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Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA) 
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007
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Serial Reduction

A[1] A[2]

A[0:3]

A[3]

A[0:2]

A[0:1]

A[0]

• When reduction 
operator is not 
associative

• Usually followed by a 
broadcast of result



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

5

Tree-based Reduction

• n steps for 2n units of execution

• When reduction operator is associative

• Especially attractive when only one task needs 
result

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]
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Vector Reduction with Bank Conflicts

0 1 2 3 4 5 76 1098 11

1

2

3

Array elements 

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign

0 1 2 3 4 5 76 1098 11
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No Bank Conflicts

0 1 2 3 … 13 1514 181716 19

1

2

3

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Recursive-doubling Reduction

• n steps for 2n units of execution

• If all units of execution need the result of the 
reduction

A[1] A[2]

A[0:3]

A[3]

A[2:3]A[0:1]

A[0]

A[0:1] A[2:3]

A[0:3] A[0:3] A[0:3]
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Recursive-doubling Reduction

• Better than tree-based approach with broadcast

– Each units of execution has a copy of the reduced value 
at the end of n steps

– In tree-based approach with broadcast

• Reduction takes n steps

• Broadcast cannot begin until reduction is complete

• Broadcast can take n steps (architecture dependent)
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Parallel Prefix Sum (Scan)

• Definition:

The all-prefix-sums operation takes a binary associative 
operator  with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0  a1), …, (a0  a1  …  an-2)].

• Example: 
if  is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set 

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix 
Sums and Their Applications)

Exclusive scan: last 

input element is not 

included in the result

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Applications of Scan

• Scan is a simple and useful parallel building block
– Convert recurrences from sequential :  

for(j=1;j<n;j++)

out[j] = out[j-1] + f(j);

– into parallel:

forall(j) { temp[j] = f(j) };

scan(out, temp);

• Useful for many parallel algorithms:

• radix sort

• quicksort

• String comparison

• Lexical analysis

• Stream 

compaction

• Polynomial evaluation

• Solving recurrences

• Tree operations

• Building data structures

• Etc.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Scan on a serial CPU

• Just add each element to the sum of the elements 
before it

• Trivial, but sequential

• Exactly n adds: optimal

void scan( float* scanned, float* input, int length) 

{

scanned[0] = 0; 

for(int i = 1; i < length; ++i) 

{

scanned[i] = input[i-1] + scanned[i-1];

}

}

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. Read input to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

Each UE reads one value from the input

array in device memory into shared memory array T0.

UE 0 writes 0 into shared memory array.

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

1. (previous slide)

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

• Active UEs: stride to n-1 (n-stride UEs)

• UE j adds elements j and j-stride from T0 and writes 

result into shared memory buffer T1 (ping-pong)

Iteration #1

Stride = 1

T1 0 3 4 8 7 4 5 7

Stride 1

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

Iteration #2

Stride = 2

T0 0 3 1 7 0 4 1 6

In 3 1 7 0 4 1 6 30

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

T1 0 3 4 11 11 15 16 22

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

Iteration #3

Stride = 4

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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A First-Attempt Parallel Scan Algorithm

Ou
t

0 3 4 11 11 15 16 22

1. Read input from 

device memory to 

shared memory. Set 

first element to zero 

and shift others right 

by one.

2. Iterate log(n) 

times: UEs stride to n: 

Add pairs of elements 

stride elements apart. 

Double stride at each 

iteration. (note must 

double buffer shared 

mem arrays) 

3. Write output. 

T1 0 3 4 11 11 15 16 22

In 3 1 7 0 4 1 6 30

T1 0 3 4 8 7 4 5 7

T0 0 3 4 11 11 12 12 11

Stride 1

Stride 2

T0 0 3 1 7 0 4 1 6

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

18

What is wrong with our first-attempt parallel scan?

• Work Efficient: 
– A parallel algorithm is work efficient if it does the same amount 

of work as an optimal sequential complexity

• Scan executes log(n) parallel iterations
– The steps do n-1, n-2, n-4,... n/2 adds each

– Total adds: n * (log(n) – 1) + 1  O(n*log(n)) work

• This scan algorithm is NOT work efficient
– Sequential scan algorithm does n adds

– A factor of log(n) hurts: 20x for 10^6 elements!

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Improving Efficiency

• A common parallel algorithm pattern:

Balanced Trees
– Build a balanced binary tree on the input data and sweep it 

to and from the root

– Tree is not an actual data structure, but a concept to 
determine what each UE does at each step

• For scan:
– Traverse down from leaves to root building partial sums at 

internal nodes in the tree

• Root holds sum of all leaves

– Traverse back up the tree building the scan from the partial 
sums

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 UEs

Iterate log(n) times. Each UE adds value stride elements away to its own value

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build the Sum Tree

T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each UE adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 UE

Stride 1

Stride 2

Stride 4

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums.  Since this is an exclusive scan,

set the last element to zero.  It will propagate back to the first element.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 11 4 5 6 0

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 1

1 UE
Stride 4

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each UE adds value stride elements away to its own value,

and sets the value stride elements away to its own previous value.

