

Hardware Efficiency → Greater Software Responsibility

- Hardware matches VLSI strengths
 - Throughput-oriented design
 - Parallelism, locality, and partitioning
 - Hierarchical control to simplify instruction sequencing
 - Minimalistic HW scheduling and allocation
 - Bulk operations and decoupling
- Software given more explicit control
- Explicit hierarchical scheduling and latency hidingExplicit parallelism
- Explicit locality management and communication
- Generalize streaming with *bulk gather-compute-scatter*

Must reduce HW "waste" but no free lunch

Stream Processors and GPUs	
Stream Processors	GPUs
Bulk kernel computation Kernel uses "scalar" ISA VLIW + SIMD	Bulk kernel computation Kernel uses "scalar" ISA SIMD
Bulk memory operations Software latency hiding Stream mem. System	Scalar mem. Operations Threads to hide latency Threads to fill mem. Pipe Small shared memory
 Hw optimized local mem. Locality opportunities 	 Small shared memory Limited locality
Minimize off-chip transfers With capable mem system	 Rely on off-chip BW Needed for graphics
 So far mostly load-time parameters 	 Dynamic work-loads Mostly read-only
Mattan Erez EE382V: Principles of Computer Architecture. Fall 2008 Lecture 18 (c) Mattan Erez 2008	

Outline

- Hardware strengths and the stream execution model
- Stream Processor hardware
- Parallelism
- Locality
- Hierarchical control and scheduling
 Throughput oriented I/O
- Implications on the software system
 Current status
- More details on HW and SW tradeoffs
 Locality, parallelism, and scheduling
- Irregular streaming applications

Generalizing the Stream Model

- Data access determinable well in advance of data use
 - Latency hiding
- Blocking
- Reformulate to *gather compute scatter* Block phases into *bulk operations*
- "Well in advance": enough to hide latency between blocks and SWP
- Assume data parallelism within compute phase

- Data access determinable well in advance of data use
 Latency hiding
- Latency hidin
 Blocking
- Reformulate to gather compute scatter
 Block phases into bulk operations

Generalizing the Stream Model

- Medium granularity bulk operations
 Kernels and stream-LD/ST
- Predictable sequence (of bulk operations)
 Latency hiding, explicit communication
- Hierarchical control
- Inter- and intra-bulk
- Throughput-oriented design
- Locality and parallelism
- kernel locality + producer-consumer reuse
- Parallelism within kernels

Generalized stream model matches VLSI requirements

Outline

- Hardware strengths and the stream execution model
- Stream Processor hardware

 Parallelism
- Loc
- Hierarchical control and scheduling

Throughput oriented I/O

- Implications on the software system Current status
- More details on HW and SW tradeoffs
 Locality, parallelism, and scheduling
- Irregular streaming applications

