
1

EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 16 – CUDA

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 2

Outline
• CUDA

– Overview
– Development process
– Performance Optimization
– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 3

Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

Matches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 4

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

The CUDA Platform

• The G80 GPU is not integrated into the CPU
– Connects through a PCI Express bus
– Communicates through OS (drivers)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 5

CUDA Programming System

GPU

CPU

CUDA Runtime

CUDA Libraries
(FFT, BLAS)

CUDA Driver

Application

• Targeted software stack
– Compute oriented drivers, language,

and tools

• Driver for loading computation
programs into GPU
– Standalone Driver - Optimized for

computation
– Interface designed for compute -

graphics free API
– Data sharing with OpenGL buffer

objects
– Guaranteed maximum download &

readback speeds
– Explicit GPU memory management

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 6

Overall Performance Can be Limited by
Interface

0
10
20
30
40
50
60

H.264 LBM RC5-72 FEM RPES PNS SAXPY TPACF FDTD MRI-Q MRI-
FHD

Kernel
Application

2

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 7

Overall Performance Can be Limited by
Interface

SGEMM performance

0

20

40

60
80

100

120

140

0 512 1024 1536 2048 2560

N

G
flo

ps

GPU+I/O GPU+I/O Pinned GPU only

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 8

CUDA API and Language:
Easy and Lightweight

• The API is an extension to the ANSI C
programming language

Low learning curve

• The hardware is designed to enable lightweight
runtime and driver

High performance

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 9

CUDA Programming Model:
A Highly Multithreaded Coprocessor

• The GPU is viewed as a compute device that:
– Is a coprocessor to the CPU or host
– Has its own DRAM (device memory)
– Runs many threads in parallel

• Data-parallel portions of an application are
executed on the device as kernels which run in
parallel on many threads

• Differences between GPU and CPU threads
– GPU threads are extremely lightweight

• Very little creation overhead
– GPU needs 1000s of threads for full efficiency

• Multi-core CPU needs only a few
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 10

CUDA is an Extension to C

gcc / cl

G80 SASS
foo.sass

OCG

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU Assembly
foo.s

CPU Host Code
foo.cpp

Integrated source
(foo.cu)

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 11

CUDA is an Extension to C

• Declspecs
– global, device, shared,

local, constant

• Keywords
– threadIdx, blockIdx

• Intrinsics
– __syncthreads

• Runtime API
– Memory, symbol,

execution
management

• Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

__shared__ float region[M];
...

region[threadIdx] = image[i];

__syncthreads()
...

image[j] = result;
}

// Allocate GPU memory
void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block
convolve<<<100, 10>>> (myimage);

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 12

Thread Batching: Grids and Blocks
• A kernel is executed as a grid

of thread blocks
– All threads share data memory

space
• A thread block is a batch of

threads that can cooperate
with each other by:
– Synchronizing their execution

• For hazard-free shared
memory accesses

– Efficiently sharing data through
a low latency shared memory

• Two threads from two
different blocks cannot
cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corp.

3

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 13

Block and Thread IDs
• Threads and blocks have IDs

– So each thread can decide what
data to work on

– Block ID: 1D or 2D
– Thread ID: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 14

CUDA Device Memory Space Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The host can R/W
global, constant,
and texture
memories

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 15

Access Times

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

• Register – dedicated HW - single cycle

• Shared Memory – dedicated HW - two cycles
– Hidden by warps

• Local Memory – DRAM, no cache - *slow*

• Global Memory – DRAM, no cache - *slow*

• Constant Memory – DRAM, cached, 1…10s…100s of cycles,
depending on cache locality

• Texture Memory – DRAM, cached, 1…10s…100s of cycles,
depending on cache locality

• Instruction Memory (invisible) – DRAM, cached

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 16

Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH

• Without blocking:
– One thread handles one element of P
– M and N are loaded WIDTH times from

global memory

M

N

P

W
ID

TH
W

ID
TH

WIDTH WIDTH

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 17

Programming Model:
Common Programming Pattern

• Local and global memory reside in device memory
(DRAM) - much slower access than shared memory
– Uncached

• So, a common way of scheduling some
computation on the device is to block it up to take
advantage of fast shared memory:
– Partition the data set into data subsets that fit into shared

memory
– Handle each data subset with one thread block by:

• Loading the subset from global memory to shared memory
• Performing the computation on the subset from shared memory;

each thread can efficiently multi-pass over any data element
• Copying results from shared memory to global memory

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 18

Programming Model:
Square Matrix Multiplication Example

• P = M * N of size WIDTH x WIDTH
• With blocking:

– One thread block handles one BLOCK_SIZE
x BLOCK_SIZE sub-matrix Psub of P

– M and N are only loaded WIDTH / BLOCK_SIZE
times from global memory

• Great saving of
memory
bandwidth!