Iteration 2 

2 UEs

Stride 4

Stride 2

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Build Scan From Partial Sums

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done!  We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).  

Total work: 2 * (n-1) adds = O(n)     Work Efficient!

Iteration log(n) 

n/2 UEs

Stride 2

Stride 4

Stride 1

Each       corresponds 

to a single UE.

© David Kirk/NVIDIA and 

Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 

Urbana-Champaign
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Building Data Structures with Scans

• Fun on the board
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History

• Berkeley architecture professor 
Christopher Alexander

• In 1977, patterns for city 
planning, landscaping, and 
architecture in an attempt to 
capture principles for “living” 
design
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Example 167 (p. 783): 6ft Balcony
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Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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Picture Reorder

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

Motion Vector Decode

Repeat

Color Conversion

MPEG bit stream
MPEG Decoder

Motion 

Compensation

Display

Here’s my algorithm.
Where’s the concurrency?
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• Task decomposition
– Independent coarse-grained 

computation

– Inherent to algorithm

• Sequence of statements 

(instructions) that operate 

together as a group
– Corresponds to some logical part 

of program

– Usually follows from the way 

programmer thinks about a 

problem

join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Motion 

Compensation

Here’s my algorithm.
Where’s the concurrency?
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join

IDCT

IQuantization

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

ZigZag

Saturation

MPEG bit stream
MPEG Decoder

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application 

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

Motion 

Compensation
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join

split

VLD

macroblocks, motion vectors

frequency encoded
macroblocks differentially coded 

motion vectors

motion vectorsspatially encoded macroblocks

recovered picture

MPEG bit stream
MPEG Decoder

Motion 

Compensation

Picture Reorder

Color Conversion

Display

Motion Vector Decode

Repeat

Here’s my algorithm.
Where’s the concurrency?

• Task decomposition
– Parallelism in the application

• Pipeline task decomposition
– Data assembly lines 

– Producer-consumer chains

• Data decomposition
– Same computation is applied to 

small data chunks derived from 

large data set

IDCT

IQuantization

ZigZag

Saturation
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Guidelines for Task Decomposition

• Algorithms start with a good understanding of the 
problem being solved

• Programs often naturally decompose into tasks
– Two common decompositions are

• Function calls and 

• Distinct loop iterations

• Easier to start with many tasks and later fuse them, 
rather than too few tasks and later try to split them



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

39

Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and 

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of 

creating and managing them

– Tasks should be sufficiently independent so that 
managing dependencies doesn’t become the 
bottleneck

• Simplicity
– The code has to remain readable and easy to 

understand, and debug
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Case for Pipeline Decomposition

• Data is flowing through a sequence of stages

– Assembly line is a good analogy

• What’s a prime example of pipeline decomposition in 
computer architecture? 

– Instruction pipeline in modern CPUs

• What’s an example pipeline you may use in your UNIX shell?

– Pipes in UNIX: cat foobar.c | grep bar | wc

• Other examples

– Signal processing

– Graphics

IDCT

IQuantization

ZigZag

Saturation
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Guidelines for Data Decomposition

• Data decomposition is often implied by task 
decomposition 

• Programmers need to address task and data 
decomposition to create a parallel program
– Which decomposition to start with?

• Data decomposition is a good starting point when
– Main computation is organized around manipulation of a large 

data structure

– Similar operations are applied to different parts of the data 
structure
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains
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Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide 
range of executions

• Efficiency

– Data chunks should generate comparable amounts of 
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage 
and debug
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Data Decomposition Examples

• Molecular dynamics

– Compute forces

– Update accelerations and
velocities

– Update positions

• Decomposition

– Baseline  algorithm is N2

• All-to-all communication

– Best decomposition is to treat
mols. as a set 

– Some advantages to
geometric discussed in future
lecture



N
EE382N: Parallelilsm and Locality  (c) Rodric Rabbah, Mattan Erez

46

Data Decomposition Examples

• Molecular dynamics

– Geometric decomposition

• Merge sort

– Recursive decomposition

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the 
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support

– Cost of sharing information among execution units

– Avoid tendency to over constrain the implementation

• Work well on the intended platform

• Flexible enough to easily adapt to different architectures



N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15   (c) Rodric Rabbah, Mattan Erez

49

Major Organizing Principle

• How to determine the algorithm structure that 
represents the mapping of tasks to units of 
execution?

