
N

EE382N (20): Computer Architecture - Parallelism and Locality

Lecture 10 – Parallelism in Software I

EE382N: Parallelilsm and Locality (c) Rodric Rabbah,

Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

3

Parallel programming from scratch

• Start with an algorithm

– Formal representation of problem solution

– Sequence of steps

• Make sure there is parallelism

– In each algorithm step

– Minimize synchronization points

• Don’t forget locality

– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential code

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

4

Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the
time spent?
– Look at code

– Use profiling tools

• Parallelization
– Start with hot spots first

– Make sequences of small changes, each followed by testing

– Patterns provide guidance

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

54 Common Steps to
Creating a Parallel Program

Tasks Units of

Execution

Processors

Partitioning

Sequential

Computation
Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

6

1. Decomposition

• Identify concurrency and decide at what level to
exploit it

• Break up computation into tasks to be divided
among processes
– Tasks may become available dynamically

– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on

achievable speedup

Main consideration: coverage and Amdahl’s Law

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

7

Coverage

• Amdahl's Law: The performance improvement to
be gained from using some faster mode of
execution is limited by the fraction of the time the
faster mode can be used.

– Demonstration of the law of diminishing returns

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

8

Amdahl’s Law

• Potential program speedup is defined by the
fraction of code that can be parallelized

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

9

Amdahl’s Law

• Speedup= old running time / new running time

= 100 seconds / 60 seconds

= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

10

• p = fraction of work that can be parallelized

• n = the number of processor

Amdahl’s Law

fraction of time to

complete sequential

work

fraction of time to

complete parallel work

n

p
p

speedup

)1(

1

 timerunning new

 timerunning old

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

11

Implications of Amdahl’s Law

• Speedup tends to as number of processors
tends to infinity p1

1

Super linear speedups

are possible due to

registers and caches

Typical speedup is

less than linear

number of processors

s
p

e
e

d
u

p

Parallelism only worthwhile

when it dominates execution

N

Why is speedup less than linear?

• Synchronization

• Communication

• Load imbalance

• More work to do

– Often, parallel algorithm has more work (why?)

– Decomposition may create repeated work (why?)

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

12

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

13

2. Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication

• Structured approaches usually work well
– Code inspection or understanding of application

– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?

– Complexity often affects decisions

– Architectural model affects decisions

Main considerations: granularity and locality

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

14

Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to

communication ratio

– Small amounts of

computational work between

communication stages

– High communication

overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to

communication ratio

– Large amounts of

computational work between

communication events

– Harder to load balance

efficiently

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

15

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

16

Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync coarse granularity

Few units of exec + time disparity fine granularity

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

17

3+4. Orchestration and Mapping

• Computation and communication concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target system

Main considerations: locality, parallelism,

mechanisms (efficiency and dangers)

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

18

Parallel Programming by Pattern

• Provides a cookbook to systematically guide programmers

– Decompose, Assign, Orchestrate, Map

– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming
community

– Each pattern has a name, providing a vocabulary for
discussing solutions

• Helps with software reusability, malleability, and modularity

– Written in prescribed format to allow the reader to quickly
understand the solution and its context

• Otherwise, too difficult for programmers, and software will
not fully exploit parallel hardware

N

GPU example pattern:
reductions and scans

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

19

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

20

Reductions

• Many to one

• Many to many

– Simply multiple reductions

• Also known as scatter-add and subset of parallel prefix sums

• Use

– Histograms

– Superposition

• Physical properties

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

21

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction
operator is not
associative

• Usually followed by a
broadcast of result

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

22

Tree-based Reduction

• n steps for 2n units of execution

• When reduction operator is associative

• Especially attractive when only one task needs
result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

23

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

0 1 2 3 4 5 76 1098 11

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

24

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N

What else did optimized implementation
gain?

25

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

26

Recursive-doubling Reduction

• n steps for 2n units of execution

• If all units of execution need the result of the
reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

27

Recursive-doubling Reduction

• Better than tree-based approach with broadcast

– Each units of execution has a copy of the reduced value
at the end of n steps

– In tree-based approach with broadcast

• Reduction takes n steps

• Broadcast cannot begin until reduction is complete

• Broadcast can take n steps (architecture dependent)

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

28

Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative
operator with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0 a1), …, (a0 a1 … an-2)].

• Example:
if is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last

input element is not

included in the result

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

29

Applications of Scan

• Scan is a simple and useful parallel building block
– Convert recurrences from sequential :

for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

• Useful for many parallel algorithms:

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream

compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Building data structures

• Etc.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

30

Scan on a serial CPU

• Just add each element to the sum of the elements
before it

• Trivial, but sequential

• Exactly n adds: optimal

void scan(float* scanned, float* input, int length)

{

scanned[0] = 0;

for(int i = 1; i < length; ++i)

{

scanned[i] = input[i-1] + scanned[i-1];

}

}

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

31

A First-Attempt Parallel Scan Algorithm

1. Read input to

shared memory. Set

first element to zero

and shift others right

by one.

Each UE reads one value from the input

array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

32

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

• Active UEs: stride to n-1 (n-stride UEs)

• UE j adds elements j and j-stride from T0 and writes

result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 0 3 4 8 7 4 5 7

Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

33

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

34

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

35

A First-Attempt Parallel Scan Algorithm

Ou
t

0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

3. Write output.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

36

What is wrong with our first-attempt parallel scan?

• Work Efficient:
– A parallel algorithm is work efficient if it does the same amount

of work as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each

– Total adds: n * (log(n) – 1) + 1 O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

37

Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it

to and from the root

– Tree is not an actual data structure, but a concept to
determine what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial
sums

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

38

Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

39

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

40

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

41

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

42

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,

set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

43

Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

44

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 1

1 UE
Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

45

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 2

2 UEs

Stride 4

Stride 2

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

46

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).

Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)

n/2 UEs

Stride 2

Stride 4

Stride 1

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

47

Building Data Structures with Scans

• Fun on the board

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

48

History

• Berkeley architecture professor
Christopher Alexander

• In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

49

Example 167 (p. 783): 6ft Balcony

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

50

Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

51

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

52

Picture Reorder

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion

Compensation

Display

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

53

• Task decomposition
– Independent coarse-grained

computation

– Inherent to algorithm

• Sequence of statements

(instructions) that operate

together as a group
– Corresponds to some logical part

of program

– Usually follows from the way

programmer thinks about a

problem

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion

Compensation

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

54

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

Motion

Compensation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

55

join

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion

Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

• Data decomposition
– Same computation is applied to

small data chunks derived from

large data set

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

56

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and

• Distinct loop iterations

• Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

57

Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them

– Tasks should be sufficiently independent so that
managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

58

Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in
computer architecture?

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

59

Guidelines for Data Decomposition

• Data decomposition is often implied by task
decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large

data structure

– Similar operations are applied to different parts of the data
structure

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

60

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

61

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

62

Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide
range of executions

• Efficiency

– Data chunks should generate comparable amounts of
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage
and debug

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

63

Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set

– Some advantages to
geometric discussed in future
lecture

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

64

Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

