EE382N (20): Computer Architecture - Parallelism and Locality
Lecture 13 - Parallelism in Software IV

Mattan Erez

[SEE=ECE

The University of Texas at Austin

EE382N: Parallelilsm and Locality (c) Rodric Rabbah,
Mattan Erez

Credits

 Most of the slides courtesy Dr. Rodric Rabbah (IBM)
— Taken from 6.189 |IAP taught at MIT in 2007

e Parallel Scan slides courtesy David Kirk (NVIDIA)
and Wen-Mei Hwu (UIUC)
— Taken from EE493-Al taught at UIUC in Sprig 2007

E EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

3

Patterns in Object-Oriented Programming

e Design Patterns: Elements of Reusable Object-
Oriented Software (1995)
— Gang of Four (GOF): Gamma, Helm, Johnson, Vlissides
— Catalogue of patterns
— Creation, structural, behavioral

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>
o
O
7
O
Z
=
<
w
<
Pl
~
v
%)
O
Z
>
~
4
zZ
=
Z
0O
=
~
w

Cover st IFMMC Esches / ¢ n

Foreword by Grady Booch

E EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression Software Construction
« Finding Concurrency < Supporting Structures
— Expose concurrent tasks — Code and data structuring
patterns
« Algorithm Structure « Implementation
— Map tasks to processes 1o Mechanisms
explq’r parallel — Low level mechanisms used
architecture PATTERNS

sk Binaiie to write parallel programs
PROGRAMMING

1 DRARALS | Patterns for Parallel Programming.

. Mattson, Sanders, and Massingill
E EE382N: Parallelilsm and Locality (c) xoaric

. (2005).

Guidelines for Task Decomposition

o Flexibility

— Program design should afford flexibility in the number and
size of fasks generated

e Tasks should not tied to a specific architecture
e Fixed tasks vs. Parameterized tasks

e Efficiency

— Tasks should have enough work 1o amortize the cost of
creating and managing them

— Tasks should be sufficiently independent so that
Mmanaging dependencies doesn't become the
bottleneck

o Simplicity
— The code has to remain readable and easy to
understand, and debug

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

25

)

VAV A

SR SE

Vay,

Common Data Decompositions

e Geometric data structures

f arrays along rows, columns, blocks

ITIonN O

Decompos

f meshes into domains

ITIoN O

Decompos

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

Common Data Decompositions

e Geometric data structures
— Decomposition of arrays along rows, columns, blocks
— Decomposition of meshes info domains

e Recursive data structures
— Example: decomposition of frees into sub-trees

split

subproblem

subproblem

split

merge

subproblem

E EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

subproblem

Guidelines for Data Decomposition

o Flexibility

— Size and number of data chunks should support a wide
range of executions

e Efficiency

— Data chunks should generate comparable amounts of
work (for load balancing)

o Simplicity
— Complex data compositions can get difficult to manage
and debug

E EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

4 Design Spaces

Algorithm Expression

« Algorithm Structure

— Map tasks to processes 1o
exploif parallel |
architecture PATTERNS

FOR PARALLBL
PROGRAMMING

u "y Patterns for Parallel Programming.

£ 0CQ Mattson, Sanders, and Massingill
E EE382N: Parallelilsm and Locality, Spring 4u

(2005).

) rRodric Rabbah, Mattan Erez

Algorithm Structure Design Space

e Given a collection of concurrent tasks, what's the
next stepe

 Map tasks to units of execution (e.g., threads)

* Important considerations
— Magnitude of number of execution units platform will support
— Cost of sharing information among execution units

— Avoid tendency to over constrain the implementation
 Work well on the infended platform
e Flexible enough to easily adapt to different architectures

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

10

2

Major Organizing Principle

e How to determine the algorithm structure that
represents the mapping of tasks to units of
execution?

e Concurrency usually implies major organizing
principle
— Organize by tasks
— Organize by data decomposition
— Organize by flow of data

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

11

12

Work vs. Concurrency Tradeoff

e Parallel restructuring of find the root algorithm
leads to O(n log n) work vs. O(n) with sequential
approach

 Most strategies based on this pattern similarly trade
off increase in total work for decrease in execution

time due to concurrency

Patterns for Parallelizing Programs

N

4 Design Spaces

Software Construction

« Supporting Structures

— Code and data structuring
patterns

PROGRAMMING

| "" Patterns for Parallel Programming.
~ Mattson, Sanders, and Massingill
' (2005).

¢) rRodric Rabbah, Mattan Erez

EE382N: Parallelilsm and Locality, Spring 2

13

Code Supporting Structures

* Loop parallelism
e Master/Worker
e Fork/Join

e SPMD

e Map/Reduce
 Task dataflow

e Transactions

15

Loop Parallelism Pattern

e Many programs are expressed using iterative
constructs

— Programming models like OpenMP provide directives to
automatically assign loop iteration to execution units

— Especially good when code cannot be massively restructured

#pragma omp parallel for
for(i = 0; 1 < 12; i++)
C[i] = A[1] + BI[1i];

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

1 I 1 I
~N o o b~

2

16

Master/Worker Pattern

master D

Independent Tasks

ST

worker worker worker worker

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

2

Master/Worker Pattern

e Particularly relevant for problems using task
pardllelism pattern where task have no
dependencies

— Embarrassingly parallel problems

e Main challenge in determining when the entire
problem is complete

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

17

18

Fork/Join Pattern

e Tasks are created dynamically
— Tasks can create more tasks

* Manages tasks according to their relationship

 Parent task creates new tasks (fork) then waits until
they complete (join) before continuing on with the
computation

SPMD Pattern

e Single Program Multiple Data: create a single
source-code image that runs on each processor
— Initialize
— Obtain a unigue identifier

— Run the same program each processor
e |dentifier and input data differentfiate behavior

— Distribute data
— Finalize

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

SPMD Challenges

Split data correctly
Correctly combine the results
Achieve an even distribution of the work

For programs that need dynamic load balancing,
an alternative pattern is more suitable

20

Map/Reduce Patitern

e Two phases in the program

e Map phase applies a single function to all data
— Eachresult is a tuple of value and tag

e Reduce phase combines the results

— The values of elements with the same tag are combined
to a single value per tag -- reduction

— Semantics of combining function are associafive
— Can be done in parallel
— Can be pipelined with map

e Google uses this for all their parallel programs

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

Task Dataflow

e Dependence graph of tasks

o Usually, inputs and outputs explicitly defined (to
form the dataflow)

22

2

Transactions

 Mutual exclusion is useful but costly

e Transactions assume tasks are parallel and check
for conflicts of exclusion

 On conflict —re-execute conflicts (and serialize)
e Software and hardware approaches

EE382N: Parallelilsm and Locality (c) Rodric Rabbah, Mattan Erez

23

Communication and Synchronization

Patterns

e Communication
— Point-to-point
— Broadcast
— Reduction
— Multicast

e Synchronization
— Locks (mutual exclusion)
— Monitors (events)

— Barriers (wait for all)
o Split-phase barriers (separate signal and wait)
— Sometimes called “fuzzy barriers”
 Named barriers allow waiting on subset

— Hardware transactions

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

24

Quick recap

e Decomposition

High-level and fairly abstract

Consider machine scale for
the most part

Task, Data, Pipeline
Find dependencies

e Algorithm structure

Still abstract, but a bit less so

Consider communication,
sync, and bookkeeping

Task (collection/recursive)
Data (geometric/recursive)

Dataflow (pipeline/event-
based-coordination)

e Supporting structures

Loop
Master/worker
Fork/join
SPMD
MapReduce
Transactions

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

25

Algorithm Structure and Organization
(from the Book)

26

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
SPMD
% %k %k % % %k % % %k %k % %k %k k% %k
Loop %k k% * 3k %k %
Parallelism
Master/ sk k k% %3k * % sk %k k *
Worker
Fork/
Join % % % %k k% % %k % 3k %k % %k %k %

e Patfterns can be hierarchically composed so
that a program uses more than one pattern

2

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15

(c) Rodric Rabbah, Mattan Erez

Algorithm Structure and Organization

(my

view)

27

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
SPMD
% %k %k % * 3k % %k %k % %k %k %k % *
Loop 3 3k 5k 5k %k k%
Parallelism * Fokkk * ,
when no SWP to hide
dependencies comm.
Master/ %k k% %k % %k % %k % % % %k %k %
Worker
Fork/
Join %k %k % % 3k %k % % %k % 3k %k % *

e Patfterns can be hierarchically composed so
that a program uses more than one pattern

2

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15

(c) Rodric Rabbah, Mattan Erez

Patterns for Parallelizing Programs

N

EE382N: Parallelilsm and Locality, Spring

4 Design Spaces

Software Construction

¢ Implementation

Mechanisms

— Low level mechanisms used
to write parallel programs

PROGRAMMING

/['. o Patterns for Parallel Programming.
: . Mattson, Sanders, and Massingill

(¢) rRodric Rabbah, Mattan Erez

28

ILP, DLP, and TLP in SW and HW :

e |LP e |LP
— 000 — Within straight-line code
- Dataflow
- VLIW
e DLP e DLP
— SIMD — Parallel loops
— Vector = L%sflg operating on disjoint

e No dependencies within
parallelism phase

* TLP e TLP
— Essentially multiple cores — Allof DLP +
with mulfiple sequencers — Producer-consumer chains

