Outline

• CUDA
 – Performance Optimization

• Some slides courtesy Massimiliano Fatica (NVIDIA)
Compute Unified Device Architecture

• CUDA is a programming system for utilizing the G80 processor for compute
 – CUDA follows the architecture very closely

• General purpose programming model
 – User kicks off batches of threads on the GPU
 – GPU = dedicated super-threaded, massively data parallel co-processor

Matches architecture features
Specific parameters not exposed
CUDA Device Memory Space Overview

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

- The host can R/W global, constant, and texture memories
A quick review

- device = GPU = set of multiprocessors
- Multiprocessor = set of processors & shared memory
- Kernel = GPU program
- Grid = array of thread blocks that execute a kernel
- Thread block = group of SIMD threads that execute a kernel and can communicate via shared memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>One thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>Read/write</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>
CUDA Optimization Priorities

• Memory coalescing is #1 priority
 - Highest !/$ optimization
 - Optimize for locality

• Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work

• Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks

• Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions
CUDA Optimization Strategies

- Optimize Algorithms for the GPU
- Optimize Memory Access Pattern
- Take Advantage of On-Chip Shared Memory
- Use Parallelism Efficiently
- Use appropriate mechanisms
Optimize Algorithms for the GPU

• Maximize independent parallelism

• Maximize arithmetic intensity (math/bandwidth)

• Sometimes it’s better to recompute than to cache
 – GPU spends its transistors on ALUs, not memory

• Do more computation on the GPU to avoid costly data transfers
 – Even low parallelism computations can sometimes be faster than transferring back and forth to host
Modern DRAMs are Sensitive to Pattern

- Inorder
- Row
- Row+Col

% peak BW
Optimize Memory Pattern ("Coherence")

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced

- Optimize for spatial locality in cached texture memory

- Constant memory provides broadcast within SM

- In shared memory, avoid high-degree bank conflicts
Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory

- Use one / a few threads to load / compute data shared by all threads

- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
 - See the transpose SDK sample for an example
Bank Addressing Examples

- No Bank Conflicts
 - Linear addressing
 stride == 1

- No Bank Conflicts
 - Random 1:1 Permutation
Bank Addressing Examples

- **2-way Bank Conflicts**
 - Linear addressing
 - stride == 2

- **8-way Bank Conflicts**
 - Linear addressing
 - stride == 8
Data types and bank conflicts

- ** structs **
- This has no conflicts if type of `shared` is 32-bits:

  ```
  foo = shared[baseIndex + threadIdx.x]
  ```

- But not if the data type is smaller
 - 4-way bank conflicts:
    ```
    __shared__ char shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```
 - 2-way bank conflicts:
    ```
    __shared__ short shared[];
    foo = shared[baseIndex + threadIdx.x];
    ```
Use Parallelism Efficiently

• Partition your computation to keep the GPU multiprocessors equally busy
 – Many threads, many thread blocks

• Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 – Registers, shared memory
Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 • i.e. high ratio of math to memory transactions
 - Many concurrent threads
Data Transfers

• Device memory to host memory bandwidth much lower than device memory to device bandwidth
 – 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
 – Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory

• Group transfers
 – One large transfer much better than many small ones
Page-Locked Memory Transfers

- `cuMemAllocHost()` allows allocation of page-locked host memory
- Enables highest `cudaMemcpy` performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards

- See the “bandwidthTest” CUDA SDK sample

- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits
Optimizing threads per block

• **Given: total threads in a grid**

 - Choose block size and number of blocks to maximize occupancy:

 Occupancy: \(\# \) of warps running concurrently on a multiprocessor divided by maximum \(\# \) of warps that can run concurrently

 (Demonstrate CUDA Occupancy Calculator)
Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
 - So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
 - Shared memory and registers
 - Multiple blocks can run concurrently in a multiprocessor
 - If multiple blocks coexist that aren’t all waiting at a __syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
 - So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
 - Blocks stream through machine in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations
Occupancy != Performance

• Increasing occupancy does not necessarily increase performance

BUT...

• Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 – (It all comes down to arithmetic intensity and available parallelism)
Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
- More threads per block \Rightarrow better memory latency hiding
- But, more threads per block \Rightarrow fewer regs per thread
 - Kernel invocations can fail if too many registers are used

Heuristics
- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation!
 - Experiment!
Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same Block only access registers assigned to itself
Communication

• How do threads communicate?

• Remember the execution model:
 – Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world
 – These never communicate

• Some communication allowed in compute mode:
 – Shared memory for threads in a thread block
 • No special communication within warp or using registers
 – No communication between thread blocks
 – Kernels communicate through global device memory

• Mechanisms designed to ensure portability
Synchronization

• Do threads need to synchronize?
 – Basically no communication allowed

• Threads in a block share memory – need sync
 – Warps scheduled OoO, can’t rely on warp order
 – Barrier command for all threads in a block
 – __syncthreads()

• Blocks cannot synchronize
 – Implicit synchronization at end of kernel
 – Can build some sync with atomic operations
Atomic Operations

• Exception to communication between blocks
• Atomic read-modify-write
 – Shared memory
 – Global memory
• Simple ALU operations
 – Add, subtract, AND, OR, min, max, inc, dec
• Exchange operations
 – Compare-and-swap, exchange