
1

EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 17 – CUDA (II)

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 2

Outline
• CUDA

– Performance Optimization

• Some slides courtesy Massimiliano Fatica (NVIDIA)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 3

Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

Matches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 4

CUDA Device Memory Space Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant

memory
– Read only per-grid texture

memory

(Device) Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

• The host can R/W
global, constant,
and texture
memories

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 5

A quick review
• device = GPU = set of multiprocessors
• Multiprocessor = set of processors & shared memory
• Kernel = GPU program
• Grid = array of thread blocks that execute a kernel
• Thread block = group of SIMD threads that execute a

kernel and can communicate via shared memory

One threadRead/writeNoOff-chipLocal
All threads in a
block

Read/writeN/AOn-chipShared

All threads + hostRead/writeNoOff-chipGlobal
All threads + hostReadYesOff-chipConstant
All threads + hostReadYesOff-chipTexture

WhoAccessCachedLocationMemory

© NVIDIA Corp. © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 6

CUDA Optimization Priorities
• Memory coalescing is #1 priority

– Highest !/$ optimization
– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth
– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times
– High arithmetic / bandwidth ratio
– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding if

avoiding them will cost more instructions
© NVIDIA Corp.

2

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 7

CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

• Use Parallelism Efficiently

• Use appropriate machanisms

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 8

Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache
– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly
data transfers
– Even low parallelism computations can sometimes be faster

than transfering back and forth to host

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 9

Modern DRAMs are Sensitive to Pattern

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1x
1rd

1x
1rd

cf
1x

1rw
1x

1rw
cf

1x
40

rd
48

x4
8rw cr1

rd
cr1

rw r1r
d

r1r
w

r4r
d

r4r
w

Inorder Row Row+Col

%
p

ea
k

BW

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 10

Optimize Memory Pattern (“Coherence”)

• Coalesced vs. Non-coalesced = order of
magnitude
– Global/Local device memory
– Sequential access by threads in a half-warp get coalesced

• Optimize for spatial locality in cached texture
memory

• Constant memory provides broadcast within SM

• In shared memory, avoid high-degree bank
conflicts

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 11

Take Advantage of Shared Memory

• Hundreds of times faster than global memory
• Threads can cooperate via shared memory

• Use one / a few threads to load / compute data
shared by all threads

• Use it to avoid non-coalesced access
– Stage loads and stores in shared memory to re-order non-

coalesceable addressing
– See the transpose SDK sample for an example

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 12

Bank Addressing Examples

• No Bank Conflicts
– Linear addressing

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

3

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 13

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing

stride == 2

• 8-way Bank Conflicts
– Linear addressing

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 14

Data types and bank conflicts

• Structs
• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 15

Use Parallelism Efficiently

• Partition your computation to keep the GPU
multiprocessors equally busy
– Many threads, many thread blocks

• Keep resource usage low enough to support
multiple active thread blocks per multiprocessor
– Registers, shared memory

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 16

Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
– Maximize use of shared memory
– Maximize coherence of cached accesses
– Minimize accesses to (uncached) global and local memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory
accesses with HW computation
– High arithmetic intensity programs

• i.e. high ratio of math to memory transactions
– Many concurrent threads

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 17

Data Transfers

• Device memory to host memory bandwidth much
lower than device memory to device bandwidth
– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
– Intermediate data structures can be allocated, operated on,

and deallocated without ever copying them to host memory

• Group transfers
– One large transfer much better than many small ones

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 18

Page-Locked Memory Transfers

• cuMemAllocHost() allows allocation of page-
locked host memory

• Enables highest cudaMemcpy performance
– 3.2 GB/s common on PCI-e x16
– ~4 GB/s measured on nForce 680i motherboards

• See the “bandwidthTest” CUDA SDK sample

• Use with caution
– Allocating too much page-locked memory can reduce overall

system performance
– Test your systems and apps to learn their limits

4

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 19

Optimizing threads per block

• Given: total threads in a grid
– Choose block size and number of blocks to maximize

occupancy:

Occupancy: # of warps running concurrently on a
multiprocessor divided by maximum # of warps that can run
concurrently

(Demonstrate CUDA Occupancy Calculator)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 20

Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
– So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
– Shared memory and registers
– Multiple blocks can run concurrently in a multiprocessor
– If multiple blocks coexist that aren’t all waiting at a

__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
– Blocks stream through machine in pipeline fashion
– 1000 blocks per grid will scale across multiple generations

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 21

Occupancy != Performance

• Increasing occupancy does not necessarily
increase performance

BUT…

• Low-occupancy multiprocessors cannot
adequately hide latency on memory-bound kernels
– (It all comes down to arithmetic intensity and available

parallelism)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 22

Optimizing threads per block

• Choose threads per block as a multiple of warp size
– Avoid wasting computation on under-populated warps

• More threads per block == better memory latency
hiding

• But, more threads per block == fewer regs per
thread
– Kernel invocations can fail if too many registers are used

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks
– 192 or 256 threads a better choice

• Usually still enough regs to compile and invoke successfully
– This all depends on your computation!

• Experiment! © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 23

Programmer View of Register File

• There are 8192 registers
in each SM in G80
– This is an implementation

decision, not part of CUDA
– Registers are dynamically

partitioned across all Blocks
assigned to the SM

– Once assigned to a Block,
the register is NOT
accessible by threads in
other Blocks

– Each thread in the same
Block only access registers
assigned to itself

4 blocks 3 blocks

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign © Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 24

Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices,

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability

5

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 25

Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel
– Can build some sync with atomic operations

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17 (c) Mattan Erez 2008 26

Atomic Operations

• Exception to communication between blocks
• Atomic read-modify-write

– Shared memory
– Global memory

• Simple ALU operations
– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations
– Compare-and-swap, exchange

