EE382N: Principles in Computer Architecture Parallelism and Locality Fall 2009 Lecture 17 – CUDA

Mattan Erez

The University of Texas at Austin

Compute Unified Device Architecture

- CUDA is a programming system for utilizing the G80 processor for compute
 - CUDA follows the architecture very closely

- General purpose programming model
 - User kicks off batches of threads on the GPU
 - GPU = dedicated super-threaded, massively data parallel coprocessor

Matches architecture features Specific parameters not exposed

- The API is an extension to the ANSI C programming language
 Low learning curve
- The hardware is designed to enable lightweight runtime and driver

→ High performance

Integrated source

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007 ECE 498AL, University of Illinois, Urbana-Champaign

CUDA is an Extension to C

- Declspecs
 - global, device, shared, local, constant
- Keywords
 - threadIdx, blockIdx
- Intrinsics
 - ____syncthreads
- Runtime API
 - Memory, symbol, execution management
- Function launch

```
__device float filter[N];
 global void convolve (float *image)
                                         ł
  shared float region[M];
  . . .
  region[threadIdx] = image[i];
  syncthreads()
  . . .
  image[j] = result;
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
// 100 blocks, 10 threads per block
```

convolve<<<100, 10>>> (myimage);

```
© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of Illinois,
Urbana-Champaign
```

Thread Batching: Grids and Blocks

- A kernel is executed as a grid Host of thread blocks
 - All threads share data memory space
- A thread block is a batch of threads that can cooperate with each other by:
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Efficiently sharing data through a low latency shared memory
- Two threads from two different blocks cannot cooperate

Block and Thread IDs

- Threads and blocks have IDs
 - So each thread can decide what data to work on
 - Block ID: 1D or 2D
 - Thread ID: 1D, 2D, or 3D
- Simplifies memory addressing when processing multidimensional data
 - Image processing
 - Solving PDEs on volumes

- ...

CUDA Device Memory Space Overview

- Each thread can:
 - R/W per-thread registers
 - R/W per-thread local memory
 - R/W per-block shared memory
 - R/W per-grid global memory
 - Read only per-grid constant memory
 - Read only per-grid texture memory
 - The host can R/W global, constant, and texture memories

Urbana-Champaign

- Register dedicated HW single cycle
- Shared Memory dedicated HW two cycles
 - Hidden by warps
- Local Memory DRAM, no cache *slow*
- Global Memory DRAM, no cache *slow*
- Constant Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Texture Memory DRAM, cached, 1...10s...100s of cycles, depending on cache locality
- Instruction Memory (invisible) DRAM, cached Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, Principles of Computer Architecture, Fall 2009 -- Lecture 17 (c) Mattan Erez 2009

Programming Model: Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- Without blocking:
 - One thread handles one element of P
 - M and N are loaded WIDTH times from global memory

Μ

Programming Model:

Common Programming Pattern

- Local and global memory reside in device memory (DRAM) - much slower access than shared memory
 Uncached
- So, a common way of scheduling some computation on the device is to block it up to take advantage of fast shared memory:
 - Partition the data set into data subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element

11

• Copying results from shared memory to global memory

Programming Model:

Square Matrix Multiplication Example

- P = M * N of size WIDTH x WIDTH
- With blocking:
 - One thread block handles one BLOCK_SIZE
 x BLOCK_SIZE sub-matrix P_{sub} of P
 - M and N are only loaded WIDTH / BLOCK_SIZ times from global memory

 Great saving of memory bandwidth!

A quick review

- device = GPU = set of multiprocessors
- Multiprocessor = set of processors & shared memory
- Kernel = GPU program
- Grid = array of thread blocks that execute a kernel
- Thread block = group of SIMD threads that execute a kernel and can communicate via shared memory

Memory	Location	Cached	Access	Who
Local	Off-chip	No	Read/write	One thread
Shared	On-chip	N/A	Read/write	All threads in a block
Global	Off-chip	No	Read/write	All threads + host
Constant	Off-chip	Yes	Read	All threads + host
Texture	Off-chip	Yes	Read	All threads + host

- A simple, explicit programming language solution
- Extend only where necessary

__global___void KernelFunc(...);

____shared___ int SharedVar;

KernelFunc<<< 500, 128 >>>(...);

- Explicit GPU memory allocation
 - cudaMalloc(),cudaFree()
- Memory copy from host to device, etc.
 - cudaMemcpy(), cudaMemcpy2D(), ...

