
N

EE382N (20): Computer Architecture - Parallelism and Locality

Lecture 11 – Parallelism in Software II

EE382N: Parallelilsm and Locality (c) Rodric Rabbah,

Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

34 Common Steps to
Creating a Parallel Program

Tasks Units of

Execution

Processors

Partitioning

Sequential

Computation
Parallel
program

d
e
c
o
m
p
o
s
i
t
i
o
n

a
s
s
i
g
n
m
e
n
t

o
r
c
h
e
s
t
r
a
t
i
o
n

m
a
p
p
i
n
g

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

UE0 UE1

UE2 UE3

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

4

Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction
operator is not
associative

• Usually followed by a
broadcast of result

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

5

Tree-based Reduction

• n steps for 2n units of execution

• When reduction operator is associative

• Especially attractive when only one task needs
result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

6

Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

0 1 2 3 4 5 76 1098 11

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

7

No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

8

Recursive-doubling Reduction

• n steps for 2n units of execution

• If all units of execution need the result of the
reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

9

Recursive-doubling Reduction

• Better than tree-based approach with broadcast

– Each units of execution has a copy of the reduced value
at the end of n steps

– In tree-based approach with broadcast

• Reduction takes n steps

• Broadcast cannot begin until reduction is complete

• Broadcast can take n steps (architecture dependent)

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

10

Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative
operator  with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0  a1), …, (a0  a1  …  an-2)].

• Example:
if  is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last

input element is not

included in the result

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

11

Applications of Scan

• Scan is a simple and useful parallel building block
– Convert recurrences from sequential :

for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

• Useful for many parallel algorithms:

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream

compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Building data structures

• Etc.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

12

Scan on a serial CPU

• Just add each element to the sum of the elements
before it

• Trivial, but sequential

• Exactly n adds: optimal

void scan(float* scanned, float* input, int length)

{

scanned[0] = 0;

for(int i = 1; i < length; ++i)

{

scanned[i] = input[i-1] + scanned[i-1];

}

}

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

13

A First-Attempt Parallel Scan Algorithm

1. Read input to

shared memory. Set

first element to zero

and shift others right

by one.

Each UE reads one value from the input

array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

14

A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

• Active UEs: stride to n-1 (n-stride UEs)

• UE j adds elements j and j-stride from T0 and writes

result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 0 3 4 8 7 4 5 7

Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

15

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

16

A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

17

A First-Attempt Parallel Scan Algorithm

Ou
t

0 3 4 11 11 15 16 22

1. Read input from

device memory to

shared memory. Set

first element to zero

and shift others right

by one.

2. Iterate log(n)

times: UEs stride to n:

Add pairs of elements

stride elements apart.

Double stride at each

iteration. (note must

double buffer shared

mem arrays)

3. Write output.

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

18

What is wrong with our first-attempt parallel scan?

• Work Efficient:
– A parallel algorithm is work efficient if it does the same amount

of work as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each

– Total adds: n * (log(n) – 1) + 1  O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

19

Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it

to and from the root

– Tree is not an actual data structure, but a concept to
determine what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial
sums

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

20

Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

21

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

22

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

23

Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

24

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,

set the last element to zero. It will propagate back to the first element.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

25

Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

26

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 1

1 UE
Stride 4

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

27

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 2

2 UEs

Stride 4

Stride 2

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

28

Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).

Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)

n/2 UEs

Stride 2

Stride 4

Stride 1

Each corresponds

to a single UE.

© David Kirk/NVIDIA and

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,

Urbana-Champaign

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

29

Building Data Structures with Scans

• Fun on the board

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

30

History

• Berkeley architecture professor
Christopher Alexander

• In 1977, patterns for city
planning, landscaping, and
architecture in an attempt to
capture principles for “living”
design

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

31

Example 167 (p. 783): 6ft Balcony

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

32

Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

33

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

34

Picture Reorder

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion

Compensation

Display

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

35

• Task decomposition
– Independent coarse-grained

computation

– Inherent to algorithm

• Sequence of statements

(instructions) that operate

together as a group
– Corresponds to some logical part

of program

– Usually follows from the way

programmer thinks about a

problem

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion

Compensation

Here’s my algorithm.
Where’s the concurrency?

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

36

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

Motion

Compensation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

37

join

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion

Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines

– Producer-consumer chains

• Data decomposition
– Same computation is applied to

small data chunks derived from

large data set

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

38

Guidelines for Task Decomposition

• Algorithms start with a good understanding of the
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and

• Distinct loop iterations

• Easier to start with many tasks and later fuse them,
rather than too few tasks and later try to split them

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

39

Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them

– Tasks should be sufficiently independent so that
managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

40

Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in
computer architecture?

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

41

Guidelines for Data Decomposition

• Data decomposition is often implied by task
decomposition

• Programmers need to address task and data
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large

data structure

– Similar operations are applied to different parts of the data
structure

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

42

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

43

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

44

Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide
range of executions

• Efficiency

– Data chunks should generate comparable amounts of
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage
and debug

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

45

Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set

– Some advantages to
geometric discussed in future
lecture

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

46

Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

47

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

48

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support

– Cost of sharing information among execution units

– Avoid tendency to over constrain the implementation

• Work well on the intended platform

• Flexible enough to easily adapt to different architectures

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

49

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks

– Organize by data decomposition

– Organize by flow of data

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

50

Organize by Tasks?

Recursive?

Task

Parallelism

Divide and Conquer
yes

no

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

51

Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop

– Tasks largely known at the start of the computation

– All tasks may not need to complete to arrive at a solution

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

52

Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform

– May require dynamic load balancing

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

join join

join

split split

split

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

53

Organize by Data?

Recursive?

Geometric

Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures

– Recursive data structures

yes

no

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

54

Recursive Data

• Computation on a list, tree, or graph

– Often appears the only way to solve a problem is to
sequentially move through the data structure

• There are however opportunities to reshape the
operations in a way that exposes concurrency

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

55

Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s

successor, repeat until no changes

• O(log n) vs. O(n)

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

56

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

57

Organize by Flow of Data?

Regular?

Event-based

Coordination

Pipeline

• In some application domains, the flow of data
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow

– Irregular, dynamic, or unpredictable data flow

yes

no

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

58

Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by
the number of stages

• Works best if the time to fill and drain the pipeline is
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time

unit (e.g., frames per second)

• Pipeline latency is important for real-time
applications
– Time interval from data input to pipeline, to data output

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

59

Event-Based Coordination

• In this pattern, interaction of tasks to process data
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

• Another option is various “static” dataflow models

– E.g., synchronous dataflow

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

60

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

61

Code Supporting Structures

• Loop parallelism

• Master/Worker

• Fork/Join

• SPMD

• Map/Reduce

• Task dataflow

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

62

Loop Parallelism Pattern

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units

– Especially good when code cannot be massively restructured

#pragma omp parallel for

for(i = 0; i < 12; i++)

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

63

Master/Worker Pattern

A
B

D E

Independent Tasks

C

A
B

C

E

D

worker worker worker worker

master

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

64

Master/Worker Pattern

• Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
– Embarrassingly parallel problems

• Main challenge in determining when the entire
problem is complete

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

65

Fork/Join Pattern

• Tasks are created dynamically
– Tasks can create more tasks

• Manages tasks according to their relationship

• Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

66

SPMD Pattern

• Single Program Multiple Data: create a single
source-code image that runs on each processor
– Initialize

– Obtain a unique identifier

– Run the same program each processor

• Identifier and input data differentiate behavior

– Distribute data

– Finalize

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

67

SPMD Challenges

• Split data correctly

• Correctly combine the results

• Achieve an even distribution of the work

• For programs that need dynamic load balancing,
an alternative pattern is more suitable

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

68

Map/Reduce Pattern

• Two phases in the program

• Map phase applies a single function to all data

– Each result is a tuple of value and tag

• Reduce phase combines the results

– The values of elements with the same tag are combined
to a single value per tag -- reduction

– Semantics of combining function are associative

– Can be done in parallel

– Can be pipelined with map

• Google uses this for all their parallel programs

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

69Communication and Synchronization
Patterns
• Communication

– Point-to-point

– Broadcast

– Reduction

– Multicast

• Synchronization

– Locks (mutual exclusion)

– Monitors (events)

– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)

– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset

N

Quick recap

• Decomposition

– High-level and fairly abstract

– Consider machine scale for
the most part

– Task, Data, Pipeline

– Find dependencies

• Algorithm structure

– Still abstract, but a bit less so

– Consider communication,
sync, and bookkeeping

– Task (collection/recursive)

– Data (geometric/recursive)

– Dataflow (pipeline/event-
based-coordination)

• Supporting structures

– Loop

– Master/worker

– Fork/join

– SPMD

– MapReduce

70

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

71Algorithm Structure and Organization
(from the Book)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** *** **** ** *** **

Loop
Parallelism **** ** ***

Master/
Worker **** ** * * **** *

Fork/
Join ** **** ** **** ****

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

72Algorithm Structure and Organization
(my view)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** ** **** ** **** *

Loop
Parallelism

when no
dependencies

* **** *

SWP to hide
comm.

Master/
Worker **** *** *** *** ** ****

Fork/
Join **** **** ** **** *

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

73

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

74

ILP, DLP, and TLP in SW and HW

• ILP
– OOO

– Dataflow

– VLIW

• DLP
– SIMD

– Vector

• TLP
– Essentially multiple cores

with multiple sequencers

• ILP
– Within straight-line code

• DLP
– Parallel loops

– Tasks operating on disjoint
data

• No dependencies within
parallelism phase

• TLP
– All of DLP +

– Producer-consumer chains

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 75

ILP, DLP, and TLP and Supporting Patterns

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

ILP
inline /
unroll

inline unroll inline
inline /
unroll

inline

DLP
natural or
local-
conditions

after
enough
divisions

natural
after
enough
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 76

ILP, DLP, and TLP and Supporting Patterns

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

ILP
inline /
unroll

inline unroll inline
inline /
unroll

inline

DLP
natural or
local-
conditions

after
enough
divisions

natural
after
enough
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 77

ILP, DLP, and TLP and Implementation
Patterns

SPMD
Loop

Parallelism
Mater/Worker Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions
+ local-conditional

TLP natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 78

ILP, DLP, and TLP and Implementation
Patterns

SPMD
Loop

Parallelism
Master/
Worker

Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions
+ local-conditional

TLP natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

79

Outline

• Molecular dynamics example
– Problem description

– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions;
Check global solution; Repeat

– Finding concurrency

• Scans; data decomposition; reductions

– Algorithm structure

– Supporting structures

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

80

GROMACS

• Highly optimized molecular-dynamics package

– Popular code

– Specifically tuned for protein folding

– Hand optimized loops for SSE3 (and other extensions)

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

81

Gromacs Components

– Non-bonded forces
• Water-water with cutoff

• Protein-protein tabulated

• Water-water tabulated

• Protein-water tabulated

– Bonded forces
• Angles

• Dihedrals

– Boundary conditions

– Verlet integrator

– Constraints
• SHAKE

• SETTLE

– Other
• Temperature–pressure coupling

• Virial calculation

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

82

GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions

– Coulomb

– Lennard-Jones

– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

83GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

84GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

85GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

86GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

87GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each
molecule

– Neighbor-lists have variable
number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

88

Other Examples

• More patterns
– Reductions

– Scans

• Building a data structure

• More examples
– Search

– Sort

– FFT as divide and conquer

– Structured meshes and grids

– Sparse algebra

– Unstructured meshes and graphs

– Trees

– Collections

• Particles

• Rays

