Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel coprocessor

Matches architecture features
Specific parameters not exposed

CUDA Programming System

- Targeted software stack
 - Compute oriented drivers, language, and tools

- Driver for loading computation programs into GPU
 - Standalone Driver - Optimized for computations
 - Interface designed for compute - graphics-free API
 - Data sharing with OpenGL buffer objects
 - Guaranteed maximum download & readback speeds
 - Explicit GPU memory management

Overall Performance Can Be Limited by Interface

The CUDA Platform

- The G80 GPU is not integrated into the CPU
 - Connects through a PCI Express bus
 - Communicates through O/S (driver)
Overall Performance Can Be Limited by Interface

CUDA API and Language: Easy and Lightweight

- The API is an extension to the ANSI C programming language
- The hardware is designed to enable lightweight runtime and driver

CUDA Programming Model: A Highly Multithreaded Coprocessor

- The GPU is viewed as a compute device that:
 - Is a coprocessor to the CPU or host
 - Has its own DRAM (device memory)
 - Runs many threads in parallel
- Data-parallel portions of an application are executed on the device as kernels which run in parallel on many threads
- Differences between GPU and CPU threads
 - GPU threads are extremely lightweight
 - Very little creation overhead
 - GPU needs 1000s of threads for full efficiency
 - Multicore CPU needs only a few

CUDA is an Extension to C

- Declspec:
 - __device__
 - __global__
- Keywords:
 - threadIdx, blockIdx
- Infrinsics:
 - __syncthreads
- Runtime API
 - Memory, symbol, execution management

Thread Batching: Grids and Blocks

- A kernel is executed as a grid of thread blocks
- All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate
Block and Thread IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - …

CUDA Device Memory Space Overview

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

- The host can R/W global, constant, and texture memories

Access Times

- Register – dedicated HW - single cycle
- Shared Memory – dedicated HW - two cycles
 - Hidden by warps
- Local Memory – DRAM, no cache - *slow*
- Global Memory – DRAM, no cache - *slow*
- Constant Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Texture Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Instruction Memory (invisible) – DRAM, cached

Programming Model: Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- Without blocking:
 - One thread handles one element of P
 - M and N are loaded WIDTH times from global memory
- So, a common way of scheduling some computation on the device is to block it up to take advantage of fast shared memory:
 - Partition the data set into data subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory
 - Performing the computation on the subset from shared memory
 - Copying results from shared memory to global memory

- Great saving of memory bandwidth!
A quick review

- device = GPU = set of multiprocessors
- Multiprocessor = set of processors & shared memory
- Kernel = GPU program
- Grid = array of thread blocks that execute a kernel
- Thread block = group of SIMD threads that execute a kernel and can communicate via shared memory

<table>
<thead>
<tr>
<th>Memory Location</th>
<th>Cached</th>
<th>Access</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>Off-chip</td>
<td>No</td>
<td>One thread</td>
</tr>
<tr>
<td>Shared</td>
<td>Off-chip</td>
<td>Yes</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>

CUDA: C on the GPU

- A simple, explicit programming language solution
- Extend only where necessary

```c
__global__ void KernelFunc(...);
__shared__ int SharedVar;
KernelFunc<<< 500, 128 >>>(...);
```

- Explicit GPU memory allocation
- cudaMemcpy(), cudaMemcpy2D()
- Memory copy from host to device, etc.

Example: Vector Addition Kernel

```c
// Pair-wise addition of vector elements
// One thread per addition
__global__ void vectorAdd(float* iA, float* iB, float* oC)
{
    int idx = threadIdx.x + blockDim.x * blockId.x;
    oC[idx] = iA[idx] + iB[idx];
}
```

Example: Vector Addition Host Code

```c
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));// … initialize h_A and h_B
// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc( (void**) &d_A, N * sizeof(float)));
cudaMalloc( (void**) &d_B, N * sizeof(float)));
cudaMalloc( (void**) &d_C, N * sizeof(float)));
// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);
// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256 >>>( d_A, d_B, d_C);
```

Outline

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax
- Most slides courtesy Massimiliano Fatica (NVIDIA)

Compilation

- Any source file containing CUDA language extensions must be compiled with `nvcc`
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl,...
- NVCC can output:
 - Either C code (CPU Code)
 - That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly
- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cuda...)
 - The CUDA core library (cuda)...
Composing CUDA

Compiling CUDA

NVCC
C/C++ CUDA Application

PTX to Target Compiler

G80 — GPU

Target code

Compiling CUDA

NVCC
C/C++ CUDA Application

PTX to Target Compiler

G80 — GPU

PTX Code

CPU Code

Target code

Compiling CUDA

NVCC
C/C++ CUDA Application

PTX to Target Compiler

G80 — GPU

PTX Code

CPU Code

Target code

Compiling CUDA

NVCC
C/C++ CUDA Application

PTX to Target Compiler

G80 — GPU

PTX Code

CPU Code

Target code

Role of Open64

Open64 compiler gives us

- A complete C/C++ compiler framework. Forward looking. We do not need to add infrastructure framework as our hardware architecture advances over time.
- A good collection of high level architecture independent optimizations. All GPU code is in the inner loop.
- Compiler infrastructure that interacts well with other related standard tools.

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc --deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of __syncthreads

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
- There are various options to force strict single precision on the host

© NVIDIA Corp.
Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Shared memory size
 - Register file size
 - Threads per block
 - Memory bandwidth
- You can even make apps self-tuning (like FFTW)
 - “Experiment” mode discovers and saves optimal config

Outline

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax
- Most slides courtesy Massimiliano Fatica (NVIDIA)

CUDA Optimization Priorities

- Memory coalescing is #1 priority
 - Highest I/O optimization
 - Optimize for locality
- Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work
- Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks
- Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions