EE382N (20): Computer Architecture
Parallelism and Locality
Fall 2009

Lecture 10 — Patterns for Parallel Programming (lI)

Mattan Erez

[SEE==ECE

The University of Texas at Austin

<

& Credits

e Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
— Taken from 6.189 IAP taught at MIT in 2007.

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 2

Ko

7

/2 .
& Ppatterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction

 Finding Concurrency < Supporting Structures

— Expose concurrent tasks — Code and data structuring
patterns

e Algorithm Structure Implementation

— Map tasks to processes to Mechanisms
exploit parallel — Low level mechanisms used
architecture PATTERNS

PR PARALLEL to write parallel programs

= “"““"" | Patterns for Parallel Programming.
' Mattson, Sanders, and Massingill

I(L%Q:gm/ Fall 2009 -- Lecture 10 (c)

.J07 and Mattan Erez, 2009

EE382N (;

Dr. Rodric Rabbah, IBM

Here’s my algorithm.
Where’s the concurrency?

MPEG bit stream

MPEG Decoder l
(VLD)
l macroblocks, motion vectors
[split]
frequency encoded - .
macroblocks / differentially coded
motion vectors
[ZigZag]
v
[IQuantization] [Motion Vector Decode]
v v
[IDCT] Repeat

5 [
[Saturation]
spatially encoded macroblocks motion vectors

[join]
r jé
A
Motion
Compensation

recovered picture

[Pictur; Reorder]

v

[Color Conversion]

v

[Display]

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

;@ ere’s my algorithm.
’/ Where’s the concurrency?

MPEG bit stream

MPEG Decoder .y
B « Task decomposition
: Si:a”"b"":]"s' motlon veetors - Independent coarse-grained

frequency encoded
macroblocks

spatially encoded macroblocks

differentially coded com DUtat|0n
motion vectors .
— Inherent to algorithm

Motion Vector Decode

« Sequence of statements
(instructions) that operate

o together as a group
- /4 — Corresponds to some logical part
[Con:/lpoeti]c;r;tion Of program
| — Usually follows from the way
I i programmer thinks about a
[PlcturiReorder] problem
[Color Conversion]
v
[Display]

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 5

ﬁé}) ere’s my algorithm.
d Where’s the concurrency?

MPEG Decoder MPEG bit stream

[l) « Task decomposition

l macroblocks, motion vectors

(e] — Parallelism in the application
frequency encoded

macroblocks differentially coded / \

motion vectors
ZigZag

* Pipeline task decomposition

— Data assembly lines
S]m°“°“ve°‘°r5 — Producer-consumer chains

. Oy x
A
Motion
Compensation

recovered picture

spatially encoded macroblocks

[Pictur; Reorder]

v

[Color Conversion]

v

[Display]

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

Here’s my algorithm.

Where’s the concurrency?

MPEG bit stream

MPEG Decoder l

(VLD)
l macroblocks, motion vectors
[split]

differentially coded
motion vectors

 Task decomposition
— Parallelism in the application

frequency encoded
macroblocks

ZigZag
IQuantization

1
* Pipeline task decomposition
— Data assembly lines

motion vectors — Producer-consumer chains

oUes

Motion Vector Decode

Repeat

spatially encoded macroblocks

[-]]] « Data decomposition

recovered picture — Same computation is applied to
(roture reoraer) small data chunks derived from
[CoIorCo+nversion] large data Set \4

v
[Display]

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 7

R

. . . .
& Guidelines for Task Decomposition

_\)

e Algorithms start with a good understanding of the
problem being solved

e Programs often naturally decompose into tasks

— Two common decompositions are
= Function calls and
= Distinct loop iterations

e Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

R

7

& Guidelines for Task Decomposition

- Flexibility

— Program design should afford flexibility in the number and
size of tasks generated

= Tasks should not tied to a specific architecture
= Fixed tasks vs. Parameterized tasks

e Efficiency

— Tasks should have enough work to amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that

managing dependencies doesn’t become the
bottleneck

e Simplicity

— The code has to remain readable and easy to
understand, and debug

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 9

R

S Case for Pipeline Decomposition

\\)

- Data is flowing through a sequence of stages S

[IQuantization

— Assembly line is a good analogy =

e \What’s a prime example of pipeline decompaosition in
computer architecture?

— Instruction pipeline in modern CPUs

e \What’s an example pipeline you may use in your UNIX shell?
— Pipes in UNIX: cat foobar.c | grep bar | wc

e Other examples
— Signal processing
— Graphics

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 10

R

\\5’% Guidelines for Data Decomposition
e Data decomposition is often implied by task
decomposition

e Programmers need to address task and data
decomposition to create a parallel program
— Which decomposition to start with?

e Data decomposition is a good starting point when

— Main computation is organized around manipulation of a large
data structure

— Similar operations are applied to different parts of the data
structure

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 11

Common Data Decompositions

e Geometric data structures

N
i

%
'
@)
O
O
N
-
&
=)
O w
O £
- @
wn
S € 2
o O S
5
c O g
[SIR=
ma (7] e]
Sm S
W% S
” mh,
© € EE
Y— Y Ol
© O Flos
G -2
5 5

EE382N (20)

Decompos
Decompos

Dr. Rodric Rabbah, IBM

&

e

,,,f -
& Common Data Decompositions

e Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes into domains

e Recursive data structures
— Example: decomposition of trees into sub-trees

subproblem subproblem

split
split split

merge
EE382N (20): Parallelism and Locality, Fall 2 10 (c)

Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 13

&

& Guidelines for Data Decomposition

- Flexibility
— Size and number of data chunks should support a
wide range of executions

e Efficiency

— Data chunks should generate comparable amounts
of work (for load balancing)

 Simplicity
— Complex data compositions can get difficult to
manage and debug

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 14

& Data Decomposition Examples

e Molecular dynamics
— Compute forces

— Update accelerations and
velocities

- Update 003|t|ons

HHHE N-{Z0) , Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodrlc Rabbah, 2007 and Mattan Erez, 2009

&

27

& Data Decomposition Examples

e Molecular dynamics
— Geometric decomposition

et A .o
e

R a
;;1&:.«:::;!

e Merge sort
— Recursive decomposition

subproblem

split

split

subproblem

split

merge

merge
EE382N (20): Parallelism and Locality, Fall 2 10 (c)

Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 16

subproblem

R

Y 4 -
¢ Dependence Analysis

« Given two tasks how to determine if they can
safely run in parallel?

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 17

R

& Bernstein’s Condition

= R.: set of memory locations read (Input) by
task T,

= W;: set of memory locations written (output)
by task T,

e Two tasks T, and T, are parallel if
— Input to T, is not part of output from T,
— Input to T, is not part of output from T,
— outputs from T, and T, do not overlap

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 18

R

47
& Example

Tl T2
a=x++y b =x+ 2z
/ \

R, ={x,y}
W, ={a}

Dr. Rodric Rabbah, IBM

R, ={x,z}
W, ={b}

Rl ﬂ\Nz =¢
RzﬂW1 =¢
Wl ﬂWz =¢

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Rodric Rabbah, 2007 and Mattan Erez, 2009

19

Ko

& Patterns for Parallelizing Programs

&

4 Design Spaces

Algorithm Expression

e Algorithm Structure

— Map tasks to processes to
exploit parallel

architecture PATTERNS
FOR PARALLEL

Patterns for Parallel Programming.
Mattson, Sanders, and Massingill

| I(L%Q:gm/ Fall 2009 -- Lecture 10 (c)

eSSy |)07 and Mattan Erez, 2009

EE382N (.
Dr. Rodric Rabbah, IBM

20

R

\\;\W Algorithm Structure Design Space

e Given a collection of concurrent tasks, what’s the
next step?

e Map tasks to units of execution (e.g., threads)

e |mportant considerations
— Magnitude of number of execution units platform will support
— Cost of sharing information among execution units

— Avoid tendency to over constrain the implementation
= Work well on the intended platform
= Flexible enough to easily adapt to different architectures

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 21

5

< Major Organizing Principle

N

« How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

e Concurrency usually implies major organizing
principle
— Organize by tasks
— Organize by data decomposition
— Organize by flow of data

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

22

Ko

O

Dr. Rodric Rabbah, IBM

Organize by Tasks?

yes

v

Recursive? Divide and Conquer

no

Task
Parallelism

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Rodric Rabbah, 2007 and Mattan Erez, 2009

23

&

7

,,f .
& Task Parallelism

e Molecular dynamics
— Non-bonded force calculations, some dependencies

e Common factors
— Tasks are associated with iterations of a loop
— Tasks largely known at the start of the computation
— All tasks may not need to complete to arrive at a solution

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

24

R

& Divide and Conquer

e For recursive programs: divide and conquer
— Subproblems may not be uniform
— May require dynamic load balancing

subproblem subproblem

subproblem

subproblem

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

25

Ko

£ .
& Organize by Data?

e Operations on a central data structure
— Arrays and linear data structures
— Recursive data structures

. JASS)
Recursive? > Recursive Data

no

Geometric
Decomposition

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

26

g

& Recursive Data

e Computation on a list, tree, or graph

— Often appears the only way to solve a problem is to
sequentially move through the data structure

e There are however opportunities to reshape
the operations in a way that exposes
concurrency

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 27

Recursive Data Example: Find the Root

e Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node

— Parallel approach: for each node, find its successor’s successor,
repeat until no changes

e O(log n) vs. O(n)

& éa' <
2 2 A
h.e, M 0fey 1 L7
5 @ ONO 5 @

Step 1 Step 2 Step 3

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 28

R

42
& Work vs. Concurrency Tradeoff

_\)

- Parallel restructuring of find the root algorithm leads
to O(n log n) work vs. O(n) with sequential
approach

e Most strategies based on this pattern similarly trade
off increase In total work for decrease in execution
time due to concurrency

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 29

g

& Organize by Flow of Data?

e |n some application domains, the flow of data
Imposes ordering on the tasks

— Regular, one-way, mostly stable data flow
— lIrregular, dynamic, or unpredictable data flow

yes

v

Regular? Pipeline

no

Event-based
Coordination

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009

30

&

V. : :
4 Pipeline Throughput vs. Latency

N

« Amount of concurrency in a pipeline is imited by
the number of stages

= Works best if the time to fill and drain the pipeline is
small compared to overall running time

e Performance metric is usually the throughput

— Rate at which data appear at the end of the pipeline per time
unit (e.g., frames per second)

« Pipeline latency is important for real-time
applications

— Time interval from data input to pipeline, to data output

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 31

R

/2 . .
/QW// Event-Based Coordination

_\)

« |n this pattern, interaction of tasks to process data
can vary over unpredictable intervals

e Deadlocks are a danger for applications that use
this pattern

— Dynamic scheduling has overhead and may be inefficient
= Granularity a major concern

EE382N (20): Parallelism and Locality, Fall 2009 -- Lecture 10 (c)
Dr. Rodric Rabbah, IBM Rodric Rabbah, 2007 and Mattan Erez, 2009 32

