EE382N: Computer Architecture
Parallelism and Locality
Fall 2009

Lecture 8 — Parallelism in Software

W

Mattan Erez

[SEE==ECE

The University of Texas at Austin

g

< Announcements

O

e | won’t be able to teach next Monday

e Option 1: Derek Chiou will give a lecture on
dataflow architectures

e Option 2: Re-schedule class to later in the
week. Maybe Thursday evening or Friday
during the day

e I’ll post a survey

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 2

P

/2 .
g Credits

N

e Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
— Taken from 6.189 IAP taught at MIT in 2007.

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 3

Ine

« Parallel programming
— Start from scratch
— Reengineering for parallelism

e Parallelizing a program
— Decomposition (finding concurrency)
— Assignment (algorithm structure)
— Orchestration (supporting structures)
— Mapping (implementation mechanisms)

e Patterns for Parallel Programming

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009

Ko

& Parallel programming from scratch

e Start with an algorithm
— Formal representation of problem solution
— Sequence of steps

e Make sure there is parallelism
— In each algorithm step
— Minimize synchronization points

e Don’t forget locality

— Communication is costly
e Performance, Energy, System cost

e More often start with existing sequential
code

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 5

4 Common Steps to
Creating a Parallel Program

Partitioning
|
l |
S < T 0 m
Ty | a
c O . ;
0 OO i h p
m g e | L
P go n S ‘ In UE, UE,
- 0 . t
T o T - — "G —
- So ?
B ={= i
V @ 3 0
Sequential Tasks Units of Parallel ProCessors
Computation Execution program

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009

77

\\jx/ Reengineering for Parallelism

e Parallel programs often start as sequential programs
— Easier to write and debug
— Legacy codes

e How to reengineer a sequential program for parallelism:
— Survey the landscape
— Pattern provides a list of questions to help assess existing code
— Many are the same as in any reengineering project
— Is program numerically well-behaved?

e Define the scope and get users acceptance
— Required precision of results
— Input range
— Performance expectations
— Feasibility (back of envelope calculations)

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 7

&

7

—r'vf . . .
& Reengineering for Parallelism

e Define a testing protocol

e |dentify program hot spots: where is most of the
time spent?
— Look at code
— Use profiling tools

« Parallelization
— Start with hot spots first
— Make sequences of small changes, each followed by testing
— Patterns provide guidance

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009

&

27

& Decomposition

e |dentify concurrency and decide at what level to
exploit it

e Break up computation into tasks to be divided
among processes
— Tasks may become available dynamically
— Number of tasks may vary with time

e Enough tasks to keep processors busy

— Number of tasks available at a time is upper bound on
achievable speedup

Main consideration: coverage and Amdahl’s Law

g

y Coverage

N

« Amdabhl's Law: The performance
Improvement to be gained from using some
faster mode of execution is imited by the
fraction of the time the faster mode can be

used.
— Demonstration of the law of diminishing returns

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 10

%Amdah 's Law

e Potential program speedup is defined by the
fraction of code that can be parallelized

time Use 5 processors for parallel work

+

10 seconds [F] [E [(] [
+

60 seconds

25 seconds
+

50 seconds
+

25 seconds

100 seconds

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 11

%Amdahl’s Law

25 seconds
+

50 seconds
+

25 seconds

100 seconds

e Speedup
running time

time

v

Use 5 processors for parallel work

+

10 seconds [[(] [[E
+

60 seconds

= old running time / new

= 100 seconds / 60 seconds

=1.67

(parallel version is 1.67 times faster)

9/23/2008

EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 12

R

4D
g Amdahl’s Law

N

e p = fraction of work that can be parallelized
e n = the number of processor

old running time
new running time

B 1
fraction of time to

complete sequential
work

Speedup =

fraction of time to
complete parallel work

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 13

e Speedup tends to

Implications of Amdahl’s Law

L
1-p

processors tends to infinity

speedup

A

Super linear speedups
are possible due to ’
registers and caches 7

Typical speedup is
less than linear

Parallelism only worthwhile
when it dominates execution

as number of

R

& Assignment

e Specify mechanism to divide work among PEs
— Balance work and reduce communication

e Structured approaches usually work well
— Code inspection or understanding of application
— Well-known design patterns

< As programmers, we worry about partitioning first
— Independent of architecture or programming model?
— Complexity often affects decisions
— Architectural model affects decisions

Main considerations: granularity and locality

R

47/'% - i
& Fine vs. Coarse Granularity

* Fine-grain Parallelism « Coarse-grain Parallelism

- Low computation to - High computation to
communication ratio communication ratio

— Small amounts of - Large amounts of
computational work between computational work between
communication stages communication events

— High communication - Harder to load balance
overhead efficiently

 Potential HW assist

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 16

&

27

- Fine
-, I
-—

- - PE,

PE,

& |oad Balancing vs. Synchronization

Coarse I I —_
P

= PE,

i

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009

17

& |oad Balancing vs. Synchronization

_W = Fine Coarse -
- B I I I
P

= PE,

i

EXpensive sync = coarse granularity
Few units of exec + time disparity = fine granularity

Ko

& Orchestration and Mappin
PPINg

e Computation and communication
concurrency

e Preserve locality of data
e Schedule tasks to satisfy dependences early

e Survey available mechanisms on target
system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

Ko

A :
& parallel Programming by Pattern

_\)

e Provides a cookbook to systematically guide programmers
— Decompose, Assign, Orchestrate, Map
— Can lead to high quality solutions in some domains

e Provide common vocabulary to the programming
community

— Each pattern has a name, providing a vocabulary for discussing
solutions

= Helps with software reusabillity, malleability, and modularity
— Written in prescribed format to allow the reader to quickly
understand the solution and its context

e Otherwise, too difficult for programmers, and software will not
fully exploit parallel hardware

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 20

History

= Berkeley architecture
professor Christopher ‘ APattern Language
Alexander ‘ Towns -Buildings - Construction

e In 1977, patterns for city
planning, landscaping, and

architecture in an attempt et "t

. . ristopher Alexander
tO Capture prlnC|p|eS for Sardlshlkawf Murrav Silverstein
ulIVI n g 77 d eS|g n Max Jacobsé);lllollzirxinz;adahl King ‘

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 21

&

27

& Example 167 (p. 783): 6ft Balcony

Therefore:

Whenever you build a balcony, a porch, a gallery, or a
terrace always make it at least six feet deep. If possible,
recess at least a part of it into the building so that it is not
cantilevered out and separated from the building by a
simple line, and enclose it partially.

ﬂd“p
|£_#| . !|"
ﬁ*d H s

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 22

Patterns in Object-Oriented Programming

« Design Patterns: Elements of Reusable
ODbject-Oriented Software (1995)

— Gang of Four (GOF): Gamma, Helm, Johnson,
Vlissides

— Catalogue of patterns Design Patterns
— Creation, structural, behavioral Eements of Reusable

Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Cover ant D IFMM . Esches / Co

Foreword by Grady Booch

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 23

Ko

7

/2 .
& Ppatterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

* Finding Concurrency
— Expose concurrent tasks

e Algorithm Structure

— Map tasks to processes to
exploit parallel

architecture PATTERNS
FOR PARALLEL

Software Construction

e Supporting Structures

— Code and data structuring
patterns

 Implementation
Mechanisms

— Low level mechanisms used
to write parallel programs

AN %y Patterns for Parallel Programming.

9/23/2008 EE382N: Parallelilsi,, ==

Mattson, Sanders, and Massingill
(2005).

