

CUDA API and Language: Easy and Lightweight

- The API is an extension to the ANSI C programming language
 Low learning curve
- The hardware is designed to enable lightweight runtime and driver
 - → High performance

CUDA Programming Model: A Highly Multithreaded Coprocessor

- The GPU is viewed as a compute device that:
 _ Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads
- Differences between GPU and CPU threads
 GPU threads are extremely lightweight
 - Very little creation overhead
- GPU needs 1000s of threads for full efficiency
- Multi-core CPU needs only a few

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois,

ß	
CUDA is an Extens	sion to C
Declspecs global, device, shared,	device float filter[N]; global void convolve (float *image) {
local, constant Keywords – threadldx, blockldx Intrinsics –syncthreads	shared float region[M]; region[threadIdx] = image[i]; syncthreads()
Runtime API Memory, symbol, execution management	<pre>image[j] = result; } // Allcoate GBU memory void *myimage = cudsMalloc(bytes) // 100 blocks, 10 threads per block</pre>
Function launch David KirkNVIDIA and Wen-mei W. Hwu, 2007 ECE 49RAL, University of linais, Ubban-Champaign inciples of Computer Arc	convolve<<<100, 10>>> (myimage); chitecture, Fall 2008 - Lecture 16 (c) Mattan Frez 2008 111

Access Times

- Register dedicated HW single cycle
- Shared Memory dedicated HW two cycles
 - Hidden by warps
- Local Memory DRAM, no cache *slow*
- Global Memory DRAM, no cache *slow*
- Constant Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Texture Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Instruction Memory (invisible) DRAM, cached

Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois,

Programming Model: Common Programming Pattern

- Local and global memory reside in device memory (DRAM) - much slower access than shared memory
 – Uncached
- So, a common way of scheduling some computation on the device is to block it up to take advantage of fast shared memory:
- Partition the data set into data subsets that fit into shared memory
- Handle each data subset with one thread block by:
 Loading the subset from global memory to shared memory
 Performing the computation on the subset from shared memory: each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory

A quick review

- device = GPU = set of multiprocessors
- Multiprocessor = set of processors & shared memory
- Kernel = GPU program

NVIDIA Co

- Grid = array of thread blocks that execute a kernel
- Thread block = group of SIMD threads that execute a kernel and can communicate via shared memory

Memory	Location	Cached	Access	Who
Local	Off-chip	No	Read/write	One thread
Shared	On-chip	N/A	Read/write	All threads in a block
Global	Off-chip	No	Read/write	All threads + host
Constant	Off-chip	Yes	Read	All threads + host
Texture	Off-chip	Yes	Read	All threads + host

CUDA: C on the GPU

- A simple, explicit programming language solution
- Extend only where necessary
- __global__ void KernelFunc(...);
- __shared__ int SharedVar;
- KernelFunc<<< 500, 128 >>>(...);
- Explicit GPU memory allocation
 cudaMalloc(), cudaFree()
- Memory copy from host to device, etc.
 - cudaMemcpy(), cudaMemcpy2D(),...

© NVIDIA Corp. Inciples of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

<u>__global__</u> void

NVIDIA C

vectorAdd(float* iA, float* iB, float* oC)

int idx = threadIdx.x + blockDim.x * blockId.x; oC[idx] = iA[idx] + iB[idx];

Example: Vector Addition Host Code
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initalize h_A and h_B
// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**) &d_A, N * sizeof(float)));
cudaMalloc((void**) &d_B, N * sizeof(float)));
cudaMalloc((void**) &d_C, N * sizeof(float)));

// copy host memory to device cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostDoevice)); cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

© NVIDIA Corp. Inciples of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008

Compila	tion	
extensions I NVCC is a (- Works by in cudacc, g: NVCC can - Either C cor · That mus using and		
 Any execut dynamic lik The CUDA r 	table with CUDA code requires two	
© NVIDIA Corp. incl	ples of Computer Architecture, Fall 2008 Lecture 16 (c) Mattan Erez 2008	24

Role of Open64

Open64 compiler gives us

- A complete C/C++ compiler framework. Forward looking. We do not need to add infrastructure framework as our hardware arch advances over time.
- A good collection of high level architecture independent optimizations. All GPU code is in the inner loop.
- Compiler infrastructure that interacts well with other related standardized tools.

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 Access any device-specific data from host code and vice-
 - Versa
 - Call any host function from device code (e.g. printf) and vice-versa
- Detect deadlock situations caused by improper usage of ____syncthreads
- © NVIDIA Corp. Inciples of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 20

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
- Different instruction sets
- Use of extended precision for intermediate results
- There are various options to force strict single precision on the host

Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
- # of multiprocessors
- Shared memory size
- Register file size
- Threads per block
- Memory bandwidth
- You can even make apps self-tuning (like FFTW)
 - "Experiment" mode discovers and saves optimal config

Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008

CUDA Optimization Priorities Memory coalescing is #1 priority Highest I/S optimization Optimize for locality Iake advantage of shared memory Very high bandwidth Threads can cooperate to save work Use parallelism efficiently Keep the GPU busy at all times High arithmetic / bandwidth ratio Many threads & thread blocks Leave bank conflicts and divergence for last! - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions

NVIDIA Co