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Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA) 
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007
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Parallel programming from scratch

• Start with an algorithm

– Formal representation of problem solution

– Sequence of steps

• Make sure there is parallelism

– In each algorithm step

– Minimize synchronization points

• Don’t forget locality

– Communication is costly

• Performance, Energy, System cost

• More often start with existing sequential code
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Reengineering for Parallelism

• Define a testing protocol

• Identify program hot spots: where is most of the 
time spent?
– Look at code

– Use profiling tools

• Parallelization
– Start with hot spots first

– Make sequences of small changes, each followed by testing

– Patterns provide guidance
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Creating a Parallel Program
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1. Decomposition

• Identify concurrency and decide at what level to 
exploit it

• Break up computation into tasks to be divided 
among processes
– Tasks may become available dynamically

– Number of tasks may vary with time

• Enough tasks to keep processors busy
– Number of tasks available at a time is upper bound on 

achievable speedup

Main consideration: coverage and Amdahl’s Law
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Coverage

• Amdahl's Law: The performance improvement to 
be gained from using some faster mode of 
execution is limited by the fraction of the time the 
faster mode can be used.

– Demonstration of the law of diminishing returns
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Amdahl’s Law

• Potential program speedup is defined by the 
fraction of code that can be parallelized

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time
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Amdahl’s Law

• Speedup= old running time / new running time

= 100 seconds / 60 seconds

= 1.67
(parallel version is 1.67 times faster)

sequential

parallel

sequential

50 seconds

+

25 seconds

+

sequential

sequential25 seconds

10 seconds

+

25 seconds

+

Use 5 processors for parallel work

25 seconds

100 seconds 60 seconds

time
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• p = fraction of work that can be parallelized

• n = the number of processor

Amdahl’s Law 

fraction of time to

complete sequential

work

fraction of time to 

complete parallel work

n

p
p

speedup
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 timerunning new
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Implications of Amdahl’s Law

• Speedup tends to        as number of processors 
tends to infinity p1

1

Super linear speedups 

are possible due to 

registers and caches

Typical speedup is 

less than linear

number of processors

s
p

e
e

d
u

p

Parallelism only worthwhile 

when it dominates execution
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Why is speedup less than linear?

• Synchronization

• Communication

• Load imbalance

• More work to do

– Often, parallel algorithm has more work (why?)

– Decomposition may create repeated work (why?)
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2. Assignment

• Specify mechanism to divide work among PEs
– Balance work and reduce communication 

• Structured approaches usually work well
– Code inspection or understanding of application

– Well-known design patterns

• As programmers, we worry about partitioning first
– Independent of architecture or programming model?

– Complexity often affects decisions

– Architectural model affects decisions

Main considerations: granularity and locality
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Fine vs. Coarse Granularity

• Fine-grain Parallelism
– Low computation to 

communication ratio

– Small amounts of 

computational work between 

communication stages 

– High communication 

overhead

• Potential HW assist

• Coarse-grain Parallelism
– High computation to 

communication ratio 

– Large amounts of 

computational work between 

communication events 

– Harder to load balance 

efficiently 
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1
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Load Balancing vs. Synchronization

Fine Coarse

PE0 PE1 PE0 PE1

Expensive sync  coarse granularity

Few units of exec + time disparity  fine granularity
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3+4. Orchestration and Mapping

• Computation and communication concurrency

• Preserve locality of data

• Schedule tasks to satisfy dependences early

• Survey available mechanisms on target system

Main considerations: locality, parallelism, 

mechanisms (efficiency and dangers)
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Parallel Programming by Pattern

• Provides a cookbook to systematically guide programmers 

– Decompose, Assign, Orchestrate, Map

– Can lead to high quality solutions in some domains

• Provide common vocabulary to the programming 
community

– Each pattern has a name, providing a vocabulary for 
discussing solutions

• Helps with software reusability, malleability, and modularity

– Written in prescribed format to allow the reader to quickly 
understand the solution and its context

• Otherwise, too difficult for programmers, and software will 
not fully exploit parallel hardware
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GPU example pattern: 
reductions and scans
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Reductions

• Many to one

• Many to many

– Simply multiple reductions

• Also known as scatter-add and subset of parallel prefix sums

• Use

– Histograms

– Superposition

• Physical properties



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

21

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction 
operator is not 
associative

• Usually followed by a 
broadcast of result
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Tree-based Reduction

• n steps for 2n units of execution

• When reduction operator is associative

• Especially attractive when only one task needs 
result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

23

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements 

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign

0 1 2 3 4 5 76 1098 11
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No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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What else did optimized implementation 
gain?

25
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Recursive-doubling Reduction

• n steps for 2n units of execution

• If all units of execution need the result of the 
reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]
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Recursive-doubling Reduction

• Better than tree-based approach with broadcast

– Each units of execution has a copy of the reduced value 
at the end of n steps

– In tree-based approach with broadcast

• Reduction takes n steps

• Broadcast cannot begin until reduction is complete

• Broadcast can take n steps (architecture dependent)
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Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative 
operator  with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0  a1), …, (a0  a1  …  an-2)].

• Example: 
if  is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set 

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 

input element is not 

included in the result

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Applications of Scan

• Scan is a simple and useful parallel building block
– Convert recurrences from sequential :  

for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

• Useful for many parallel algorithms:

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream 

compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Building data structures

• Etc.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Scan on a serial CPU

• Just add each element to the sum of the elements 
before it

• Trivial, but sequential

• Exactly n adds: optimal

void scan( float* scanned, float* input, int length) 

{

scanned[0] = 0; 

for(int i = 1; i < length; ++i) 

{

scanned[i] = input[i-1] + scanned[i-1];

}

}

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. Read input to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

Each UE reads one value from the input

array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

• Active UEs: stride to n-1 (n-stride UEs)

• UE j adds elements j and j-stride from T0 and writes 

result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 0 3 4 8 7 4 5 7

Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

Ou
t

0 3 4 11 11 15 16 22

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

3. Write output. 

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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What is wrong with our first-attempt parallel scan?

• Work Efficient: 
– A parallel algorithm is work efficient if it does the same amount 

of work as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each

– Total adds: n * (log(n) – 1) + 1  O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it 

to and from the root

– Tree is not an actual data structure, but a concept to 
determine what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at 

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial 
sums

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums.  Since this is an exclusive scan,

set the last element to zero.  It will propagate back to the first element.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 1

1 UE
Stride 4

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 2 

2 UEs

Stride 4

Stride 2

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  

Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 

n/2 UEs

Stride 2

Stride 4

Stride 1

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

47

Building Data Structures with Scans

• Fun on the board
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History

• Berkeley architecture professor 
Christopher Alexander

• In 1977, patterns for city 
planning, landscaping, and 
architecture in an attempt to 
capture principles for “living” 
design
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Example 167 (p. 783): 6ft Balcony
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Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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Picture Reorder

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion 

Compensation

Display

Here’s my algorithm.
Where’s the concurrency?
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• Task decomposition
– Independent coarse-grained 

computation

– Inherent to algorithm

• Sequence of statements 

(instructions) that operate 

together as a group
– Corresponds to some logical part 

of program

– Usually follows from the way 

programmer thinks about a 

problem

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion 

Compensation

Here’s my algorithm.
Where’s the concurrency?
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join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application 

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

Motion 

Compensation
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join

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion 

Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

• Data decomposition
– Same computation is applied to 

small data chunks derived from 

large data set

IDCT

IQuantization

ZigZag

Saturation
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Guidelines for Task Decomposition

• Algorithms start with a good understanding of the 
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and 

• Distinct loop iterations

• Easier to start with many tasks and later fuse them, 
rather than too few tasks and later try to split them
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Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and 

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of 

creating and managing them

– Tasks should be sufficiently independent so that 
managing dependencies doesn’t become the 
bottleneck

• Simplicity
– The code has to remain readable and easy to 

understand, and debug
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Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in 
computer architecture? 

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation
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Guidelines for Data Decomposition

• Data decomposition is often implied by task 
decomposition 

• Programmers need to address task and data 
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large 

data structure

– Similar operations are applied to different parts of the data 
structure
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide 
range of executions

• Efficiency

– Data chunks should generate comparable amounts of 
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage 
and debug
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Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline  algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set 

– Some advantages to
geometric discussed in future
lecture
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Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split