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

ILP, DLP, and TLP and Supporiting Paiterns

Task
parallelism

ILP

DLP

TLP

N

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15

Divide
and
conquer

Geometric
decomposition

Recursive
data

(c) Rodric Rabbah, Mattan Erez

Pipeline

Event-based
coordination

30

ILP, DLP, and TLP and Supporiting Paiterns

Task Divide Geometric Recursive Pipeline | Event-based
parallelism | and decomposition | data coordination
conquer
ILP inline / inline unroll inline inline / inline
unroll vnroll
natural or after after local-
DLP local- enough natural enough difficult e
o . e s conditions
conditions divisions branches
TLP natural natural natural natural natural natural

31

ILP, DLP, and TLP and Implementation

Patterns

SPMD

ILP

DLP

TLP

Loop
Parallelism

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15

Mater/Worker

(c) Rodric Rabbah, Mattan Erez

Fork/Join

32

ILP, DLP, and TLP and Implementation

Paiterns

ILP

DLP

TLP

SPMD

natural or

local-
conditional

Loop
Parallelism

Master/
Worker

E z EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

Fork/Join

33

Ouvutline

e Molecular dynamics example

N

Problem description
Steps to solution

34

e Build data structures; Compute forces; Integrate for new; positions;
Check global solution; Repeat

Finding concurrency

e Scans; data decomposition; reductions

Algorithm structure
Supporting structures

EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15

(c) Rodric Rabbah, Mattan Erez

GROMACS

e Highly optimized molecular-dynamics package
— Popular code
— Specifically funed for protein folding
— Hand optimized loops for SSE3 (and other extensions)

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

35

Gromacs Components

— Non-bonded forces
e Water-water with cutoff
e Protein-protein tabulated
e Water-water tabulated
e Protein-water tabulated

— Bonded forces
* Angles
e Dihedrals
— Boundary conditions
— Verlet integrator
— Constraints
e SHAKE
e SETTLE
— Ofther

 Temperature—pressure coupling
* Virial calculation

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

36

GROMACS Water-Water Force Calculation

e Non-bonded long-range interactions
— Coulomb
— Lennard-Jones
— 234 operations per in’reroc’rion@

Lennard-Jones

-
-
-
-

Water-water intferaction ~75% of GROMACS run-time

GROMACS Uses Non-Trivial Neighbor-List -
Algorithm

e Full non-bonded force calculation is o(n?)

e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3)

Efficient algorithm leads to variable rate input sireams

GROMACS Uses Non-Trivial Neighbor-List -
Algorithm

e Full non-bonded force calculation is o(n?)
e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3)
Al & ®| o
K¥-4 o |& |4,
Q .[2 1 A <
. (o n
central neighbor % ,,rt ér 4
molecules molecules

Efficient algorithm leads to variable rate input sireams

GROMACS Uses Non-Trivial Neighbor-List .
Algorithm

e Full non-bonded force calculation is o(n?)
e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3)
al al °|«
3%) ‘:’ Se
vQ
44 A %
FY i Y
central neighbor ,,rt
molecules molecules

Efficient algorithm leads to variable rate input sireams

GROMACS Uses Non-Trivial Neighbor-List ..
Algorithm

e Full non-bonded force calculation is o(n?)
e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3)
2
&%
R
-
central neighbor %
molecules molecules

Efficient algorithm leads to variable rate input sireams

GROMACS Uses Non-Trivial Neighbor-List
Algorithm

e Full non-bonded force calculation is o(n?)
e GROMACS approximates with a cutoff

— Molecules located more than r. apart
do not interact

— O(nr_3) _}yy -

Separate neighbor-list foreachl & &
molecule 2| -

— Neighbor-lists have variable
number of elements

central neighbor

molecules molecules

Efficient algorithm leads to variable rate input sireams

42

Other Examples

e More patterns
— Reductions

— Scans
e Building a data structure

e More examples
— Search
— Sort
— FFT as divide and conquer
— Structured meshes and grids
— Sparse algebra
— Unstructured meshes and graphs
— Trees

— Collections
e Parficles
* Rays

E EE382N: Parallelilsm and Locality, Spring 2015 -- Lecture 15 (c) Rodric Rabbah, Mattan Erez

43

