
EE382N: Principles in Computer Architecture
Parallelism and Locality
Fall 2009
Lecture 24 – Stream Processors Wrapup +

Sony (/Toshiba/IBM) Cell Broadband
Engine

Mattan Erez

The University of Texas at Austin

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 2

Outline
• Stream Wrapup

– SRF design
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 3

Heat-map (Area per FPU) – 64 bit

Area overhead of an
instruction
sequencer

Area overhead of an
inter-cluster switch

Area overhead of
intra-cluster
switches

64

128

32

16

4

2

1

8

1 2 4 8 3216 64 128
Number of clusters (DLP)

N
um

be
r o

f F
P

U
s

pe
r c

lu
st

er
 (I

LP
)

1.05
1.1
1.2

1.4

2

4

Many reasonable hardware options for 64-bit

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 4

Application Performance

0
0.2
0.4
0.6
0.8

1
1.2

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

CONV2D DGEMM FFT3D FEM MD CDP

R
el

at
iv

e
ru

nt
im

e

all_SEQ_busy some_SEQ_busy_MEM_busy

no_SEQ_busy_MEM_busy some_SEQ_busy_MEM_idle

Small performance differences
for “good streaming” applications

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 5

SRF Decouples Execution from Memory

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

Inter-cluster and
 m

em
ory sw

itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

Unpredictable I/O Latencies Static latencies

3,840 GB/s512 GB/s64 GB/s<64 GB/s

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 6

SRF Sequential Access

• Single ported
memory
– Efficient wide access of

4 contiguous words
• Implemented using

sub arrays
– Reduced access time
– Reduced power

• Stream-buffers
match bandwidth to
compute needs
– Time multiplex the SRF

port

Stream
buffers

64b

256b

Compute
cluster 0

SRF
bank 0

Sub array 1

Sub array 2

Sub array 3

Local W
L drivers

Sub array 0
512 256

Wide single port time multiplexed by stream buffers

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 7

In-lane Indexing Almost Free
• Single ported memory

– Efficient wide access of 4
contiguous words

• Implemented using sub
arrays
– Reduced access time
– Reduced power

• Stream-buffers match
bandwidth to compute
needs
– Time multiplex the SRF port

• Indexed SRF at low extra
cost
– 8:1 MUX in sub-arrays
– Row decoder per sub-array

Stream
buffers

Compute
cluster 0

SRF
bank 0

Sub array 1

Sub array 0
512 256

Sub array 2

Sub array 3

P
re-decode

&
 row

 dec.
P

re-decode
&

 row
 dec.

P
re-decode

&
 row

 dec.
P

re-decode
&

 row
 dec.

8:1 mux

Addr.
FIFOs

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 8

Stream Processors and GPUs

• Bulk kernel computation
– Kernel uses “scalar” ISA
– VLIW + SIMD

• Bulk memory operations
– Software latency hiding
– Stream mem. System

• HW optimized local mem.
– Locality opportunities

• Minimize off-chip transfers
– With capable mem system

• So far mostly load-time
parameters

• Bulk kernel computation
– Kernel uses “scalar” ISA
– SIMD

• Scalar mem. Operations
– Threads to hide latency
– Threads to fill mem. Pipe

• Small shared memory
– Limited locality

• Rely on off-chip BW
– Needed for graphics

• Dynamic work-loads
– Mostly read-only

Stream Processors GPUs

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 9

Conclusions
• Stream Processors offer extreme performance and

efficiency
– rely on software for more efficient hardware

• Empower software through new interfaces
– Exposed locality hierarchy
– Exposed communication
– Bulk operations and hierarchical control
– Decouple execution pipeline from unpredictable I/O

• Help software when it makes sense
– Aggressive memory system with SIMD alignment
– Multiple parallelism mechanisms (can skip short-vectors ☺)
– Hardware assist for bulk operation dispatch

Stream Processors offer programmable and
efficiency high performance

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 10

Cell Broadband Engine

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 11

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 12

Cell Motivation – Part I

• Performance demanding applications have
different characterisitics
– Parallelism
– Locality
– Realtime

