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Outline
• CUDA

– Performance Optimization

• Some slides courtesy Massimiliano Fatica (NVIDIA)
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Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80 
processor for compute
– CUDA follows the architecture very closely

• General purpose programming model
– User kicks off batches of threads on the GPU
– GPU = dedicated super-threaded, massively data parallel co-

processor

Matches architecture features
Specific parameters not exposed

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign
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CUDA Device Memory Space Overview

• Each thread can:
– R/W per-thread registers
– R/W per-thread local memory
– R/W per-block shared memory
– R/W per-grid global memory
– Read only per-grid constant 

memory
– Read only per-grid texture 

memory
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• The host can R/W 
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memories
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A quick review
• device = GPU = set of multiprocessors 
• Multiprocessor = set of processors & shared memory
• Kernel = GPU program
• Grid = array of thread blocks that execute a kernel
• Thread block = group of SIMD threads that execute a 

kernel and can communicate via shared memory

One threadRead/writeNoOff-chipLocal
All threads in a 
block

Read/writeN/AOn-chipShared

All threads + hostRead/writeNoOff-chipGlobal
All threads + hostReadYesOff-chipConstant
All threads + hostReadYesOff-chipTexture

WhoAccessCachedLocationMemory
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CUDA Optimization Priorities
• Memory coalescing is #1 priority

– Highest !/$ optimization
– Optimize for locality

• Take advantage of shared memory
– Very high bandwidth
– Threads can cooperate to save work

• Use parallelism efficiently
– Keep the GPU busy at all times
– High arithmetic / bandwidth ratio
– Many threads & thread blocks

• Leave bank conflicts and divergence for last!
– 4-way and smaller conflicts are not usually worth avoiding if 

avoiding them will cost more instructions
© NVIDIA Corp.
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CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

• Use Parallelism Efficiently

• Use appropriate machanisms

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 17  (c) Mattan Erez 2008 8

Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache
– GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly 
data transfers
– Even low parallelism computations can sometimes be faster 

than transfering back and forth to host
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Modern DRAMs are Sensitive to Pattern
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Optimize Memory Pattern (“Coherence”)

• Coalesced vs. Non-coalesced = order of 
magnitude
– Global/Local device memory
– Sequential access by threads in a half-warp get coalesced

• Optimize for spatial locality in cached texture 
memory

• Constant memory provides broadcast within SM

• In shared memory, avoid high-degree bank 
conflicts
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Take Advantage of Shared Memory

• Hundreds of times faster than global memory
• Threads can cooperate via shared memory

• Use one / a few threads to load / compute data 
shared by all threads

• Use it to avoid non-coalesced access
– Stage loads and stores in shared memory to re-order non-

coalesceable addressing
– See the transpose SDK sample for an example
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Bank Addressing Examples

• No Bank Conflicts
– Linear addressing 

stride == 1

• No Bank Conflicts
– Random 1:1 Permutation

Bank 15
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Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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Bank Addressing Examples

• 2-way Bank Conflicts
– Linear addressing 

stride == 2

• 8-way Bank Conflicts
– Linear addressing 

stride == 8

Thread 11
Thread 10
Thread 9
Thread 8

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 15

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 15

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2
Bank 1
Bank 0x8

x8
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Data types and bank conflicts

• Structs
• This has no conflicts if type of shared is 32-bits:

foo = shared[baseIndex + threadIdx.x]

• But not if the data type is smaller
– 4-way bank conflicts:
__shared__ char shared[];
foo = shared[baseIndex + threadIdx.x];

– 2-way bank conflicts:
__shared__ short shared[];
foo = shared[baseIndex + threadIdx.x];
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Use Parallelism Efficiently

• Partition your computation to keep the GPU 
multiprocessors equally busy
– Many threads, many thread blocks

• Keep resource usage low enough to support 
multiple active thread blocks per multiprocessor
– Registers, shared memory
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Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
– Maximize use of shared memory
– Maximize coherence of cached accesses
– Minimize accesses to (uncached) global and local memory
– Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory 
accesses with HW computation
– High arithmetic intensity programs

• i.e. high ratio of math to memory transactions
– Many concurrent threads
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Data Transfers

• Device memory to host memory bandwidth much 
lower than device memory to device bandwidth
– 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
– Intermediate data structures can be allocated, operated on, 

and deallocated without ever copying them to host memory

• Group transfers
– One large transfer much better than many small ones
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Page-Locked Memory Transfers

• cuMemAllocHost() allows allocation of page-
locked host memory

• Enables highest cudaMemcpy performance
– 3.2 GB/s common on PCI-e x16
– ~4 GB/s measured on nForce 680i motherboards

• See the “bandwidthTest” CUDA SDK sample

• Use with caution
– Allocating too much page-locked memory can reduce overall 

system performance
– Test your systems and apps to learn their limits
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Optimizing threads per block

• Given: total threads in a grid
– Choose block size and number of blocks to maximize 

occupancy:

Occupancy: # of warps running concurrently on a 
multiprocessor divided by maximum # of warps that can run 
concurrently 

(Demonstrate CUDA Occupancy Calculator)
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Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
– So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
– Shared memory and registers
– Multiple blocks can run concurrently in a multiprocessor
– If multiple blocks coexist that aren’t all waiting at a 

__syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
– So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
– Blocks stream through machine in pipeline fashion
– 1000 blocks per grid will scale across multiple generations
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Occupancy != Performance

• Increasing occupancy does not necessarily 
increase performance

BUT…

• Low-occupancy multiprocessors cannot 
adequately hide latency on memory-bound kernels
– (It all comes down to arithmetic intensity and available 

parallelism)
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Optimizing threads per block

• Choose threads per block as a multiple of warp size
– Avoid wasting computation on under-populated warps

• More threads per block == better memory latency 
hiding

• But, more threads per block == fewer regs per 
thread
– Kernel invocations can fail if too many registers are used

• Heuristics
– Minimum: 64 threads per block

• Only if multiple concurrent blocks 
– 192 or 256 threads a better choice

• Usually still enough regs to compile and invoke successfully
– This all depends on your computation!
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Programmer View of Register File

• There are 8192 registers 
in each SM in G80
– This is an implementation 

decision, not part of CUDA
– Registers are dynamically 

partitioned across all Blocks 
assigned to the SM

– Once assigned to a Block, 
the register is NOT 
accessible by threads in 
other Blocks

– Each thread in the same 
Block only access registers 
assigned to itself

4 blocks 3 blocks
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Communication

• How do threads communicate?

• Remember the execution model:
– Data parallel streams that represent independent vertices, 

triangles, fragments, and pixels in the graphics world
– These never communicate

• Some communication allowed in compute mode:
– Shared memory for threads in a thread block

• No special communication within warp or using registers
– No communication between thread blocks
– Kernels communicate through global device memory

• Mechanisms designed to ensure portability
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Synchronization

• Do threads need to synchronize?
– Basically no communication allowed

• Threads in a block share memory – need sync
– Warps scheduled OoO, can’t rely on warp order
– Barrier command for all threads in a block
– __synchthreads()

• Blocks cannot synchronize
– Implicit synchronization at end of kernel
– Can build some sync with atomic operations
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Atomic Operations

• Exception to communication between blocks
• Atomic read-modify-write

– Shared memory
– Global memory

• Simple ALU operations
– Add, subtract, AND, OR, min, max, inc, dec

• Exchange operations
– Compare-and-swap, exchange


