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Outline
• Stream Wrapup

– SRF design
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Heat-map (Area per FPU) – 64 bit
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Application Performance
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SRF Decouples Execution from Memory
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SRF Sequential Access

• Single ported 
memory
– Efficient wide access of 

4 contiguous words
• Implemented using 

sub arrays
– Reduced access time
– Reduced power

• Stream-buffers 
match bandwidth to 
compute needs
– Time multiplex the SRF 

port

Stream 
buffers

64b
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Compute 
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bank 0
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Local W
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Sub array 0
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Wide single port time multiplexed by stream buffers
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In-lane Indexing Almost Free
• Single ported memory

– Efficient wide access of 4 
contiguous words

• Implemented using sub 
arrays
– Reduced access time
– Reduced power

• Stream-buffers match 
bandwidth to compute 
needs
– Time multiplex the SRF port

• Indexed SRF at low extra 
cost
– 8:1 MUX in sub-arrays
– Row decoder per sub-array

Stream 
buffers
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Stream Processors and GPUs

• Bulk kernel computation
– Kernel uses “scalar” ISA
– VLIW + SIMD

• Bulk memory operations
– Software latency hiding
– Stream mem. System

• HW optimized local mem.
– Locality opportunities

• Minimize off-chip transfers
– With capable mem system

• So far mostly load-time 
parameters

• Bulk kernel computation
– Kernel uses “scalar” ISA
– SIMD

• Scalar mem. Operations
– Threads to hide latency
– Threads to fill mem. Pipe

• Small shared memory
– Limited locality

• Rely on off-chip BW
– Needed for graphics

• Dynamic work-loads
– Mostly read-only

Stream Processors GPUs
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Conclusions
• Stream Processors offer extreme performance and 

efficiency 
– rely on software for more efficient hardware

• Empower software through new interfaces
– Exposed locality hierarchy
– Exposed communication
– Bulk operations and hierarchical control
– Decouple execution pipeline from unpredictable I/O

• Help software when it makes sense
– Aggressive memory system with SIMD alignment
– Multiple parallelism mechanisms (can skip short-vectors ☺)
– Hardware assist for bulk operation dispatch

Stream Processors offer programmable and 
efficiency high performance
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Cell Broadband Engine
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Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.



© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 12

Cell Motivation – Part I

• Performance demanding applications have 
different characterisitics
– Parallelism
– Locality
– Realtime

• Games, graphics, multimedia …
• Requires redesign of HW and SW to provide efficient 

high performance
– Power, memory, frequency walls

• Cell designed specifically for these applications
– Requirements set by Sony and Toshiba
– Main design and architecture at IBM 
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Move to IBM Slides

• Rest of motivation and architecture slides taken 
directly from talks by Peter Hofstee, IBM
– Separate PDF file combined from:

• http://www.hpcaconf.org/hpca11/slides/Cell_Public_Hofstee.pdf
• http://www.cct.lsu.edu/~estrabd/LACSI2006/workshops/workshop3/

Slides/01_Hofstee_Cell.pdf
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Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Stream Processors

• Software (probably next time)

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.



© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 15

Hardware Efficiency
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding (schedule) 
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch



Locality
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Storage/Bandwidth Hierarchy is Key to Efficient 
High Performance

~61 KB
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large FFTs on Cell” given by Alex Chow at power.org on 6/9/2005
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SRF/LS Comparison

• Serve as staging area for memory
• Capture locality as part of the storage hierarchy
• Single time multiplexed wide port

– kernel access
– DMA access
– instruction access

• SPs uses word granularity vs. Cell’s 4-word
• SP’s SRF has efficient auto-increment access mode
• Cell uses one memory for both code and data 

– Why?



Parallelism
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Three Types of Parallelism in Applications

• Instruction level parallelism (ILP)
– multiple instructions from the same instruction basic-block (loop 

body) that can execute together
– true ILP is usually quite limited (~5 - ~20 instructions)

• Task level Parallelism (TLP)
– separate high-level tasks (different code) that can be run at the 

same time
– True TLP very limited (only a few concurrent tasks)

• Data level parallelism (DLP)
– multiple iterations of a “loop” that can execute concurrently
– DLP is plentiful in scientific applications
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Taking Advantage of ILP

• Multiple FUs (VLIW or superscalar)
– Cell has limited superscalar (not for FP)
– Merrimac has 4-wide VLIW FP ops

• Latency tolerance (pipeline parallelism)
– Cell has 7 FP instructions in flight
– Merrimac expected to have ~24 FP
– Merrimac uses VLIW to avoid interlocks and bypass networks
– Cell also emphasizes static scheduling 

• not clear to what extent dynamic variations are allowed 
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Taking Advantage of TLP

• Multiple FUs (MIMD)
– Cell can run a different task (thread) on each SPE + 

asynchronous DMA on each SPE
• DMA must be controlled by the SPE  kernel

– Merrimac can run a kernel and DMA concurrently
• DMAs fully independent of the kernels

• Latency tolerance 
– concurrent execution of different kernels and their associated 

stream memory operations
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Taking Advantage of DLP
• Multiple FUs

– SIMD
• very (most?) efficient way of utilizing parallelism
• Cell has 4-wide SIMD
• Merrimac 16-wide

– MIMD
• convert DLP to TLP and use MIMD for different “tasks”

– VLIW
• convert DLP to ILP and use VLIW (unrolling, SWP)

• Latency tolerance
– Overlap memory operations and kernel execution (SWP and 

unrolling)
– Take advantage of pipeline parallelism in memory



Memory System
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High Bandwidth Asynchronous DMA 

• Very high bandwidth memory system
– need to keep FUs busy even with storage hierarchy
– Cell has ~2 words/cycle (25.6GB/s )
– Merrimac designed for 4 words/cycle

• Sophisticated DMA
– stride (with records)
– gather/scatter (with records)

• Differences in granularity of DMA control
– Merrimac treats DMA as stream level operations
– Cell treats DMA as kernel level operations



Design Choices Discussion
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Is VLIW a Good Idea?
• Want to take advantage of all available ILP

– Merrimac has a shallower pipeline than Cell

• Efficiency
– allows exposed communication at the kernel level
– no need for interlocks (or at least cheaper)
– no bypass network

• Manage a larger register space
– distributed/clustered register file
– allows relaxing SIMD restrictions with communication

• VLIW code expansion can be a problem
– especially for MIMD
– requires recompilation

• interlocks allow correct (possibly inefficient) execution
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Is MIMD a Good Idea?

