

Systems and Technology Group Agenda Power Efficient Processor Architecture System Trends Cell Processor Overview	Systems and Technology Group	Systems and Technology Group Limiters to Processor Performance Power wall Memory wall Frequency wall
2 0.000 BM Corporation	8 2005 BM Corporation	9.000 EM Coposition
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	Systems and Technology Group Memory wall • Main memory now nearly 1000 cycles from the processor - Situation worse with (on-chip) SMP • Memory latency penalties drive inefficiency in the design - Expensive and sophisticated hardware to try and deal with it - Programmers that try to gain control of cache content, but are indered by the hardware mechanisms • Latency induced bandwidth limitations • Much of the bandwidth to memory in systems can only be used speculatively • Diminishing returns from added bandwidth on traditional systems	Systems and Technology Group Microprocessor Efficiency • Recent History: - Gelsinger's law • 1.4x more performance for 2x more transistors - Hofstee's corollary • 1/1.4x efficiency loss in every generation • Examples: Cache size, OoO, Superscalar, etc. etc. • Re-examine microarchitecture with performance per transistor as metric - Pipelining is last clear win

Systems and Technology Cloud Gell Highlights a Observed clock speed - > 4 GHz a Peak performance (single precision) - > 256 GFlops a Peak performance (double precision) - > 26 GFlops a Yea 21 mm2 a Technology 90nm SOI a Total # of transistors 234M	<page-header></page-header>	
<page-header></page-header>		<page-header><page-header><page-header></page-header></page-header></page-header>

Parallelism	 Three Types of Parallelism in Applications Instruction level parallelism (ILP) multiple instructions from the same instruction basic-block (loop body) that can execute together true ILP is usually quite limited (-5 - ~20 instructions) Task level Parallelism (TLP) separate high-level tasks (different code) that can be run at the same time True TLP very limited (only a few concurrent tasks) Data level parallelism (DLP) multiple iterations of a "loop" that can execute concurrently DLP is plentiful in scientific applications 	 Taking Advantage of ILP Multiple FUs (VLIW or superscalar) Cell has limited superscalar (not for FP) Merrimac has 4-wide VLIW FP ops Latency tolerance (pipeline parallelism) Cell has 7 FP instructions in flight Merrimac expected to have ~24 FP Merrimac uses VLIW to avoid interlocks and bypass networks Cell also emphasizes static scheduling not clear to what extent dynamic variations are allowed
	© Mattan Erez EE382V: Principles of Computer Architecture, Fail 2008 – Lecture 20 12	Mattan Brez EE382V: Principles of Computer Architecture, Fail 2008 – Lecture 20 13
<section-header><section-header><image/><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	 Example a Comparison of DLP Sum Su	Memory System

High Bandwidth Asynchronous DMA

- Very high bandwidth memory system
 - need to keep FUs busy even with storage hierarchy
 - Cell has ~2 words/cycle (25.6GB/s)
 - Merrimac designed for 4 words/cycle
- Sophisticated DMA
 - stride (with records)
 - gather/scatter (with records)
- Differences in granularity of DMA control
 - Merrimac treats DMA as stream level operations
 - Cell treats DMA as kernel level operations

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 – Lecture 20