EE382N (20): C omputer Arc hitec ture
Parallelism and Locality
Fall 2009
Lecture 12 - Pattems for Parallel Programming (IV) + Intro to GPUs

Mattan Erez
 UT金䇪ECE

The University of Texas at Austin

Credits

- Pa rallel Sc an slides courtesy Da vid Kirk (NVIDIA) and Wen-Mei Hwu (UIUC)
- Taken from EE493-AI taught at UIUC in Sprig 2007
- Reduction slidescourtesy Dr. Rodric Rabbah (IBM)
- Taken from 6.189 IAP taught at MIT in 2007

ILP, DLP, and TLP in SW and HW

- ILP
- 000
- Dataflow
- VLW
- DLP
- SIMD
- Vector
- TLP
- Essentially multiple cores with multiple sequencers
- ILP
- Within straight-line code
- DLP
- Parallel loops
- Tasksoperating on disjoint data
- No dependencies within parallelism phase
- TLP
- All of DLP +
- Producer-consumerchains

ILP, DLP, and TLP and Supporting Pattems

	Task parallelism	Divide and conquer	Geometric decomposition	Recursive data	Pipeline	Event-based coordination
ILP	inline / unroll	inline	unroll	inline	inline / unroll	inline
DLP	natural or local- conditions	after enough divisions	natural	after enough branches	difficult	local- conditions
TIP	natural	natural	natural	natural	natural	natural

ILP, DLP, and TLP and Implementation Pattems

	SPMD	Loop Parallelism	Master/ Worker	Fork/J oin
ILP	pipeline	unroll	inline	inline
DLP	natural or local- conditional	natural	local-conditional	afterenough divisions +local-conditional
TP	natural	natural	natural	natural

GROMACS

- Highly optimized molecula r-dyna mics package
- Popularcode
- Specific ally tuned for protein folding
- Hand optimized loops for SSE3 (a nd other extensions)

Gromacs Components

- Non-bonded forces
- Water-water with cutoff
- Protein-protein tabulated
- Water-water ta bulated
- Protein-water tabulated
- Bonded forces
- Angles
- Dihedrals
- Boundary conditions
- Verlet integrator
- Constraints
- SHAKE
- SETLE
- Other
- Temperature-pressure coupling
- Virial calculation

GROMACS Water-Water Force Calc ulation

- Non-bonded long-range interactions
- Coulomb
- Lennard-J ones
- 234 operations per interaction Lennard-Jones

$$
V_{n b}=\sum_{i, j}\left[\frac{1}{4 \pi \epsilon_{0}} \frac{q_{i} q_{j}}{r_{i j}}+\left(\frac{C_{12}}{r_{i j}^{12}}-\frac{C_{6}}{r_{i j}^{6}}\right)\right]
$$

G ROMACS Uses Non-Tinivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{o}\left(\mathbf{n}^{2}\right)$
- GROMACS approximates with a cutoff
- Moleculeslocated more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$

Effic ient a lgorithm lea ds to va riable rate input strea ms

G ROMACS Uses Non-Trivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
- GROMACS approximates with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{\mathbf{3}}\right.$)
cental molecules
neighbor molecules

Efficient a lgonithm leads to varia ble rate input streams

G ROMACS Uses Non-Trivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
- GROMACS approxima tes with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathbf{n r}_{\mathrm{c}}{ }^{\mathbf{3}}\right.$)
cema molecules
 molec ules

Efficient a lgonithm leads to varia ble rate input streams

G ROMACS Uses Non-Trivial Neighbor-List Algorithm

- Full non-bonded force calculation is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
- GROMACS approxima tes with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
central molecules
 molec ules

Efficient a lgonithm leads to varia ble rate input streams

G ROMACS Uses Non-Trivial Neighbor-List Algonithm

- Full non-bonded force calculation is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$
- GROMACS approxima tes with a cutoff
- Molecules located more than $\mathbf{r}_{\mathbf{c}}$ apart do not interact
- $\mathbf{O}\left(\mathrm{nr}_{\mathrm{c}}{ }^{3}\right)$
- Separate neighbor-list for molecule
- Neighbor-lists have va riable

Efficient algonthm leads to variable rate input streams

Parallel Prefix Sum (Scan)

- Definition:

The a ll-prefix-sums operation takes a binary associative operator \oplus with identity l, and an array of n elements

$$
\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]
$$

and retums the ordered set

$$
\left[I, a_{0},\left(a_{0} \oplus a_{1}\right), \ldots,\left(a_{0} \oplus a_{1} \oplus \ldots \oplus a_{n-2}\right)\right]
$$

- Example:
if \oplus is addition, then scan on the se Exclusive scan: last input element is not [31704163] included in the result retums the set [0 3411111516 22]

Applications of Scan

- Scan is a simple and useful parallel building block
- Convert recurrences from sequential:

$$
\begin{aligned}
& \text { for }(j=1 ; j<n ; j++) \\
& \quad \text { out }[j]=\text { out }[j-1]+f(j) ;
\end{aligned}
$$

- into parallel:

```
forall(j) { temp[j] = f(j) };
scan(out, temp);
```

- Useful for ma ny pa rallel a lgorithms:
- radix sort
- quicksort
- String comparison
- Lexical analysis
- Stream
- Polynomial evaluation
- Solving recurrences
- Tree operations
- Building data structures
- Etc.