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

```
__global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
    int idx = threadIdx.x + blockDim.x * blockId.x;
    oC[idx] = iA[idx] + iB[idx];
}
```

15

Example: Vector Addition Host Code

```
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initalize h_A and h_B
```

```
// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc( (void**) &d_A, N * sizeof(float)));
cudaMalloc( (void**) &d_B, N * sizeof(float)));
cudaMalloc( (void**) &d_C, N * sizeof(float)));
```

```
// copy host memory to device
cudaMemcpy( d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice) );
cudaMemcpy( d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice) );
```

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

- Any source file containing CUDA language extensions must be compiled with nvcc
- NVCC is a compiler driver
 - Works by invoking all the necessary tools and compilers like cudacc, g++, cl, ...
- NVCC can output:
 - Either C code (CPU Code)
 - That must then be compiled with the rest of the application using another tool
 - Or PTX object code directly
- Any executable with CUDA code requires two dynamic libraries:
 - The CUDA runtime library (cudart)
 - The CUDA core library (cuda)

Principles of Computer Architecture, Fall 2009 -- Lecture 17 (c) Mattan Erez 2009

Principles of Computer Architecture, Fall 2009 -- Lecture 17 (c) Mattan Erez 2009

NVCC & PTX Virtual Machine

- EDG
 - Separate GPU vs. CPU code
- Open64
 - Generates GPU PTX assembly
- Parallel Thread eXecution (PTX)
 - Virtual Machine and ISA
 - Programming model
 - Execution resources and state

I d. gl obal . v4. f32 {\$f1, \$f3, \$f5, \$f7}, [\$r9+0]; mad. f32 \$f1, \$f5, \$f3, \$f1;

Open64 compiler gives us

- A complete C/C++ compiler framework. Forward looking. We do not need to add infrastructure framework as our hardware arch advances over time.
- A good collection of high level architecture independent optimizations. All GPU code is in the inner loop.
- Compiler infrastructure that interacts well with other related standardized tools.

Debugging Using the Device Emulation Mode

- An executable compiled in device emulation mode (nvcc -deviceemu) runs completely on the host using the CUDA runtime
 - No need of any device and CUDA driver
 - Each device thread is emulated with a host thread
- When running in device emulation mode, one can:
 - Use host native debug support (breakpoints, inspection, etc.)
 - Access any device-specific data from host code and viceversa
 - Call any host function from device code (e.g. printf) and vice-versa
 - Detect deadlock situations caused by improper usage of _____syncthreads

Device Emulation Mode Pitfalls

- Emulated device threads execute sequentially, so simultaneous accesses of the same memory location by multiple threads potentially produce different results
- Dereferencing device pointers on the host or host pointers on the device can produce correct results in device emulation mode, but will generate an error in device execution mode
- Results of floating-point computations will slightly differ because of:
 - Different compiler outputs
 - Different instruction sets
 - Use of extended precision for intermediate results
 - There are various options to force strict single precision on the host

Parameterize Your Application

- Parameterization helps adaptation to different GPUs
- GPUs vary in many ways
 - # of multiprocessors
 - Shared memory size
 - Register file size
 - Threads per block
 - Memory bandwidth
- You can even make apps self-tuning (like FFTW)
 - "Experiment" mode discovers and saves optimal config

- Bandwidths
- CUDA
 - Overview
 - Development process
 - Performance Optimization
 - Syntax

• Most slides courtesy Massimiliano Fatica (NVIDIA)

CUDA Optimization Priorities

- Memory coalescing is #1 priority
 - Highest !/\$ optimization
 - Optimize for locality
- Take advantage of shared memory
 - Very high bandwidth
 - Threads can cooperate to save work
- Use parallelism efficiently
 - Keep the GPU busy at all times
 - High arithmetic / bandwidth ratio
 - Many threads & thread blocks
- Leave bank conflicts and divergence for last!
 - 4-way and smaller conflicts are not usually worth avoiding if avoiding them will cost more instructions

- Optimize Algorithms for the GPU
- Optimize Memory Access Pattern
- Take Advantage of On-Chip Shared Memory
- Use Parallelism Efficiently
- Use appropriate machanisms

- Maximize independent parallelism
- Maximize arithmetic intensity (math/bandwidth)
- Sometimes it's better to recompute than to cache
 GPU spends its transistors on ALUs, not memory
- Do more computation on the GPU to avoid costly data transfers
 - Even low parallelism computations can sometimes be faster than transfering back and forth to host

Optimize Memory Pattern ("Coherence")

- Coalesced vs. Non-coalesced = order of magnitude
 - Global/Local device memory
 - Sequential access by threads in a half-warp get coalesced
- Optimize for spatial locality in cached texture memory
- Constant memory provides broadcast within SM
- In shared memory, avoid high-degree bank conflicts