12009 -- Lecture 8 (c) Mattan Erez, 2009

24

MPEG bit stream

MPEG Decoder l
(VLD)
l macroblocks, motion vectors

split]

{@‘ Here’s my algorithm.
& Where’s the concurrency?

frequency encoded [
macroblocks / differentially coded
motion vectors
[ZigZag
v

v

v

[IDCT Repeat

J
[IQuantization] [Motion Vector Decode]
]

5 [
[Saturation]
spatially encoded macroblocks motion vectors
r jé
A

Motion
Compensation

recovered picture

[Pictur; Reorder]

v

[Color Conversion]

v

[Display]

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 --

Lecture 8 (c) Mattan Erez, 2009

25

MPEG Decoder

;@ ere’s my algorithm.
’/ Where’s the concurrency?

MPEG bit stream

|

[

VLD)

l macroblocks, motion vectors

[

split]

frequency encoded
macroblocks

ZigZag
IDCT

spatially encoded macroblocks

differentially coded
motion vectors

Motion Vector Decode

motion vectors

r jé
A
Motion
Compensation

A

recovered picture

[Picture Reorder]

v

[Color Conversion]

v

[Display]

9/23/2008

 Task decomposition

— Independent coarse-grained
computation

— Inherent to algorithm

« Seqguence of statements

(instructions) that operate
together as a group

— Corresponds to some logical part
of program

— Usually follows from the way
programmer thinks about a
problem

EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 26

ﬁé}) ere’s my algorithm.
d Where’s the concurrency?

MPEG Decoder MPEG bit stream

[l) « Task decomposition

l macroblocks, motion vectors

(e] — Parallelism in the application
frequency encoded

macroblocks differentially coded / \

motion vectors
ZigZag

* Pipeline task decomposition

— Data assembly lines
S]m°“°“ve°‘°r5 — Producer-consumer chains

. Oy x
A
Motion
Compensation

recovered picture

spatially encoded macroblocks

[Pictur; Reorder]

v

[Color Conversion]

v

[Display]

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 27

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder l

(VLD)
l macroblocks, motion vectors
[split]

differentially coded
motion vectors

 Task decomposition
— Parallelism in the application

frequency encoded
macroblocks

ZigZag
IQuantization

1
* Pipeline task decomposition
— Data assembly lines

motion vectors — Producer-consumer chains

oUes

Motion Vector Decode

Repeat

spatially encoded macroblocks

[-]]] « Data decomposition

recovered picture — Same computation is applied to
(roture reoraer) small data chunks derived from
[CoIorCo+nversion] large data Set \4

v
[Display]

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 28

g

pr
7y

& Guidelines for Task Decomposition

e Algorithms start with a good understanding of the
problem being solved

e Programs often naturally decompose into tasks

— Two common decompositions are
= Function calls and
= Distinct loop iterations

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 29

&

7

& Guidelines for Task Decomposition

- Flexibility

— Program design should afford flexibility in the number and
size of tasks generated

= Tasks should not tied to a specific architecture
= Fixed tasks vs. Parameterized tasks

e Efficiency

— Tasks should have enough work to amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that

managing dependencies doesn’t become the
bottleneck

e Simplicity

— The code has to remain readable and easy to
understand, and debug

9/23/2008 EE382N: Parallelism and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 30

¢ Case for Pipeline Decomposition

N

- Data is flowing through a sequence of stages S

[IQuantization

— Assembly line is a good analogy =

e \What’s a prime example of pipeline decompaosition in
computer architecture?

— Instruction pipeline in modern CPUs

e \What’s an example pipeline you may use in your UNIX shell?
— Pipes in UNIX: cat foobar.c | grep bar | wc

e Other examples

— Signal processing
— Graphics

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 31

P

& Guidelines for Data Decomposition

_\)

e Data decomposition is often implied by task
decomposition

e Programmers need to address task and data
decomposition to create a parallel program
— Which decomposition to start with?

e Data decomposition is a good starting point when

— Main computation is organized around manipulation of a large
data structure

— Similar operations are applied to different parts of the data
structure

9/23/2008 EE382N: Parallelilsm and Locality, Fall 2009 -- Lecture 8 (c) Mattan Erez, 2009 32

