
1

EE382V: Principles in Computer Architecture
Parallelism and Locality
Fall 2008
Lecture 21 – Programming the Cell BE

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 2

Outline
• Cell mechanism review
• Cell programming challenges
• Sequoia

– (up to mapping in this lecture)
• Other Cell programming tools

– Next lecture

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 3

Minimalistic HW structures improve
performance and efficiency

from: “Unleashing the power: A programming example of
large FFTs on Cell” given by Alex Chow at power.org on 6/9/2005

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 4

Parallelism in Cell

• PPE has SIMD VMX instructions and is 2-way SMT
• 8 SPEs

– Each SPE operates exclusively on 4-vectors
– Odd/even instruction pipes

• Odd for branching and memory / Even for compute
– Pipelining for taking advantage of ILP

• Asynchronous DMAs
– SWP of communication and computation
– Memory-level parallelism

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 5

Locality in Cell

• PPE has L1 and L2 caches
– L2 cache is 512KB

• SPE have lots of registers and local store
– 128 registers per SPU
– 256KB LS per SPU

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 6

Communication and Synchronization in Cell
• Element Interconnect Bus (EIB)

– Carries all data between memory system and PPE/SPEs
– Carries all data between SPE SPE, SPE PPE, and PPE SPE

• PPE L2 cache is coherent with memory
• SPEs are not coherent (LS is not a cache)

– SPE DMA coherent with L2
• SPEs can DMA to/from one another

– Memory map LS space into global namespace
– Each SPE has local virtual memory translation to do this
– No automatic coherency – explicit synchronization

• Synchronization through memory or mailboxes

2

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 7

Outline
• Cell mechanism review
• Cell programming challenges
• Sequoia
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 8

Cell Software Challenges

• Separate code for PPE and SPEs
– Explicit synchronization

• SPEs can only access memory through DMAs
– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency
– SW responsible for alignment, granularity, and bank conflicts

• SPEs must be programmed with SIMD
– Alignment is up to SW
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 9

Separate Code for PPE and SPEs
• PPE should be doing top-level control and I/O only

– Trying to compute on the PPE is problematic
• In order 2-way SMT with deep pipeline

– Busy enough just trying to coordinate between the SPEs
• SPEs are the parallel compute engines

– PowerPC architecture, but really different ISA and requirements
– Vector only, 2-way superscalar, …

• Two processor types really have two different
software systems

• Synchronization can be tricky to get efficient
– PPE SPE should use mailbox
– SPE PPE should use L2 cache location
– Why?

• Spawning threads on SPEs painfully slow

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 10

Memory System Challenges
• No arbitrary global LD/ST from SPE

– Everything must go through DMA
• Strict DMA alignment and granularity restrictions

– All DMAs must be aligned to 16-bytes and request at least 16
bytes

– All DMAs should be aligned to 128-bytes and request at least
128 bytes of contiguous memory

– Failing to maintain alignment will cause a bus error!
• Banked DRAM structure

– Consecutive DMA requests should span 2KB (8 banks)
• DMA commands issued from within SPE

– Strided data access
– Chain of stride commands to have arbitrary gather

• Chained list of commands prepared by SPE and stored in LS

• Need to explicitly synchronize with DMA completion
© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 11

SPE Programming Challenges

• Vector only
– Scalars must be placed in LSW of vector and some instructions

will take this into account
– All casts and operations are aligned to 16 bytes (4 words)
– Poor integer float casting

• LS is only SRAM in SPE
– Careful with growing stack
– Sometimes need to force instruction prefetch to avoid stalls

• Priority given to DMA first, then LD/ST, and only then fetch

• No branch prediction (predict not-taken?)
– Can have branch hint instructions inserted explicitly

• Some help from XLC compiler (and an occasional
bug)

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 12

Overall

• Lots to deal with
• Explicit communication and synchronization
• Explicit locality
• Explicit parallelism
• Explicit pipeline scheduling

• Need some help from programming tools

3

© Mattan Erez EE382V: Principles of Computer Architecture, Fall 2008 -- Lecture 21 13

Outline

• Cell mechanism review
• Cell programming challenges
• Sequoia
• Other Cell programming tools

• Sequoia part courtesy Kayvon Fatahalian, Stanford

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

Sequoia
Programming the Memory Hierarchy

Kayvon Fatahalian
Daniel Reiter Horn

Alex Aiken

Timothy J. Knight
Larkhoon Leem
William J. Dally

Mike Houston
Ji Young Park
Pat Hanrahan

Mattan Erez
Manman Ren

Stanford University

© Mattan Erez© Kayvon
15

Sequoia

Language: stream programming for machines
with deep memory hierarchies

Idea: Expose abstract memory hierarchy to
programmer

Implementation: benchmarks run well on Cell
processor based systems and on cluster of PCs

© Mattan Erez© Kayvon
16

Key challenge in high performance
programming is:

communication (not parallelism)

Latency
Bandwidth

© Mattan Erez© Kayvon
17

Avoiding latency stalls

Exploit locality to minimize number of stalls
- Example: Blocking / tiling

compute

Localize

time

compute

Localize

...

...

© Mattan Erez© Kayvon
18

Avoiding latency stalls

1. Prefetch batch of data
2. Compute on data (avoiding stalls)
3. Initiate write of results

… Then compute on next batch (which should be
loaded)

compute 1
write output 0

time
compute 2

compute 3

read input 2

write output 1

read input 3

write output 2

read input 4

4

© Mattan Erez© Kayvon
19

Exploit locality

Compute > bandwidth, else execution stalls

compute 1
Write output 0

time

compute 2

Read input 2

Write output 1

Read input 3

stall

stall

...

...
© Mattan Erez© Kayvon

20

Streaming

Streaming involves structuring algorithms as
collections of independent [locality cognizant]
computations with well-defined working sets.

This structuring may be done at any scale.
Keep temporaries in registers

Cache/scratchpad blocking
Message passing on a cluster

Out-of-core algorithms

© Mattan Erez© Kayvon
21

Streaming

Streaming involves structuring algorithms as
collections of independent [locality cognizant]
computations with well-defined working sets.

Efficient programs exhibit this
structure at many scales.

© Mattan Erez© Kayvon
22

Locality in programming languages

Local (private) vs. global (remote) addresses
- UPC, Titanium

Domain distributions (map array elements to
location)
- HPF, UPC, ZPL
- Adopted by DARPA HPCS: X10, Fortress, Chapel

Focus on communication between nodes
Ignore hierarchy within a node

© Mattan Erez© Kayvon
23

Locality in programming languages

Streams and kernels
- Stream data off chip. Kernel data on chip.
- StreamC/KernelC, Brook
- GPU shading (Cg, HLSL)
- CUDA

Architecture specific
Only represent two levels

© Mattan Erez© Kayvon
24

Hierarchy-aware models

Cache obliviousness (recursion)

Space-limited procedures (Alpern et al.)

Programming methodologies, not
programming environments

5

© Mattan Erez© Kayvon
25

Sequoia’s goals

Facilitate development of hierarchy-aware
stream programs …

… that remain portable across machines

Provide constructs that can be implemented
efficiently without requiring advanced compiler
technology
- Place computation and data in machine
- Explicit parallelism and communication
- Large bulk transfers

© Mattan Erez© Kayvon
26

Hierarchical memory in Sequoia

© Mattan Erez© Kayvon
27

Hierarchical memory

Abstract machines as trees of memories

ALUs ALUs

Main memory

Dual-core PC

Similar to:
Parallel Memory Hierarchy Model
(Alpern et al.)

© Mattan Erez© Kayvon
28

Hierarchical memory

L2 cache

ALUs ALUs

Main memory

L1 cache L1 cache

Dual-core PC

L2 cache

ALUs

Node
memory

Aggregate cluster memory
(virtual level)

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

4 node cluster of PCs

Abstract machines as trees of memories

© Mattan Erez© Kayvon
29

Hierarchical memory

Main memory

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

© Mattan Erez© Kayvon
30

Hierarchical memory

Main memory

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

Disk

6

© Mattan Erez© Kayvon
31

Hierarchical memory

Dual Cell blade

Main memory

(No memory affinity modeled)

ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS
ALUs

LS

© Mattan Erez© Kayvon
32

Hierarchical memory

Cluster of dual Cell blades

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory

Aggregate cluster memory
(virtual level)

LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS LS

Main memory

© Mattan Erez© Kayvon
33

Hierarchical memory

GPU memory

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

ALUs

tex
L1

System with a GPU

Main memory

ALUs

tex
L1…

ALUs

tex
L1

© Mattan Erez© Kayvon
34

Blocked matrix multiplication

void matmul_L1(int M, int N, int T,
float* A,
float* B,
float* C)

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

C += A x B

matmul_L1
32x32

matrix mult

A B C

© Mattan Erez© Kayvon
35

Blocked matrix multiplication

void matmul_L2(int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L1 matrix
multiplications.

} matmul_L2
256x256

matrix mult

A B C

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult … 512 L1 calls …

C += A x B

© Mattan Erez© Kayvon
36

Blocked matrix multiplication

void matmul(int M, int N, int T,
float* A,
float* B,
float* C)

{

Perform series of L2 matrix
multiplications.

}

matmul
large matrix mult

A B C

matmul_L1
32x32

matrix mult ...

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

matmul_L2
256x256

matrix mult

matmul_L1
32x32

matrix mult ...
matmul_L1

32x32
matrix mult

matmul_L1
32x32

matrix mult

matmul_L1
32x32

matrix mult

.

C += A x B

7

© Mattan Erez© Kayvon
37

Sequoia tasks

© Mattan Erez© Kayvon
38

Sequoia tasks

Special functions called tasks are the building
blocks of Sequoia programs

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Read-only parameters M, N, T give sizes of
multidimensional arrays when task is
called.

© Mattan Erez© Kayvon
39

Sequoia tasks

Task arguments and temporaries define a
working set
Task working set resident at single location
in abstract machine tree

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)
for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

© Mattan Erez© Kayvon
40

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

Recursively call matmul task on
submatrices

of A, B, and C of size PxQ, QxR, and PxR.

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

© Mattan Erez© Kayvon
41

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

matmul::inner

matmul::leaf

Variant call graph

© Mattan Erez© Kayvon
42

A B C

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Callee task:
matmul::leaf

Calling task: matmul::inner

A B C

Located at level X

Located at level Y

8

© Mattan Erez© Kayvon
43

Task hierarchies
task matmul::inner(in float A[M][T],

in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

Tasks express multiple levels of parallelism

© Mattan Erez© Kayvon
44

Leaf variants

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0;k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

task matmul::leaf_cblas(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
cblas_sgemm(A, M, T, B, T, N, C, M, N);

}

Be practical: Can use platform-specific kernels

© Mattan Erez© Kayvon
45

Summary: Sequoia tasks

Single abstraction for
- Isolation / parallelism
- Explicit communication / working sets
- Expressing locality

Sequoia programs describe hierarchies of tasks
- Mapped onto memory hierarchy
- Parameterized for portability

