 3

Bank 2

Bank 1

Bank 0

Thread 15

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 30

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 31

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 32

Common Bank Conflict Patterns (2D)

• Operating on 2D array of floats in shared
memory
– e.g. image processing

• Example: 16x16 block
– Each thread processes a row
– So threads in a block access the elements in

each column simultaneously (example: row 1
in purple)

– 16-way bank conflicts: rows all start at bank 0

• Solution 1) pad the rows
– Add one float to the end of each row

• Solution 2) transpose before processing
– Suffer bank conflicts during transpose
– But possibly save them later

Bank Indices without Padding
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15
0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15

0 1 2 3 4 5 6 7 15
1 2 3 4 5 6 7 8 0
2 3 4 5 6 7 8 9 1
3 4 5 6 7 8 9 10 2
4 5 6 7 8 9 10 11 3
5 6 7 8 9 10 11 12 4
6 7 8 9 10 11 12 13 5
7 8 9 10 11 12 13 14 7

15 0 1 2 3 4 5 6 14

0
1
2
3
4
5
6
8

15

Bank Indices with Padding

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 33

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Load/Store (Memory read/write)
Clustering/Batching

• Use LD to hide LD latency (non-dependent LD ops only)
– Use same thread to help hide own latency

• Instead of:
– LD 0 (long latency)
– Dependent MATH 0
– LD 1 (long latency)
– Dependent MATH 1

• Do:
– LD 0 (long latency)
– LD 1 (long latency - hidden)
– MATH 0
– MATH 1

• Compiler handles this!
– But, you must have enough non-dependent LDs and Math

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 34

Bandwidths of GeForce 9800 GTX

• Frequency
– 600 MHz with ALUs running at 1.2 GHz

• ALU bandwidth (GFLOPs)
– (1.2 GHz) X (16 SM) X ((8 SP)X(2 MADD) + (2 SFU)) = ~400 GFLOPs

• Register BW
– (1.2 GHz) X (16 SM) X (8 SP) X (4 words) = 2.5 TB/s

• Shared Memory BW
– (600 MHz) X (16 SM) X (16 Banks) X (1 word) = 600 GB/s

• Device memory BW
– 2 GHz GDDR3 with 256 bit bus: 64 GB/s

• Host memory BW
– PCI-express: 1.5GB/s or 3GB/s with page locking

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 35

Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 36

Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices,

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 37

Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 38

Atomic Operations

• Exception to communication between blocks
• Atomic read-modify-write

– Shared memory
– Global memory

• Simple ALU operations
– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations
– Compare-and-swap, exchange

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 39

Outline
• Memory and on-chip storage architecture
• Synchronization and Communication
• Control Flow

• Most slides courtesy David Kirk (NVIDIA) and Wen-Mei Hwu
(UIUC)
– From The University of Illinois ECE 498AI class

• A few slides courtesy David Luebke (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 40

Control

• Each SM has its own warp scheduler
• Schedules warps OoO based on hazards and

resources
• Warps can be issued in any order within and across

blocks
• Within a warp, all threads always have the same

position
– Current implementation has warps of 32 threads
– Can change with no notice from NVIDIA

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 41

Conditionals within a Thread
• What happens if there is a conditional statement

within a thread?

• No problem if all threads in a warp follow same
path

• Divergence: threads in a warp follow different
paths
– HW will ensure correct behavior by (partially) serializing

execution
– Compiler can add predication to eliminate divergence

• Try to avoid divergence
– If (TID > 2) {…} If(TID / warp_size > 2) {…}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 42

Control Flow

• Recap:
– 32 threads in a warm are executed in SIMD (share one

instruction sequencer)
– Threads within a warp can be disabled (masked)

• For example, handling bank conflicts
– Threads contain arbitrary code including conditional branches

• How do we handle different conditions in different
threads?
– No problem if the threads are in different warps
– Control divergence
– Predication