Building Data Structures with Scans

- Fun on the board

Scan on a serial CPU

```
    void scan( float* scanned, float* input, int length)
    {
    scanned[0] = 0;
    for(int i = 1; i < length; ++i)
    {
        scanned[i] = input[i-1] + scanned[i-1];
        }
}
```

- Just add each element to the sum of the elements before it
- Trivial, but sequential
- Exactly \mathbf{n} adds: optimal

A First-Attempt Parallel Scan Algorithm

1. Read input to shared memory. Set first element to zero and shift others right by one.

> Each UE reads one value from the input array in device memory into shared memory array T0. UE 0 writes 0 into shared memory array.

A First-Attempt Parallel Sc an Algorithm

1. (previous slide)
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#1
 Stride = 1

- Active UEs: stride to n-1 (n-stride UEs)
- UE j adds elements j and j-stride from T0 and writes result into shared memory buffer T1 (ping-pong)

A First-Attempt Parallel Sc an Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
```
Iteration #2
    Stride = 2
```


A First-Attempt Parallel Sc an Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (\mathrm{n})$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)

Iteration \#3
 Stride $=4$

© David Kirk/NVIDIA and

A First-Attempt Parallel Sc an Algorithm

1. Read input from device memory to shared memory. Set first element to zero and shift others right by one.
2. Iterate $\log (n)$ times: UEs stride to n : Add pairs of elements stride elements apart. Double stride at each iteration. (note must double buffer shared mem arrays)
3. Write output.

What is wrong with our first-attempt parallel scan?

- Work Effic ient:
- A parallel a lgonthm is work effic ient if it does the same a mount of work asan optimal sequential complexity
- Scan executes $\log (\mathrm{n})$ parallel iterations
- The steps do n-1, n-2, n-4,... n/2 addseach
- Total adds: n * (log(n) -1) +1 $\rightarrow \mathrm{O}(\mathrm{n} * \log (\mathrm{n}))$ work
- This sc an a lgonthm is NOT work effic ient
- Sequential scan algorithm does n adds
- A factor of $\log (n)$ hurts: $20 x$ for $10 \wedge 6$ elements!

Improving Efficiency

- A common parallel algorithm pattem: Balanced Trees
- Build a balanced binary tree on the input data and sweep it to and from the root
- Tree is not an actual data structure, but a concept to determine what each UE does at each step
- Forscan:
- Traverse down from leaves to root building partial sums at intemal nodes in the tree
- Root holds sum of all leaves
- Traverse back up the tree building the scan from the partial sums

Build the Sum Tree

T	3	1	7	0	4	1	6	3

Assume array is already in shared memory

Build the Sum Tree

Each \oplus corresponds to a single UE.

Iterate $\log (n)$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration 2, n/4 UEs

Each \oplus corresponds to a single UE.

Iterate $\log (n)$ times. Each UE adds value stride elements away to its own value

Build the Sum Tree

Iteration $\log (n), 1$ UE Each \oplus corresponds to a single UE.

Iterate $\log (n)$ times. Each UE adds value stride elements away to its own value.
Note that this algorithm operates in-place: no need for double buffering

Zero the Last Eement

We now have an array of partial sums. Since this is an exclusive scan, set the last element to zero. It will propagate back to the first element.

Build Scan From Partial Sums

T	3	4	7	11	4	5	6	0

Build Scan From Partial Sums

Each \oplus corresponds

 to a single UE.Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Each \oplus corresponds to a single UE.

Iterate $\log (\mathrm{n})$ times. Each UE adds value stride elements away to its own value, and sets the value stride elements away to its own previous value.

Build Scan From Partial Sums

Each \bigoplus corresponds to a single UE.

Done! We now have a completed scan that we can write out to device memory.
Total steps: 2 * $\log (n)$.
Total work: 2 * ($n-1$) adds $=O(n) \quad$ Work Efficient!
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

Reductions

- Many to one
- Many to many
- Simply multiple reductions
- Also known as scatter-add and subset of parallel prefix sums
- Use
- Histograms
- Superposition
- Physic al properties

Serial Reduction

Tree-based Reduction

- n steps for 2^{n} units of exec ution
- When reduction operator is a ssociative
- Especially attractive when only one task needs result

Rec ursive-doubling Reduction

- n steps for 2^{n} units of execution
- If all units of execution need the result of the reduction

Rec ursive-doubling Reduction

- Better than tree-based approach with broadcast
- Each units of execution has a copy of the reduced value at the end of n steps
- In tree-based approach with broadcast
- Reduction takesn steps
- Broadcast cannot begin until reduction is complete
- Broadcast can take n steps (architecture dependent)

Other Examples

- More pattems
- Reductions
- Scans
- Building a data structure
- More examples
- Search
- Sort
- FFTasdivide and conquer
- Structured meshes and grids
- Sparse algebra
- Unstructured meshes and graphs
- Trees
- Collections
- Partic les
- Rays

A GPU Renders 3D Scenes

- A Graphics Processing Unit (GPU) accelerates rendering of 3D scenes
- Input: description of scene
- Output: colored pixels to be displayed on a screen
- Input:
- Geome ts, textures
- Output:

