
N

EE382N (20): Computer Architecture - Parallelism and Locality

Lecture 13 – Parallelism in Software IV

EE382N: Parallelilsm and Locality (c) Rodric Rabbah,

Mattan Erez 1

Mattan Erez

The University of Texas at Austin

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

2

Credits

• Most of the slides courtesy Dr. Rodric Rabbah (IBM)

– Taken from 6.189 IAP taught at MIT in 2007

• Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
– Taken from EE493-AI taught at UIUC in Sprig 2007

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

3

Patterns in Object-Oriented Programming

• Design Patterns: Elements of Reusable Object-
Oriented Software (1995)

– Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides

– Catalogue of patterns

– Creation, structural, behavioral

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

4

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

5

Guidelines for Task Decomposition

• Flexibility
– Program design should afford flexibility in the number and

size of tasks generated
• Tasks should not tied to a specific architecture

• Fixed tasks vs. Parameterized tasks

• Efficiency
– Tasks should have enough work to amortize the cost of

creating and managing them

– Tasks should be sufficiently independent so that
managing dependencies doesn’t become the
bottleneck

• Simplicity
– The code has to remain readable and easy to

understand, and debug

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

6

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

7

Common Data Decompositions

• Geometric data structures

– Decomposition of arrays along rows, columns, blocks

– Decomposition of meshes into domains

• Recursive data structures

– Example: decomposition of trees into sub-trees

problem

subproblem subproblem

compute

subproblem

compute

subproblem
compute

subproblem

compute

subproblem

subproblem subproblem

solution

merge merge

merge

split split

split

N
EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

8

Guidelines for Data Decomposition

• Flexibility

– Size and number of data chunks should support a wide
range of executions

• Efficiency

– Data chunks should generate comparable amounts of
work (for load balancing)

• Simplicity

– Complex data compositions can get difficult to manage
and debug

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

9

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

10

Algorithm Structure Design Space

• Given a collection of concurrent tasks, what’s the
next step?

• Map tasks to units of execution (e.g., threads)

• Important considerations
– Magnitude of number of execution units platform will support

– Cost of sharing information among execution units

– Avoid tendency to over constrain the implementation

• Work well on the intended platform

• Flexible enough to easily adapt to different architectures

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

11

Major Organizing Principle

• How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

• Concurrency usually implies major organizing
principle
– Organize by tasks

– Organize by data decomposition

– Organize by flow of data

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

12

Work vs. Concurrency Tradeoff

• Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

• Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution
time due to concurrency

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

13

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

14

Code Supporting Structures

• Loop parallelism

• Master/Worker

• Fork/Join

• SPMD

• Map/Reduce

• Task dataflow

• Transactions

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

15

Loop Parallelism Pattern

• Many programs are expressed using iterative
constructs
– Programming models like OpenMP provide directives to

automatically assign loop iteration to execution units

– Especially good when code cannot be massively restructured

#pragma omp parallel for

for(i = 0; i < 12; i++)

C[i] = A[i] + B[i];

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

16

Master/Worker Pattern

A
B

D E

Independent Tasks

C

A
B

C

E

D

worker worker worker worker

master

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

17

Master/Worker Pattern

• Particularly relevant for problems using task
parallelism pattern where task have no
dependencies
– Embarrassingly parallel problems

• Main challenge in determining when the entire
problem is complete

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

18

Fork/Join Pattern

• Tasks are created dynamically
– Tasks can create more tasks

• Manages tasks according to their relationship

• Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

19

SPMD Pattern

• Single Program Multiple Data: create a single
source-code image that runs on each processor
– Initialize

– Obtain a unique identifier

– Run the same program each processor

• Identifier and input data differentiate behavior

– Distribute data

– Finalize

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

20

SPMD Challenges

• Split data correctly

• Correctly combine the results

• Achieve an even distribution of the work

• For programs that need dynamic load balancing,
an alternative pattern is more suitable

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

21

Map/Reduce Pattern

• Two phases in the program

• Map phase applies a single function to all data

– Each result is a tuple of value and tag

• Reduce phase combines the results

– The values of elements with the same tag are combined
to a single value per tag -- reduction

– Semantics of combining function are associative

– Can be done in parallel

– Can be pipelined with map

• Google uses this for all their parallel programs

N

Task Dataflow

• Dependence graph of tasks

• Usually, inputs and outputs explicitly defined (to
form the dataflow)

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

22

N

Transactions

• Mutual exclusion is useful but costly

• Transactions assume tasks are parallel and check
for conflicts of exclusion

• On conflict – re-execute conflicts (and serialize)

• Software and hardware approaches

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

23

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

24Communication and Synchronization
Patterns
• Communication

– Point-to-point

– Broadcast

– Reduction

– Multicast

• Synchronization

– Locks (mutual exclusion)

– Monitors (events)

– Barriers (wait for all)

• Split-phase barriers (separate signal and wait)

– Sometimes called “fuzzy barriers”

• Named barriers allow waiting on subset

– Hardware transactions

N

Quick recap

• Decomposition

– High-level and fairly abstract

– Consider machine scale for
the most part

– Task, Data, Pipeline

– Find dependencies

• Algorithm structure

– Still abstract, but a bit less so

– Consider communication,
sync, and bookkeeping

– Task (collection/recursive)

– Data (geometric/recursive)

– Dataflow (pipeline/event-
based-coordination)

• Supporting structures

– Loop

– Master/worker

– Fork/join

– SPMD

– MapReduce

– Transactions

25

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

26Algorithm Structure and Organization
(from the Book)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** *** **** ** *** **

Loop
Parallelism **** ** ***

Master/
Worker **** ** * * **** *

Fork/
Join ** **** ** **** ****

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

27Algorithm Structure and Organization
(my view)

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

SPMD

**** ** **** ** **** *

Loop
Parallelism

when no
dependencies

* **** *

SWP to hide
comm.

Master/
Worker **** *** *** *** ** ****

Fork/
Join **** **** ** **** *

• Patterns can be hierarchically composed so
that a program uses more than one pattern

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

28

Patterns for Parallelizing Programs

Algorithm Expression

• Finding Concurrency
– Expose concurrent tasks

• Algorithm Structure
– Map tasks to processes to

exploit parallel

architecture

Software Construction

• Supporting Structures
– Code and data structuring

patterns

• Implementation

Mechanisms
– Low level mechanisms used

to write parallel programs

4 Design Spaces

Patterns for Parallel Programming.

Mattson, Sanders, and Massingill

(2005).

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

29

ILP, DLP, and TLP in SW and HW

• ILP
– OOO

– Dataflow

– VLIW

• DLP
– SIMD

– Vector

• TLP
– Essentially multiple cores

with multiple sequencers

• ILP
– Within straight-line code

• DLP
– Parallel loops

– Tasks operating on disjoint
data

• No dependencies within
parallelism phase

• TLP
– All of DLP +

– Producer-consumer chains

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 30

ILP, DLP, and TLP and Supporting Patterns

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

ILP
inline /
unroll

inline unroll inline
inline /
unroll

inline

DLP
natural or
local-
conditions

after
enough
divisions

natural
after
enough
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 31

ILP, DLP, and TLP and Supporting Patterns

Task
parallelism

Divide
and
conquer

Geometric
decomposition

Recursive
data

Pipeline Event-based
coordination

ILP
inline /
unroll

inline unroll inline
inline /
unroll

inline

DLP
natural or
local-
conditions

after
enough
divisions

natural
after
enough
branches

difficult
local-
conditions

TLP natural natural natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 32

ILP, DLP, and TLP and Implementation
Patterns

SPMD
Loop

Parallelism
Mater/Worker Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions
+ local-conditional

TLP natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez 33

ILP, DLP, and TLP and Implementation
Patterns

SPMD
Loop

Parallelism
Master/
Worker

Fork/Join

ILP pipeline unroll inline inline

DLP
natural or
local-
conditional

natural local-conditional
after enough divisions
+ local-conditional

TLP natural natural natural natural

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

34

Outline

• Molecular dynamics example
– Problem description

– Steps to solution

• Build data structures; Compute forces; Integrate for new; positions;
Check global solution; Repeat

– Finding concurrency

• Scans; data decomposition; reductions

– Algorithm structure

– Supporting structures

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

35

GROMACS

• Highly optimized molecular-dynamics package

– Popular code

– Specifically tuned for protein folding

– Hand optimized loops for SSE3 (and other extensions)

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

36

Gromacs Components

– Non-bonded forces
• Water-water with cutoff

• Protein-protein tabulated

• Water-water tabulated

• Protein-water tabulated

– Bonded forces
• Angles

• Dihedrals

– Boundary conditions

– Verlet integrator

– Constraints
• SHAKE

• SETTLE

– Other
• Temperature–pressure coupling

• Virial calculation

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

37

GROMACS Water-Water Force Calculation

• Non-bonded long-range interactions

– Coulomb

– Lennard-Jones

– 234 operations per interaction

Water-water interaction ~75% of GROMACS run-time

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

O
OLennard-Jones

Electrostatic
H

H

H

H

+

+

+

+

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

38GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

39GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

40GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

41GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

42GROMACS Uses Non-Trivial Neighbor-List
Algorithm
• Full non-bonded force calculation is o(n2)

• GROMACS approximates with a cutoff

– Molecules located more than rc apart
do not interact

– O(nrc
3)

• Separate neighbor-list for each
molecule

– Neighbor-lists have variable
number of elements

Efficient algorithm leads to variable rate input streams

central
molecules

neighbor
molecules

N
EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

43

Other Examples

• More patterns
– Reductions

– Scans

• Building a data structure

• More examples
– Search

– Sort

– FFT as divide and conquer

– Structured meshes and grids

– Sparse algebra

– Unstructured meshes and graphs

– Trees

– Collections

• Particles

• Rays