• Games, graphics, multimedia …
• Requires redesign of HW and SW to provide efficient

high performance
– Power, memory, frequency walls

• Cell designed specifically for these applications
– Requirements set by Sony and Toshiba
– Main design and architecture at IBM

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 13

Move to IBM Slides

• Rest of motivation and architecture slides taken
directly from talks by Peter Hofstee, IBM
– Separate PDF file combined from:

• http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf
• http://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop3/

Slides/01_Hofstee_Cell.pdf

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 14

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 15

Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule)
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch

Locality

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 17

Storage/Bandwidth Hierarchy is Key to Efficient
High Performance

~61 KB

64
64-bit

MADDs
(16 clusters

cluster sw
itch

cluster sw
itch

SRF la
ne

SRF la
ne

1 MB

3,840 GB/s512 GB/s

Inter-cluster a
nd

 m
em

ory sw
itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

512 KB2 GB

64 GB/s<64 GB/s

from: “Unleashing the power: A programming example of
large FFTs on Cell” given by Alex Chow at power.org on 6/9/2005

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 18

SRF/LS Comparison

• Serve as staging area for memory
• Capture locality as part of the storage hierarchy
• Single time multiplexed wide port

– kernel access
– DMA access
– instruction access

• SPs uses word granularity vs. Cell’s 4-word
• SP’s SRF has efficient auto-increment access mode
• Cell uses one memory for both code and data

– Why?

Parallelism

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 20

Three Types of Parallelism in Applications

• Instruction level parallelism (ILP)
– multiple instructions from the same instruction basic-block (loop

body) that can execute together
– true ILP is usually quite limited (~5 - ~20 instructions)

• Task level Parallelism (TLP)
– separate high-level tasks (different code) that can be run at the

same time
– True TLP very limited (only a few concurrent tasks)

• Data level parallelism (DLP)
– multiple iterations of a “loop” that can execute concurrently
– DLP is plentiful in scientific applications

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 21

Taking Advantage of ILP

• Multiple FUs (VLIW or superscalar)
– Cell has limited superscalar (not for FP)
– Merrimac has 4-wide VLIW FP ops

• Latency tolerance (pipeline parallelism)
– Cell has 7 FP instructions in flight
– Merrimac expected to have ~24 FP
– Merrimac uses VLIW to avoid interlocks and bypass networks
– Cell also emphasizes static scheduling

• not clear to what extent dynamic variations are allowed

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 22

Taking Advantage of TLP

• Multiple FUs (MIMD)
– Cell can run a different task (thread) on each SPE +

asynchronous DMA on each SPE
• DMA must be controlled by the SPE kernel

– Merrimac can run a kernel and DMA concurrently
• DMAs fully independent of the kernels

• Latency tolerance
– concurrent execution of different kernels and their associated

stream memory operations

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 23

Taking Advantage of DLP
• Multiple FUs

– SIMD
• very (most?) efficient way of utilizing parallelism
• Cell has 4-wide SIMD
• Merrimac 16-wide

– MIMD
• convert DLP to TLP and use MIMD for different “tasks”

– VLIW
• convert DLP to ILP and use VLIW (unrolling, SWP)

• Latency tolerance
– Overlap memory operations and kernel execution (SWP and

unrolling)
– Take advantage of pipeline parallelism in memory

Memory System

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 25

High Bandwidth Asynchronous DMA

• Very high bandwidth memory system
– need to keep FUs busy even with storage hierarchy
– Cell has ~2 words/cycle (25.6GB/s)
– Merrimac designed for 4 words/cycle

• Sophisticated DMA
– stride (with records)
– gather/scatter (with records)

• Differences in granularity of DMA control
– Merrimac treats DMA as stream level operations
– Cell treats DMA as kernel level operations

Design Choices Discussion

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 27

Is VLIW a Good Idea?
• Want to take advantage of all available ILP

– Merrimac has a shallower pipeline than Cell

• Efficiency
– allows exposed communication at the kernel level
– no need for interlocks (or at least cheaper)
– no bypass network

• Manage a larger register space
– distributed/clustered register file
– allows relaxing SIMD restrictions with communication

• VLIW code expansion can be a problem
– especially for MIMD
– requires recompilation

• interlocks allow correct (possibly inefficient) execution

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 28

Is MIMD a Good Idea?