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 43

Control Flow Divergence

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

0

0
1

2

3

3
4
4
5

6

7

7

0
0

1 2 3
3

4
4

5 6 0
0

1

2

3

3

4
4

5

6

7

7
2

5

6

1 2 5 6

2 6

1 5

1

7
7

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 44

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack
IP

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 45

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 46

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP
1 1 1 1 1 1 1 1

enable mask
1 1 1 1 1 1 1 1

stack
9

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 47

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 1 1 1 1 1 1 1

stack
9

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 48

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 1 1 1 1 1 1 1

stack
9

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 49

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 50

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 51

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask
1 0 1 0 1 0 1 0

stack
5

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 52

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 0 0 1 0 0 0

enable mask

1 0 1 0 1 0 1 0

stack

6

1 1 1 1 1 1 1 19

1 0 1 0 1 0 1 0

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 53

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
8

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 54

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

0 0 1 0 0 0 1 0

enable mask
1 0 1 0 1 0 1 0

stack
8

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 55

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP

1 0 1 0 1 0 1 0

enable mask

1 0 1 0 1 0 1 0

stack

8

1 1 1 1 1 1 1 19

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 56

Mask Stack Enables Divergence

1: if (TID % 2 == 0) {
2: f2();
3: if (TID % 4 == 0) {
4: f4();
5: }
6: else {
7: f2’();
8: }
9: }
10: else {
11: f(1);
12: if (TID % 3 == 0) {
13: f3();
14: }
15: else {
16: f1’();
17: }
18: }

IP enable mask stack
1 1 1 1 1 1 1 19

1 1 1 1 1 1 1 11 1 1 1 1 1 1 19

DirectX 10 specifies 4-deep stack

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 57

Predication Eliminates Branches
(and Divergence)

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 58

Predication Eliminates Branches
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 59

Predication Eliminates Branches
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 60

Predication Eliminates Branches
(and Divergence)

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

p1 p3 = !p2
p3 f2’();

p4 = !p1
p4 f(1);
p4 p5 = (TID % 3 == 0)
p5 f3();

p4 p6 = !p5
p6 f1’();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 61

Equivalence of Divergence and Predication

0
0

1

2

3

3

4
4

5

6

7

7

2 6

1 5

p1 = (TID % 2 == 0)
p1 f2();
p1 p2 = (TID % 4 == 0)
p2 f4();

p1 p3 = !p2
p3 f2’();

p4 = !p1
p4 f(1);
p4 p5 = (TID % 3 == 0)
p5 f3();

p4 p6 = !p5
p6 f1’();

if (TID % 2 == 0) {
f2();
if (TID % 4 == 0) {
f4();

}
else {
f2’();

}
}
else {
f(1);
if (TID % 3 == 0) {
f3();

}
else {
f1’();

}
}

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 13 (c) Mattan Erez 2008 62

When to Predicate and When to Diverge?
• Divergence

– No performance penalty if all warp branches the same way
– Some extra HW cost
– Static partitioning of stack resources (to warps)

• Predication
– Always excecute all paths
– Expose more ILP
– Add predication registers to instruction encoding

• Selects – software predication
– Simpler HW and just as flexible mode
– Simple instruction encoding
– Need to use more registers and insert select instructions

	EE382V: Principles in Computer Architecture�Parallelism and Locality�Fall 2008�Lecture 13 – GPU Architecture of NVIDIA GeForce
	Outline
	Make the Compute Core The Focus of the Architecture
	Thread Scheduling/Execution
	Scoreboarding
	Granularity and Resource Considerations
	SM Memory Architecture
	SM Register File
	Programmer View of Register File
	Matrix Multiplication Example
	More on Dynamic Partitioning
	ILP vs. TLP Example
	SM Memory Architecture
	Constants
	Textures
	SM Memory Architecture
	Shared Memory
	Multiply Using Several Blocks
	Matrix Multiplication �Shared Memory Usage
	Parallel Memory Architecture
	Bank Addressing Examples
	Bank Addressing Examples
	How addresses map to banks on G80
	Shared memory bank conflicts
	Linear Addressing
	Data types and bank conflicts
	Structs and Bank Conflicts
	Common Array Bank Conflict Patterns�1D
	A Better Array Access Pattern
	Vector Reduction with Bank Conflicts
	No Bank Conflicts
	Common Bank Conflict Patterns (2D)
	Load/Store (Memory read/write) Clustering/Batching
	Bandwidths of GeForce 9800 GTX
	Outline
	Communication
	Synchronization
	Atomic Operations
	Outline
	Control
	Conditionals within a Thread
	Control Flow
	Control Flow Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Mask Stack Enables Divergence
	Predication Eliminates Branches �(and Divergence)
	Predication Eliminates Branches �(and Divergence)
	Predication Eliminates Branches �(and Divergence)
	Predication Eliminates Branches �(and Divergence)
	Equivalence of Divergence and Predication
	When to Predicate and When to Diverge?

