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Cell Broadband Engine
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Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Cell Motivation – Part I

• Performance demanding applications have 
different characterisitics
– Parallelism
– Locality
– Realtime

• Games, graphics, multimedia …
• Requires redesign of HW and SW to provide efficient

high performance
– Power, memory, frequency walls

• Cell designed specifically for these applications
– Requirements set by Sony and Toshiba
– Main design and architecture at IBM 
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Move to IBM Slides

• Rest of motivation and architecture slides taken 
directly from talks by Peter Hofstee, IBM
– Separate PDF file combined from:

• http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf
• http://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop3/

Slides/01_Hofstee_Cell.pdf
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Power Efficient Processor Design and the 
Cell Processor

H. Peter Hofstee, Ph. D.
hofstee@us.ibm.com
Architect, Cell Synergistic Processor Element
IBM Systems and Technology Group
Austin, Texas
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Agenda

� Power Efficient Processor Architecture

� System Trends

� Cell Processor Overview
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Power Efficient Architecture
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Limiters to Processor Performance

� Power wall

� Memory wall

� Frequency wall
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Power Wall (Voltage Wall)
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Power components:

– Active power

– Passive power

• Gate leakage
• Sub-threshold 

leakage (source-
drain leakage)

10S Tox=11AGate Stack 

Gate dielectric approaching 
a fundamental limit (a few 
atomic layers)

NET: INCREASING PERFORMANCE

REQUIRES INCREASING EFFICIENCY
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Memory wall

Main memory now nearly 1000 cycles from the processor

– Situation worse with (on-chip) SMP

Memory latency penalties drive inefficiency in the design

– Expensive and sophisticated hardware to try and deal with it

– Programmers that try to gain control of cache content, but are 
hindered by the hardware mechanisms

Latency induced bandwidth limitations

– Much of the bandwidth to memory in systems can only be used 
speculatively

– Diminishing returns from added bandwidth on traditional systems

Systems and Technology Group
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Microprocessor Efficiency

�Recent History:
–Gelsinger’s law

• 1.4x more performance for 2x more transistors
–Hofstee’s corollary

• 1/1.4x efficiency loss in every generation
• Examples: Cache size, OoO, Superscalar, etc. etc.

�Re-examine microarchitecture with 
performance per transistor as metric
–Pipelining is last clear win
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Attacking the Performance Walls

� Multi-Core Non-Homogeneous Architecture
– Control Plane vs. Data Plane processors
– Attacks Power Wall

� 3-level Model of Memory
– Main Memory, Local Store, Registers
– Attacks Memory Wall

� Large Shared Register File & SW Controlled 
Branching
– Allows deeper pipelines (11FO4 … helps power!)
– Attacks Frequency Wall
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Solutions

Memory wall:
– More slower threads 
– Asynchronous loads
Efficiency wall:
– More slower threads
– Specialized function
Power wall:
– Reduce transistor power

• operating voltage
• limit oxide thickness scaling
• limit channel length

– Reduce switching per function

INCREASE

CONCURRENCY:

Multi-Core

INCREASE

SPECIALIZATION:

Non-Homogeneous
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Next Generation Processors address Programming 
Complexity and Trend Towards Programmable Offload 
Engines with a Simpler System Alternative
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Media…
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“Outward Facing” Aspects of Cell

� Cell is designed to be responsive

� .. to human user

– Real-time response

– Supports rich visual interfaces

� .. to network

– Flexible, can support new standards

– High-bandwidth

– Content protection, privacy & security

� Contrast to traditional processors which evolved from 
“batch processing” mentality (inward focused).

Systems and Technology Group
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Cell Overview
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Cell Chip Block Diagram
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Cell Highlights

�Observed clock speed
– > 4 GHz

�Peak performance (single precision)
– > 256 GFlops

�Peak performance (double precision)
– >26 GFlops

�Area 221 mm2

�Technology 90nm SOI

�Total # of transistors 234M
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Heterogeneous Multi-core Architecture
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1 PPE core:
- VMX unit
- L1, L2 cache
- 2 way SMT
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8 SPEs
-128-bit SIMD instruction set
- Register file – 128x128-bit
- Local store – 256KB
- MFC
- Isolation mode
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Element Interconnect Bus (EIB)
- 96B / cycle bandwidth
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System Memory Interface:
- 16 B/cycle
- 25.6 GB/s (1.6 Ghz)
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I/O Interface:
- 16 B/cycle x 2
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SPE Highlights User-mode architecture
– No translation/protection within SPU

– DMA is full Power Arch protect/x-late

Direct programmer control
– DMA/DMA-list

– Branch hint

VMX-like SIMD dataflow
– Broad set of operations

– Graphics SP-Float

– IEEE DP-Float (BlueGene-like)

Unified register file
– 128 entry x 128 bit

256kB Local Store
– Combined I & D

– 16B/cycle L/S bandwidth

– 128B/cycle DMA bandwidth
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SPE Organization (Flachs et al, ISSCC 2005)
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SPE PIPELINE (Flachs et al, ISSCC 2005)
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Cell Processor Example Application Areas

Cell is a processor that excels at processing of rich media content in 
the context of broad connectivity

– Digital content creation (games and movies)

– Game playing and game serving

– Distribution of (dynamic, media rich) content

– Imaging and image processing

– Image analysis (e.g. video surveillance)

– Next-generation physics-based visualization

– Video conferencing (3D?)

– Streaming applications (codecs etc.)

– Physical simulation & science

Systems and Technology Group
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Summary

� Cell ushers in a new era of leading edge processors 
optimized for digital media and entertainment

� Desire for realism is driving a convergence between 
supercomputing and entertainment

� New levels of performance and power efficiency 
beyond what is achieved by PC processors

� Responsiveness to the human user and the network 
are key drivers for Cell

� Cell will enable entirely new classes of applications, 
even beyond those we contemplate today
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the ISSCC 2005 proceedings
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Outline
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• Cell architecture
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Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule)
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch

Locality
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Storage/Bandwidth Hierarchy is Key to Efficient
High Performance
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large FFTs on Cell” given by Alex Chow at power.org on 6/9/2005
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SRF/LS Comparison

• Serve as staging area for memory
• Capture locality as part of the storage hierarchy
• Single time multiplexed wide port

– kernel access
– DMA access
– instruction access

• SPs uses word granularity vs. Cell’s 4-word
• SP’s SRF has efficient auto-increment access mode
• Cell uses one memory for both code and data 

– Why?



Parallelism
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Three Types of Parallelism in Applications

• Instruction level parallelism (ILP)
– multiple instructions from the same instruction basic-block (loop 

body) that can execute together
– true ILP is usually quite limited (~5 - ~20 instructions)

• Task level Parallelism (TLP)
– separate high-level tasks (different code) that can be run at the 

same time
– True TLP very limited (only a few concurrent tasks)

• Data level parallelism (DLP)
– multiple iterations of a “loop” that can execute concurrently
– DLP is plentiful in scientific applications
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Taking Advantage of ILP

• Multiple FUs (VLIW or superscalar)
– Cell has limited superscalar (not for FP)
– Merrimac has 4-wide VLIW FP ops

• Latency tolerance (pipeline parallelism)
– Cell has 7 FP instructions in flight
– Merrimac expected to have ~24 FP
– Merrimac uses VLIW to avoid interlocks and bypass networks
– Cell also emphasizes static scheduling 

• not clear to what extent dynamic variations are allowed 
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Taking Advantage of TLP

• Multiple FUs (MIMD)
– Cell can run a different task (thread) on each SPE + 

asynchronous DMA on each SPE
• DMA must be controlled by the SPE  kernel

– Merrimac can run a kernel and DMA concurrently
• DMAs fully independent of the kernels

• Latency tolerance 
– concurrent execution of different kernels and their associated 

stream memory operations
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Taking Advantage of DLP
• Multiple FUs

– SIMD
• very (most?) efficient way of utilizing parallelism
• Cell has 4-wide SIMD
• Merrimac 16-wide

– MIMD
• convert DLP to TLP and use MIMD for different “tasks”

– VLIW
• convert DLP to ILP and use VLIW (unrolling, SWP)

• Latency tolerance
– Overlap memory operations and kernel execution (SWP and 

unrolling)
– Take advantage of pipeline parallelism in memory

Memory System
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High Bandwidth Asynchronous DMA 

• Very high bandwidth memory system
– need to keep FUs busy even with storage hierarchy
– Cell has ~2 words/cycle (25.6GB/s )
– Merrimac designed for 4 words/cycle

• Sophisticated DMA
– stride (with records)
– gather/scatter (with records)

• Differences in granularity of DMA control
– Merrimac treats DMA as stream level operations
– Cell treats DMA as kernel level operations