• Concurrency usually implies major organizing 
principle
– Organize by tasks

– Organize by data decomposition

– Organize by flow of data
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Organize by Tasks?

Recursive?

Task 

Parallelism

Divide and Conquer
yes

no
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Task Parallelism

• Molecular dynamics
– Non-bonded force calculations, some dependencies

• Common factors
– Tasks are associated with iterations of a loop

– Tasks largely known at the start of the computation

– All tasks may not need to complete to arrive at a solution
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Divide and Conquer

• For recursive programs: divide and conquer
– Subproblems may not be uniform

– May require dynamic load balancing

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

join join

join

split split

split
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Organize by Data?

Recursive?

Geometric

Decomposition

Recursive Data

• Operations on a central data structure
– Arrays and linear data structures

– Recursive data structures

yes

no
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Recursive Data

• Computation on a list, tree, or graph

– Often appears the only way to solve a problem is to 
sequentially move through the data structure

• There are however opportunities to reshape the 
operations in a way that exposes concurrency
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Recursive Data Example: Find the Root

4

3

2

1 6

5 7

4

3

2

1 6

5 7

4

3

2

1 6

5 7

Step 1 Step 2 Step 3

• Given a forest of rooted directed trees, for each 
node, find the root of the tree containing the node
– Parallel approach: for each node, find its successor’s 

successor, repeat until no changes

• O(log n) vs. O(n)
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Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm 
leads to O(n log n) work vs. O(n) with sequential 
approach

• Most strategies based on this pattern similarly trade 
off increase in total work for decrease in execution 
time due to concurrency
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Organize by Flow of Data?

Regular?

Event-based 

Coordination

Pipeline

• In some application domains, the flow of data 
imposes ordering on the tasks
– Regular, one-way, mostly stable data flow

– Irregular, dynamic, or unpredictable data flow

yes

no
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Pipeline Throughput vs. Latency

• Amount of concurrency in a pipeline is limited by 
the number of stages

• Works best if the time to fill and drain the pipeline is 
small compared to overall running time

• Performance metric is usually the throughput
– Rate at which data appear at the end of the pipeline per time 

unit (e.g., frames per second)

• Pipeline latency is important for real-time 
applications
– Time interval from data input to pipeline, to data output
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Event-Based Coordination

• In this pattern, interaction of tasks to process data 
can vary over unpredictable intervals

• Deadlocks are a danger for applications that use 
this pattern
– Dynamic scheduling has overhead and may be inefficient

• Granularity a major concern

• Another option is various “static” dataflow models

– E.g., synchronous dataflow
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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Code Supporting Structures

• Loop parallelism

• Master/Worker

• Fork/Join

• SPMD

• Map/Reduce

• Task dataflow
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Loop Parallelism Pattern

• Many programs are expressed using iterative 
constructs 
– Programming models like OpenMP provide directives to 

automatically assign loop iteration to execution units

– Especially good when code cannot be massively restructured

#pragma omp parallel for

for(i = 0; i < 12; i++) 

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11
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Master/Worker Pattern

A
B

D E

Independent Tasks

C

A
B

C

E

D

worker worker worker worker

master
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Master/Worker Pattern

• Particularly relevant for problems using task 
parallelism pattern where task have no 
dependencies
– Embarrassingly parallel problems

• Main challenge in determining when the entire 
problem is complete
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Fork/Join Pattern

• Tasks are created dynamically
– Tasks can create more tasks

• Manages tasks according to their relationship

• Parent task creates new tasks (fork) then waits until 
they complete (join) before continuing on with the 
computation
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SPMD Pattern

• Single Program Multiple Data: create a single 
source-code image that runs on each processor
– Initialize

– Obtain a unique identifier

– Run the same program each processor

• Identifier and input data differentiate behavior

– Distribute data

– Finalize 
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SPMD Challenges

• Split data correctly

• Correctly combine the results

• Achieve an even distribution of the work

• For programs that need dynamic load balancing, 
an alternative pattern is more suitable
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Map/Reduce Pattern

• Two phases in the program

• Map phase applies a single function to all data

– Each result is a tuple of value and tag

• Reduce phase combines the results

– The values of elements with the same tag are combined 
to a single value per tag -- reduction

– Semantics of combining function are associative

– Can be done in parallel

– Can be pipelined with map

• Google uses this for all their parallel programs
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69Communication and Synchronization 
Patterns
• Communication

– Point-to-point

– Broadcast 

– Reduction

– Multicast

• Synchronization

– Locks (mutual exclusion)

– Monitors (events)

– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)

– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset



N

Quick recap

• Decomposition

– High-level and fairly abstract

– Consider machine scale for 
the most part

– Task, Data, Pipeline

– Find dependencies

• Algorithm structure

– Still abstract, but a bit less so

– Consider communication, 
sync, and bookkeeping

– Task (collection/recursive)

– Data (geometric/recursive)

– Dataflow (pipeline/event-
based-coordination)

• Supporting structures

– Loop

– Master/worker

– Fork/join

– SPMD

– MapReduce

70
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71Algorithm Structure and Organization 
(from the Book)

Task 
parallelism

Divide 
and 
conquer

Geometric 
decomposition

Recursive 
data

Pipeline Event-based 
coordination

SPMD

**** *** **** ** *** **

Loop 
Parallelism **** ** ***

Master/
Worker **** ** * * **** *

Fork/
Join ** **** ** **** ****

• Patterns can be hierarchically composed so 
that a program uses more than one pattern
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72Algorithm Structure and Organization 
(my view)

Task 
parallelism

Divide 
and 
conquer

Geometric 
decomposition

Recursive 
data

Pipeline Event-based 
coordination

SPMD

**** ** **** ** **** *

Loop 
Parallelism

****
when no 
dependencies

* **** *
****

SWP to hide 
comm.

Master/
Worker **** *** *** *** ** ****

Fork/
Join **** **** ** **** *

• Patterns can be hierarchically composed so 
that a program uses more than one pattern
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Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to 

exploit parallel 

architecture

Software Construction

• Supporting Structures
– Code and data structuring 

patterns

• Implementation 

Mechanisms
– Low level mechanisms used 

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming. 

Mattson, Sanders, and Massingill 

(2005).
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ILP, DLP, and TLP in SW and HW

• ILP
– OOO

– Dataflow

– VLIW

• DLP
– SIMD

– Vector

• TLP
– Essentially multiple cores 

with multiple sequencers

• ILP
– Within straight-line code

• DLP
– Parallel loops

– Tasks operating on disjoint 
data 

• No dependencies within 
parallelism phase

• TLP
– All of DLP +

– Producer-consumer chains
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ILP, DLP, and TLP and Supporting Patterns

Task 
parallelism

Divide 
and 
conquer

Geometric 
decomposition

Recursive 
data

Pipeline Event-based 
coordination

ILP
inline / 
unroll

inline unroll inline
inline / 
unroll

inline

DLP
natural or
local-
conditions

after 
enough 
divisions

natural
after 
enough 
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural
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ILP, DLP, and TLP and Supporting Patterns

Task 
parallelism

Divide 
and 
conquer

Geometric 
decomposition

Recursive 
data

Pipeline Event-based 
coordination

ILP
inline / 
unroll

inline unroll inline
inline / 
unroll

inline

DLP
natural or
local-
conditions

after 
enough 
divisions

natural
after 
enough 
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural
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ILP, DLP, and TLP and Implementation 
Patterns

SPMD
Loop 

Parallelism
Mater/Worker Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions 
+ local-conditional

TLP natural natural natural natural
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ILP, DLP, and TLP and Implementation 
Patterns

SPMD
Loop 

Parallelism
Master/
Worker

Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions 
+ local-conditional

TLP natural natural natural natural
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Outline

• Molecular dynamics example
– Problem description

– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions; 
Check global solution; Repeat

– Finding concurrency

• Scans; data decomposition; reductions

– Algorithm structure

– Supporting structures
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GROMACS

• Highly optimized molecular-dynamics package

– Popular code

– Specifically tuned for protein folding

– Hand optimized loops for SSE3 (and other extensions)
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Gromacs Components

– Non-bonded forces
• Water-water with cutoff

• Protein-protein tabulated

• Water-water tabulated

• Protein-water tabulated

– Bonded forces
• Angles

• Dihedrals

– Boundary conditions

– Verlet integrator

– Constraints
• SHAKE

• SETTLE

– Other
• Temperature–pressure coupling

• Virial calculation
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GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions

– Coulomb 

– Lennard-Jones

– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+
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83GROMACS Uses Non-Trivial Neighbor-List 
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams
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84GROMACS Uses Non-Trivial Neighbor-List 
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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85GROMACS Uses Non-Trivial Neighbor-List 
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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86GROMACS Uses Non-Trivial Neighbor-List 
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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87GROMACS Uses Non-Trivial Neighbor-List 
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each 
molecule

– Neighbor-lists have variable 
number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules
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Other Examples

• More patterns
– Reductions

– Scans

• Building a data structure

• More examples
– Search

– Sort

– FFT as divide and conquer

– Structured meshes and grids

– Sparse algebra

– Unstructured meshes and graphs

– Trees

– Collections 

• Particles

• Rays