Take Advantage of Shared Memory

- Hundreds of times faster than global memory
- Threads can cooperate via shared memory
- Use one / a few threads to load / compute data shared by all threads
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing
 - See the transpose SDK sample for an example

Use Parallelism Efficiently

- Partition your computation to keep the GPU multiprocessors equally busy
 - Many threads, many thread blocks
- Keep resource usage low enough to support multiple active thread blocks per multiprocessor
 - Registers, shared memory

33

Maximizing Instruction Throughput

- Minimize use of low-throughput instructions
- Maximize use of high-bandwidth memory
 - Maximize use of shared memory
 - Maximize coherence of cached accesses
 - Minimize accesses to (uncached) global and local memory
 - Maximize coalescing of global memory accesses
- Optimize performance by overlapping memory accesses with HW computation
 - High arithmetic intensity programs
 - i.e. high ratio of math to memory transactions
 - Many concurrent threads

Data Transfers

- Device memory to host memory bandwidth much lower than device memory to device bandwidth
 - 4GB/s peak (PCI-e x16) vs. 80 GB/s peak (Quadro FX 5600)
- Minimize transfers
 - Intermediate data structures can be allocated, operated on, and deallocated without ever copying them to host memory
- Group transfers
 - One large transfer much better than many small ones

Page-Locked Memory Transfers

- cuMemAllocHost() allows allocation of pagelocked host memory
- Enables highest cudaMemcpy performance
 - 3.2 GB/s common on PCI-e x16
 - ~4 GB/s measured on nForce 680i motherboards
- See the "bandwidthTest" CUDA SDK sample
- Use with caution
 - Allocating too much page-locked memory can reduce overall system performance
 - Test your systems and apps to learn their limits

Optimizing threads per block

- Given: total threads in a grid
 - Choose block size and number of blocks to maximize occupancy:
 - *Occupancy*: # of warps running concurrently on a multiprocessor divided by maximum # of warps that can run concurrently

(Demonstrate CUDA Occupancy Calculator)

37

Grid/Block Size Heuristics

- # of blocks / # of multiprocessors > 1
 - So all multiprocessors have at least a block to execute
- Per-block resources at most half of total available
 - Shared memory and registers
 - Multiple blocks can run concurrently in a multiprocessor
- # of blocks / # of multiprocessors > 2
 - So multiple blocks run concurrently in a multiprocessor
- # of blocks > 100 to scale to future devices
 - Blocks stream through machine in pipeline fashion
 - 1000 blocks per grid will scale across multiple generations

Increasing occupancy does not necessarily increase performance

BUT...

- Low-occupancy multiprocessors cannot adequately hide latency on memory-bound kernels
 - (It all comes down to arithmetic intensity and available parallelism)

Optimizing threads per block

- Choose threads per block as a multiple of warp size
 - Avoid wasting computation on under-populated warps
- More threads per block == better memory latency hiding
- But, more threads per block == fewer regs per thread
 - Kernel invocations can fail if too many registers are used
- Heuristics
 - Minimum: 64 threads per block
 - Only if multiple concurrent blocks
 - 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
 - This all depends on your computation!
- © Mattan Erez Experimentes of Computer Architecture, Fall 2009 -- Lecture 17 (c) Mattan Erez 2009

Programmer View of Register File

- There are 8192 registers
 in each SM in G80
 - This is an implementation decision, not part of CUDA
 - Registers are dynamically partitioned across all Blocks assigned to the SM
 - Once assigned to a Block, the register is NOT accessible by threads in other Blocks
 - Each thread in the same
 Block only access registers
 assigned to itself

- How do threads communicate?
- Remember the execution model:
 - Data parallel streams that represent independent vertices, triangles, fragments, and pixels in the graphics world
 - These *never* communicate
- Some communication allowed in compute mode:
 - Shared memory for threads in a thread block
 - No special communication within warp or using registers
 - No communication between thread blocks
 - Kernels communicate through global device memory
- Mechanisms designed to ensure portability

Synchronization

- Do threads need to synchronize?
 - Basically no communication allowed
- Threads in a block share memory need sync
 - Warps scheduled OoO, can't rely on warp order
 - Barrier command for all threads in a block
 - __synchthreads()
- Blocks cannot synchronize
 - Implicit synchronization at end of kernel

Atomic Operations

- Exception to communication between blocks
- Atomic read-modify-write
 - Shared memory
 - Global memory
- Simple ALU operations
 - Add, subtract, AND, OR, min, max, inc, dec
- Exchange operations
 - Compare-and-swap, exchange