
EE382N (20): Computer Architecture
Parallelism and Locality
Fall 2009
Lecture 10 – Patterns for Parallel Programming (II)

Mattan Erez

The University of Texas at Austin

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
– Taken from 6.189 IAP taught at MIT in 2007.

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 3

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 4

Picture Reorder

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion
Compensation

Display

Here’s my algorithm.
Where’s the concurrency?

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 5

• Task decomposition
– Independent coarse-grained

computation
– Inherent to algorithm

• Sequence of statements
(instructions) that operate
together as a group
– Corresponds to some logical part

of program
– Usually follows from the way

programmer thinks about a
problem

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion
Compensation

Here’s my algorithm.
Where’s the concurrency?

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 6

join

IDCT

IQuantization

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines
– Producer-consumer chains

Motion
Compensation

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 7

join

split

VLD
macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion
Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines
– Producer-consumer chains

• Data decomposition
– Same computation is applied to

small data chunks derived from
large data set

IDCT

IQuantization

ZigZag

Saturation

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 8

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and
• Distinct loop iterations

• Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 9

Guidelines for Task Decomposition
• Flexibility

– Program design should afford flexibility in the number and
size of tasks generated

• Tasks should not tied to a specific architecture
• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them
– Tasks should be sufficiently independent so that

managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 10

Case for Pipeline Decomposition
• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in
computer architecture?
– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?
– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples
– Signal processing
– Graphics

IDCT

IQuantization

ZigZag

Saturation

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 11

Guidelines for Data Decomposition
• Data decomposition is often implied by task

decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large

data structure
– Similar operations are applied to different parts of the data

structure

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 12

Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 13

Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

• Recursive data structures
– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 14

Guidelines for Data Decomposition

• Flexibility
– Size and number of data chunks should support a

wide range of executions

• Efficiency
– Data chunks should generate comparable amounts

of work (for load balancing)

• Simplicity
– Complex data compositions can get difficult to

manage and debug

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 15

Data Decomposition Examples

• Molecular dynamics
– Compute forces
– Update accelerations and

velocities
– Update positions

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 16

Data Decomposition Examples

• Molecular dynamics
– Geometric decomposition

• Merge sort
– Recursive decomposition problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 17

Dependence Analysis

• Given two tasks how to determine if they can
safely run in parallel?

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 18

Bernstein’s Condition

• Ri: set of memory locations read (input) by
task Ti

• Wj: set of memory locations written (output)
by task Tj

• Two tasks T1 and T2 are parallel if
– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 19

T1

a = x + y

T2

b = x + z

Example

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }

φ
φ
φ

=
=
=

21

12

21

WW
WR
WR

I

I

I

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 20

Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel
architecture

Software Construction
• Supporting Structures

– Code and data structuring
patterns

• Implementation
Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill
(2005).

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 21

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 22

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 23

Organize by Tasks?

Recursive?

Task
Parallelism

Divide and Conquer
yes

no

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 24

Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 25

Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

join join

join

split split

split

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 26

Organize by Data?

Recursive?

Geometric
Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

yes

no

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 27

Recursive Data

• Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to

sequentially move through the data structure

• There are however opportunities to reshape
the operations in a way that exposes
concurrency

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 28

Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7
Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s successor,

repeat until no changes
• O(log n) vs. O(n)

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 29

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 30

Organize by Flow of Data?

Regular?

Event-based
Coordination

Pipeline

• In some application domains, the flow of data
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

yes

no

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 31

Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by
the number of stages

• Works best if the time to fill and drain the pipeline is
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time

unit (e.g., frames per second)

• Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

Dr. Rodric Rabbah, IBM
EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)

Rodric Rabbah, 2007 and Mattan Erez, 2009 32

Event-Based Coordination

• In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