M

N

P

Psub

BLOCK_SIZEBLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

BL
O

C
K_

SI
ZE

BL
O

C
K_

SI
ZE

BL
O

C
K_

SI
ZE

BL
O

C
K_

SI
ZE

W
ID

TH
W

ID
TH

WIDTH WIDTH

© NVIDIA Corp.

4

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 19

A quick review
• device = GPU = set of multiprocessors
• Multiprocessor = set of processors & shared memory
• Kernel = GPU program
• Grid = array of thread blocks that execute a kernel
• Thread block = group of SIMD threads that execute a

kernel and can communicate via shared memory

One threadRead/writeNoOff-chipLocal
All threads in a
block

Read/writeN/AOn-chipShared

All threads + hostRead/writeNoOff-chipGlobal
All threads + hostReadYesOff-chipConstant
All threads + hostReadYesOff-chipTexture

WhoAccessCachedLocationMemory

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 20

CUDA: C on the GPU
• A simple, explicit programming language solution

• Extend only where necessary

__global__ void KernelFunc(...);

__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

• Explicit GPU memory allocation
– cudaMalloc(), cudaFree()

• Memory copy from host to device, etc.
– cudaMemcpy(), cudaMemcpy2D(), ...

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 21

Example: Vector Addition Kernel
// Pair-wise addition of vector elements

// One thread per addition

__global__ void

vectorAdd(float* iA, float* iB, float* oC)

{

int idx = threadIdx.x + blockDim.x * blockId.x;

oC[idx] = iA[idx] + iB[idx];

}

© NVIDIA Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 22

Example: Vector Addition Host Code
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// … initalize h_A and h_B

// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**) &d_A, N * sizeof(float)));
cudaMalloc((void**) &d_B, N * sizeof(float)));
cudaMalloc((void**) &d_C, N * sizeof(float)));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),

cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float),

cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 23

Outline
• Bandwidths
• CUDA

– Overview
– Development process
– Performance Optimization
– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 24

Compilation

• Any source file containing CUDA language
extensions must be compiled with nvcc

• NVCC is a compiler driver
– Works by invoking all the necessary tools and compilers like

cudacc, g++, cl, ...
• NVCC can output:

– Either C code (CPU Code)
• That must then be compiled with the rest of the application

using another tool
– Or PTX object code directly

• Any executable with CUDA code requires two
dynamic libraries:
– The CUDA runtime library (cudart)
– The CUDA core library (cuda)

© NVIDIA Corp.

5

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 25

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code

CPU Code

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 26

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code Virtual

Physical

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 27

NVCC & PTX Virtual Machine

• EDG
– Separate GPU vs. CPU

code
• Open64

– Generates GPU PTX
assembly

• Parallel Thread
eXecution (PTX)
– Virtual Machine and ISA
– Programming model
– Execution resources and

state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 28

Role of Open64
Open64 compiler gives us

• A complete C/C++ compiler framework. Forward looking. We
do not need to add infrastructure framework as our
hardware arch advances over time.

• A good collection of high level architecture independent
optimizations. All GPU code is in the inner loop.

• Compiler infrastructure that interacts well with other related
standardized tools.

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 29

Debugging Using the
Device Emulation Mode

• An executable compiled in device emulation
mode (nvcc -deviceemu) runs completely on
the host using the CUDA runtime
– No need of any device and CUDA driver
– Each device thread is emulated with a host thread

• When running in device emulation mode, one
can:
– Use host native debug support (breakpoints, inspection, etc.)
– Access any device-specific data from host code and vice-

versa
– Call any host function from device code (e.g. printf) and

vice-versa
– Detect deadlock situations caused by improper usage of
__syncthreads

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 30

Device Emulation Mode Pitfalls
• Emulated device threads execute sequentially,

so simultaneous accesses of the same memory
location by multiple threads potentially produce
different results

• Dereferencing device pointers on the host or
host pointers on the device can produce correct
results in device emulation mode, but will
generate an error in device execution mode

• Results of floating-point computations will slightly
differ because of:
– Different compiler outputs
– Different instruction sets
– Use of extended precision for intermediate results

• There are various options to force strict single precision on the
host

© NVIDIA Corp.

6

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 31

Parameterize Your Application

• Parameterization helps adaptation to different
GPUs

• GPUs vary in many ways
– # of multiprocessors
– Shared memory size
– Register file size
– Threads per block
– Memory bandwidth

• You can even make apps self-tuning (like FFTW)
– “Experiment” mode discovers and saves optimal config

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 32

Outline
• Bandwidths
• CUDA

– Overview
– Development process
– Performance Optimization
– Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 16 (c) Mattan Erez 2008 33

CUDA Optimization Priorities
• Memory coalescing is #1 priority

– Highest !/$ optimization
– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth
– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times
– High arithmetic / bandwidth ratio
– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding if

avoiding them will cost more instructions
© NVIDIA Corp.