• Probably yes for limited parallelism
– true for PS3, probably not for scientific applications

• May help irregular applications
– work well on Merrimac with relaxed-SIMD but there are 

overheads
• padding, extra node copies, SIMD conditionals overhead

• Multiple sequencers and extra instruction storage
– instructions storage might be saved by pipelining kernels

• not always applicable, might increase bandwidth
– Cell sequencer seems to be ~12% of SPE
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Is Kernel-Level DMA Control a Good Idea? 

• MIMD (almost) dictates kernel level control
• Consumes issue slots
• Works well for fixed-rate streams
• Requires multi-threading for irregular stream access

– stream-level DMA lets hardware handle synchronization more 
efficiently

• May allow pointer-chasing?
– only real advantage is making the way-too-long memory 

latency loop a little shorter by localizing control
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Outline
• Motivation
• Cell architecture

– GPP Controller (PPE)
– Compute PEs (SPEs)
– Interconnect (EIB)
– Memory and I/O

• Comparisons
– Merrimac

• Software

• All Cell related images and figures © Sony and IBM
• Cell Broadband Engine ™ Sony Corp.
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Parallelism in Cell

• PPE has SIMD VMX instructions and is 2-way SMT
• 8 SPEs

– Each SPE operates exclusively on 4-vectors
– Odd/even instruction pipes

• Odd for branching and memory / Even for compute
– Pipelining for taking advantage of ILP

• Asynchronous DMAs
– SWP of communication and computation
– Memory-level parallelism
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Locality in Cell

• PPE has L1 and L2 caches
– L2 cache is 512KB

• SPE have lots of registers and local store
– 128 registers per SPU
– 256KB LS per SPU



© Mattan Erez EE382N: Principles of Computer Architecture, Fall 2009 -- Lecture 24 33

Communication and Synchronization in Cell
• Element Interconnect Bus (EIB)

– Carries all data between memory system and PPE/SPEs
– Carries all data between SPE SPE, SPE PPE, and PPE SPE

• PPE L2 cache is coherent with memory
• SPEs are not coherent (LS is not a cache)

– SPE DMA coherent with L2
• SPEs can DMA to/from one another

– Memory map LS space into global namespace
– Each SPE has local virtual memory translation to do this
– No automatic coherency – explicit synchronization

• Synchronization through memory or mailboxes
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Cell Software Challenges
• Separate code for PPE and SPEs

– Explicit synchronization
• SPEs can only access memory through DMAs

– DMA is asynchronous, but prep instructions are part of SPE code
– SW responsible for consistency and coherency

• SPEs must be programmed with SIMD 
– Lots of pipeline challenges left up to programmer / compiler

• Deep pipeline with no branch predictor
• 2-wide scalar pipeline needs static scheduling
• LS shared by DMA, instruction fetch, and SIMD LD/ST
• No memory protection on LS (Stack can “eat” data or code)

• Most common programming system is just low-level 
API and intrinsics – Cell SDK
– Luckily, other options exist
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Separate Code for PPE and SPEs
• PPE should be doing top-level control and I/O only

– Trying to compute on the PPE is problematic
• In order 2-way SMT with deep pipeline

– Busy enough just trying to coordinate between the SPEs
• SPEs are the parallel compute engines

– PowerPC architecture, but really different ISA and requirements
– Vector only, 2-way superscalar, …

• Two processor types really have two different 
software systems

• Synchronization can be tricky to get efficient
– PPE SPE should use mailbox
– SPE PPE should use L2 cache location
– Why?

• Spawning threads on SPEs painfully slow
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Memory System Challenges
• No arbitrary global LD/ST from SPE

– Everything must go through DMA
• Strict DMA alignment and granularity restrictions

– All DMAs must be aligned to 16-bytes and request at least 16 
bytes

– All DMAs should be aligned to 128-bytes and request at least 
128 bytes of contiguous memory

– Failing to maintain alignment will cause a bus error!
• Banked DRAM structure

– Consecutive DMA requests should span 2KB (8 banks)
• DMA commands issued from within SPE

– Strided data access
– Chain of stride commands to have arbitrary gather

• Chained list of commands prepared by SPE and stored in LS

• Need to explicitly synchronize with DMA completion
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SPE Programming Challenges

• Vector only
– Scalars must be placed in LSW of vector and some instructions 

will take this into account
– All casts and operations are aligned to 16 bytes (4 words)
– Poor integer float casting

• LS is only SRAM in SPE
– Careful with growing stack
– Sometimes need to force instruction prefetch to avoid stalls

• Priority given to DMA first, then LD/ST, and only then fetch

• No branch prediction (predict not-taken?)
– Can have branch hint instructions inserted explicitly

• Some help from XLC compiler (and an occasional 
bug)
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Overall

• Lots to deal with
• Explicit communication and synchronization
• Explicit locality
• Explicit parallelism
• Explicit pipeline scheduling

• Need some help from programming tools