• Probably yes for limited parallelism
– true for PS3, probably not for scientific applications

• May help irregular applications
– work well on Merrimac with relaxed-SIMD but there are

overheads
• padding, extra node copies, SIMD conditionals overhead

• Multiple sequencers and extra instruction storage
– instructions storage might be saved by pipelining kernels

• not always applicable, might increase bandwidth
– Cell sequencer seems to be ~12% of SPE

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 29

Is Kernel-Level DMA Control a Good Idea?

• MIMD (almost) dictates kernel level control
• Consumes issue slots
• Works well for fixed-rate streams
• Requires multi-threading for irregular stream access

– stream-level DMA lets hardware handle synchronization more
efficiently

• May allow pointer-chasing?
– only real advantage is making the way-too-long memory

latency loop a little shorter by localizing control

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 30

Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 31

Parallelism in Cell

• PPE has SIMD VMX instructions and is 2-way SMT
• 8 SPEs

– Each SPE operates exclusively on 4-vectors
– Odd/even instruction pipes

• Odd for branching and memory / Even for compute
– Pipelining for taking advantage of ILP

• Asynchronous DMAs
– SWP of communication and computation
– Memory-level parallelism

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 32

Locality in Cell

• PPE has L1 and L2 caches
– L2 cache is 512KB

• SPE have lots of registers and local store
– 128 registers per SPU
– 256KB LS per SPU

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 33

Communication and Synchronization in Cell
• Element Interconnect Bus (EIB)

– Carries all data between memory system and PPE/SPEs
– Carries all data between SPE SPE, SPE PPE, and PPE SPE

• PPE L2 cache is coherent with memory
• SPEs are not coherent (LS is not a cache)

– SPE DMA coherent with L2
• SPEs can DMA to/from one another

– Memory map LS space into global namespace
– Each SPE has local virtual memory translation to do this
– No automatic coherency – explicit synchronization

• Synchronization through memory or mailboxes

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 34

Cell Software Challenges
• Separate code for PPE and SPEs

– Explicit synchronization
• SPEs can only access memory through DMAs

– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency

• SPEs must be programmed with SIMD
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

• Most common programming system is just low-level
API and intrinsics – Cell SDK
– Luckily, other options exist

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 35

Separate Code for PPE and SPEs
• PPE should be doing top-level control and I/O only

– Trying to compute on the PPE is problematic
• In order 2-way SMT with deep pipeline

– Busy enough just trying to coordinate between the SPEs
• SPEs are the parallel compute engines

– PowerPC architecture, but really different ISA and requirements
– Vector only, 2-way superscalar, …

• Two processor types really have two different
software systems

• Synchronization can be tricky to get efficient
– PPE SPE should use mailbox
– SPE PPE should use L2 cache location
– Why?

• Spawning threads on SPEs painfully slow

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 36

Memory System Challenges
• No arbitrary global LD/ST from SPE

– Everything must go through DMA
• Strict DMA alignment and granularity restrictions

– All DMAs must be aligned to 16-bytes and request at least 16
bytes

– All DMAs should be aligned to 128-bytes and request at least
128 bytes of contiguous memory

– Failing to maintain alignment will cause a bus error!
• Banked DRAM structure

– Consecutive DMA requests should span 2KB (8 banks)
• DMA commands issued from within SPE

– Strided data access
– Chain of stride commands to have arbitrary gather

• Chained list of commands prepared by SPE and stored in LS

• Need to explicitly synchronize with DMA completion

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 37

SPE Programming Challenges

• Vector only
– Scalars must be placed in LSW of vector and some instructions

will take this into account
– All casts and operations are aligned to 16 bytes (4 words)
– Poor integer float casting

• LS is only SRAM in SPE
– Careful with growing stack
– Sometimes need to force instruction prefetch to avoid stalls

• Priority given to DMA first, then LD/ST, and only then fetch

• No branch prediction (predict not-taken?)
– Can have branch hint instructions inserted explicitly

• Some help from XLC compiler (and an occasional
bug)

© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 38

Overall

• Lots to deal with
• Explicit communication and synchronization
• Explicit locality
• Explicit parallelism
• Explicit pipeline scheduling

• Need some help from programming tools

