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Credits

• Most of the slides courtesy Dr. Rodric Rabbah
(IBM)
– Taken from 6.189 IAP taught at MIT in 2007.
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Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 
architecture

Software Construction
• Supporting Structures

– Code and data structuring 
patterns

• Implementation 
Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 
Mattson, Sanders, and Massingill
(2005).
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• Task decomposition
– Independent coarse-grained 

computation
– Inherent to algorithm

• Sequence of statements 
(instructions) that operate 
together as a group
– Corresponds to some logical part 

of program
– Usually follows from the way 

programmer thinks about a 
problem
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• Task decomposition
– Parallelism in the application 

• Pipeline task decomposition
– Data assembly lines 
– Producer-consumer chains
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• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines 
– Producer-consumer chains

• Data decomposition
– Same computation is applied to 

small data chunks derived from 
large data set
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Guidelines for Task Decomposition

• Algorithms start with a good understanding of the 
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and 
• Distinct loop iterations

• Easier to start with many tasks and later fuse them, 
rather than too few tasks and later try to split them
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Guidelines for Task Decomposition
• Flexibility

– Program design should afford flexibility in the number and 
size of tasks generated

• Tasks should not tied to a specific architecture
• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of 

creating and managing them
– Tasks should be sufficiently independent so that 

managing dependencies doesn’t become the 
bottleneck

• Simplicity
– The code has to remain readable and easy to 

understand, and debug
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Case for Pipeline Decomposition
• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in 
computer architecture? 
– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?
– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples
– Signal processing
– Graphics

IDCT

IQuantization

ZigZag

Saturation
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Guidelines for Data Decomposition
• Data decomposition is often implied by task 

decomposition 

• Programmers need to address task and data 
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large 

data structure
– Similar operations are applied to different parts of the data 

structure
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Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains
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Common Data Decompositions

• Geometric data structures
– Decomposition of arrays along rows, columns, blocks
– Decomposition of meshes into domains

• Recursive data structures
– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Guidelines for Data Decomposition

• Flexibility
– Size and number of data chunks should support a 

wide range of executions

• Efficiency
– Data chunks should generate comparable amounts 

of work (for load balancing)

• Simplicity
– Complex data compositions can get difficult to 

manage and debug
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Data Decomposition Examples

• Molecular dynamics
– Compute forces
– Update accelerations and

velocities
– Update positions
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Data Decomposition Examples

• Molecular dynamics
– Geometric decomposition

• Merge sort
– Recursive decomposition problem
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Dependence Analysis

• Given two tasks how to determine if they can 
safely run in parallel?
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Bernstein’s Condition

• Ri: set of memory locations read (input) by 
task Ti

• Wj: set of memory locations written (output) 
by task Tj

• Two tasks T1 and T2 are parallel if 
– input to T1 is not part of output from T2

– input to T2 is not part of output from T1

– outputs from T1 and T2 do not overlap
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T1

a = x + y 

T2

b = x + z

Example

R1 = { x, y }
W1 = { a }

R2 = { x, z }
W2 = { b }
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Patterns for Parallelizing Programs

Algorithm Expression
• Finding Concurrency

– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 
architecture

Software Construction
• Supporting Structures

– Code and data structuring 
patterns

• Implementation 
Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 
Mattson, Sanders, and Massingill
(2005).
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Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the 
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support
– Cost of sharing information among execution units
– Avoid tendency to over constrain the implementation

• Work well on the intended platform
• Flexible enough to easily adapt to different architectures
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Major Organizing Principle

• How to determine the algorithm structure that 
represents the mapping of tasks to units of 
execution?

• Concurrency usually implies major organizing 
principle
– Organize by tasks
– Organize by data decomposition
– Organize by flow of data
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Organize by Tasks?

Recursive?

Task 
Parallelism

Divide and Conquer
yes

no
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Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop
– Tasks largely known at the start of the computation
– All tasks may not need to complete to arrive at a solution
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Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform
– May require dynamic load balancing

problem

subproblem subproblem

compute
subproblem

compute
subproblem

compute
subproblem

compute
subproblem

subproblem subproblem

solution

join join

join

split split

split
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Organize by Data?

Recursive?

Geometric
Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures
– Recursive data structures

yes

no
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Recursive Data

• Computation on a list, tree, or graph
– Often appears the only way to solve a problem is to 

sequentially move through the data structure

• There are however opportunities to reshape 
the operations in a way that exposes 
concurrency
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Recursive Data Example: Find the Root
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• Given a forest of rooted directed trees, for each 
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s successor, 

repeat until no changes
• O(log n) vs. O(n)
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Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm leads 
to O(n log n) work vs. O(n) with sequential 
approach

• Most strategies based on this pattern similarly trade 
off increase in total work for decrease in execution 
time due to concurrency
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Organize by Flow of Data?

Regular?

Event-based 
Coordination

Pipeline

• In some application domains, the flow of data 
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow
– Irregular, dynamic, or unpredictable data flow

yes

no
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Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by 
the number of stages

• Works best if the time to fill and drain the pipeline is 
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time 

unit (e.g., frames per second)

• Pipeline latency is important for real-time 
applications
– Time interval from data input to pipeline, to data output
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Event-Based Coordination

• In this pattern, interaction of tasks to process data 
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use 
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern


