EE382N: Principles in Computer Architecture
Parallelism and Locality
Fall 2009
Lecture 17 - CUDA

Mattan Erez

The University of Texas at Austin
Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel co-processor

Matches architecture features
Specific parameters not exposed
CUDA API and Language: Easy and Lightweight

- The API is an extension to the ANSI C programming language
 - Low learning curve

- The hardware is designed to enable lightweight runtime and driver
 - High performance
CUDA is an Extension to C

Integrated source
(foo.cu)

cudacc
EDG C/C++ frontend
Open64 Global Optimizer

GPU Assembly
(foo.s)

OCG

G80 SASS
(foo.sass)

CPU Host Code
(foo.cpp)
gcc / cl

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois, Urbana-Champaign
CUDA is an Extension to C

- **Declspecs**
 - global, device, shared, local, constant

- **Keywords**
 - threadIdx, blockIdx

- **Intrinsics**
 - __syncthreads

- **Runtime API**
 - Memory, symbol, execution management

- **Function launch**

  ```
  __device__ float filter[N];
  __global__ void convolve (float *image) {
      __shared__ float region[M];
      ...
      region[threadIdx] = image[i];
      __syncthreads()
      ...
      image[j] = result;
  }
  // Allocate GPU memory
  void *myimage = cudaMalloc(bytes)
  // 100 blocks, 10 threads per block
  convolve<<<100, 10>>>(myimage);
  ```
Thread Batching: Grids and Blocks

- A kernel is executed as a grid of thread blocks
 - All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate
Block and Thread IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D

- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes
 - ...
CUDA Device Memory Space Overview

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory

- The host can R/W global, constant, and texture memories
Access Times

- Register - dedicated HW - single cycle
- Shared Memory - dedicated HW - two cycles
 - Hidden by warps
- Local Memory - DRAM, no cache - *slow*
- Global Memory - DRAM, no cache - *slow*
- Constant Memory - DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Texture Memory - DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Instruction Memory (invisible) - DRAM, cached
Programming Model: Square Matrix Multiplication Example

- $P = M \times N$ of size $WIDTH \times WIDTH$
- Without blocking:
 - One thread handles one element of P
 - M and N are loaded $WIDTH$ times from global memory
Programming Model: Common Programming Pattern

- Local and global memory reside in device memory (DRAM) - much slower access than shared memory
 - Uncached

- So, a common way of scheduling some computation on the device is to block it up to take advantage of fast shared memory:
 - Partition the data set into data subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory
Programming Model: Square Matrix Multiplication Example

- \(P = M \times N \) of size \(\text{WIDTH} \times \text{WIDTH} \)
- With blocking:
 - One thread block handles one \(\text{BLOCK}_\text{SIZE} \times \text{BLOCK}_\text{SIZE} \) sub-matrix \(P_{\text{sub}} \) of \(P \)
 - \(M \) and \(N \) are only loaded \(\text{WIDTH} / \text{BLOCK}_\text{SIZE} \) times from global memory

- Great saving of memory bandwidth!
A quick review

- **device** = GPU = set of multiprocessors
- **Multiprocessor** = set of processors & shared memory
- **Kernel** = GPU program
- **Grid** = array of thread blocks that execute a kernel
- **Thread block** = group of SIMD threads that execute a kernel and can communicate via shared memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Who</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>One thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>Read/write</td>
<td>All threads in a block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>Read/write</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>Read</td>
<td>All threads + host</td>
</tr>
</tbody>
</table>
CUDA: C on the GPU

- A simple, explicit programming language solution
- Extend only where necessary

```c
__global__ void KernelFunc(...);
__shared__ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);
```

- Explicit GPU memory allocation
 - `cudaMalloc()`, `cudaFree()`
- Memory copy from host to device, etc.
 - `cudaMemcpy()`, `cudaMemcpy2D()`, ...
Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

__global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
 int idx = threadIdx.x + blockDim.x * blockIdx.x;
 oC[idx] = iA[idx] + iB[idx];
}
Example: Vector Addition Host Code

```c
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initialize h_A and h_B

// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc((void**)&d_A, N * sizeof(float));
cudaMalloc((void**)&d_B, N * sizeof(float));
cudaMalloc((void**)&d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice);

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<<N/256, 256>>>(d_A, d_B, d_C);
```
Outline

• Bandwidths
• CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)
Compilation

• Any source file containing CUDA language extensions must be compiled with nvcc

• NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...

• NVCC can output:
 - Either C code (CPU Code)
 • That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly

• Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)
Compiling CUDA

C/C++ CUDA Application

NVCC

PTX Code

PTX to Target Compiler

G80

... GPU

Target code

CPU Code
Compiling CUDA

- C/C++ CUDA Application
- NVCC
- PTX Code
- PTX to Target Compiler
- G80, ..., GPU
- Target code

Virtual to Physical
NVCC & PTX Virtual Machine

- **EDG**
 - Separate GPU vs. CPU code

- **Open64**
 - Generates GPU PTX assembly

- **Parallel Thread eXecution (PTX)**
 - Virtual Machine and ISA
 - Programming model
 - Execution resources and state

C/C++ CUDA Application

C/C++ CUDA Application

EDG

Open64

PTX Code

```
float4 me = gx[gtid];
me.x += me.y * me.z;
```

```
ld.global.v4.f32  {$f1,$f3,$f5,$f7},  [$r9+0];
madd.f32           $f1, $f5, $f3, $f1;
```
Role of Open64

Open64 compiler gives us

- A complete C/C++ compiler framework. Forward looking. We do not need to add infrastructure framework as our hardware architecture advances over time.

- A good collection of high level architecture independent optimizations. All GPU code is in the inner loop.

- Compiler infrastructure that interacts well with other related standardized tools.
Debugging Using the Device Emulation Mode

• An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread

• When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and vice-versa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of __syncthreads
Device Emulation Mode Pitfalls

• Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results.

• Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode.

• Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
 • There are various options to force strict single precision on the host.
Parameterize Your Application

• Parameterization helps adaptation to different GPUs

• GPUs vary in many ways
 – # of multiprocessors
 – Shared memory size
 – Register file size
 – Threads per block
 – Memory bandwidth

• You can even make apps self-tuning (like FFTW)
 – “Experiment” mode discovers and saves optimal config
Outline

• Bandwidths
• CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)
CUDA Optimization Priorities

• Memory coalescing is #1 priority
 - Highest !/$ optimization
 - Optimize for locality

• Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work

• Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks

• Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions
CUDA Optimization Strategies

• Optimize Algorithms for the GPU

• Optimize Memory Access Pattern

• Take Advantage of On-Chip Shared Memory

• Use Parallelism Efficiently

• Use appropriate mechanisms
Optimize Algorithms for the GPU

- Maximize independent parallelism

- Maximize arithmetic intensity (math/bandwidth)

- Sometimes it’s better to recompute than to cache
 - GPU spends its transistors on ALUs, not memory

- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transferring back and forth to host
Modern DRAMs are Sensitive to Pattern

Inorder Row Row+Col

%peak BW

1x1rd 1x1rdcf 1x1rw 1x1nwf 1x40rd 48x48rw cr1rd cr1rw r1rd r1nw r4rd r4nw
Optimize Memory Pattern ("Coherence")

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced

- Optimize for spatial locality in cached texture memory

- Constant memory provides broadcast within SM

- In shared memory, avoid high-degree bank conflicts
Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads

- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order non-coalesceable addressing
 - See the transpose SDK sample for an example
Use Parallelism Efficiently

• Partition your computation to keep the GPU multiprocessors equally busy
 – Many threads, many thread blocks

• Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 – Registers, shared memory
Maximizing Instruction Throughput

• Minimize use of low-throughput instructions

• Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses

• Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 • i.e. high ratio of math to memory transactions
 - Many concurrent threads
Data Transfers

• Device memory to host memory bandwidth much lower than device memory to device bandwidth
 – 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)

• Minimize transfers
 – Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory

• Group transfers
 – One large transfer much better than many small ones
Page-Locked Memory Transfers

- `cuMemAllocHost()` allows allocation of page-locked host memory
- Enables highest `cudaMemcpy` performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards

- See the “`bandwidthTest`” CUDA SDK sample

- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits
Optimizing threads per block

• Given: total threads in a grid
 – Choose block size and number of blocks to maximize occupancy:

 Occupancy: # of warps running concurrently on a multiprocessor divided by maximum # of warps that can run concurrently

 (Demonstrate CUDA Occupancy Calculator)
Grid/Block Size Heuristics

• # of blocks / # of multiprocessors > 1
 – So all multiprocessors have at least a block to execute

• Per-block resources at most half of total available
 – Shared memory and registers
 – Multiple blocks can run concurrently in a multiprocessor
 – If multiple blocks coexist that aren’t all waiting at a __syncthreads(), machine can stay busy

• # of blocks / # of multiprocessors > 2
 – So multiple blocks run concurrently in a multiprocessor

• # of blocks > 100 to scale to future devices
 – Blocks stream through machine in pipeline fashion
 – 1000 blocks per grid will scale across multiple generations
Occupancy \neq Performance

• Increasing occupancy does not necessarily increase performance

BUT...

• Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 – (It all comes down to arithmetic intensity and available parallelism)
Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
- More threads per block \implies better memory latency hiding
- But, more threads per block \implies fewer regs per thread
 - Kernel invocations can fail if too many registers are used

- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation!
 - Experiment!
Programmer View of Register File

- There are 8192 registers in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same Block only access registers assigned to itself
Communication

• How do threads communicate?

• Remember the execution model:
 - Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world
 - These never communicate

• Some communication allowed in compute mode:
 - Shared memory for threads in a thread block
 • No special communication within warp or using registers
 - No communication between thread blocks
 - Kernels communicate through global device memory

• Mechanisms designed to ensure portability
Synchronization

• Do threads need to synchronize?
 – Basically no communication allowed

• Threads in a block share memory – need sync
 – Warps scheduled OoO, can’t rely on warp order
 – Barrier command for all threads in a block
 – __synchthreads()

• Blocks cannot synchronize
 – Implicit synchronization at end of kernel
Atomic Operations

- Exception to communication between blocks
- Atomic read-modify-write
 - Shared memory
 - Global memory
- Simple ALU operations
 - Add, subtract, AND, OR, min, max, inc, dec
- Exchange operations
 - Compare-and-swap, exchange